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ABSTRACT

Large multimodal models such as Stable Diffusion can generate, detect, and clas-
sify new visual concepts after optimizing just the prompt. How are prompt em-
beddings for visual concepts found by prompt tuning methods different from typ-
ical discrete prompts? We conduct a large-scale analysis on three state-of-the-art
models in text-to-image generation, open-set object detection, and zero-shot clas-
sification, and find that prompts optimized to represent new visual concepts are
akin to an adversarial attack on the text encoder. Across 4,800 new embeddings
trained for 40 diverse visual concepts on four standard datasets, we find pertur-
bations within an ϵ-ball to any prompt that reprogram models to generate, detect,
and classify arbitrary subjects. These perturbations target the final-layers in text
encoders, and steer pooling tokens towards the subject. We explore the transfer-
ability of these prompts, and find that perturbations reprogramming multimodal
models are initialization-specific, and model-specific. Code for reproducing our
work is available at the following site: wayward-concepts.github.io.

1 INTRODUCTION

Fine-tuning prompts is a widely successful technique for adapting large pretrained models to new
tasks from limited data (Lester et al., 2021; Li & Liang, 2021; Shin et al., 2020; Gal et al., 2023).
In language modelling, these prompts can efficiently teach pretrained language models specialized
tasks, such as reading tables (Li & Liang, 2021). In text-to-image generation, they can embed
subjects with unique, often hard-to-describe appearances into the generations of a diffusion model
(Gal et al., 2023; Ruiz et al., 2023). Large multimodal models, such as Stable Diffusion (Rombach
et al., 2022), OWL-v2 (Minderer et al., 2022), and CLIP (Radford et al., 2021; Cherti et al., 2023;
Fang et al., 2023), can generate, detect, and classify diverse visual concepts not present in their
training data after fine-tuning embeddings representing that concept in their prompt (Gal et al.,
2023; Trabucco et al., 2023). How do soft prompts obtained via prompt tuning methods that encode
specific visual concepts (i.e. black dog) differ from typical discrete prompts? There is a popular
hypothesis in multimodal machine learning that text-based models have emergent representations
for visual content (Liu et al., 2023a; Koh et al., 2023; Huh et al., 2024; Lu et al., 2022), despite
training purely on text. This investigation aims to determine if visual prompt tuning methods find
emergent embeddings akin to the existing discrete prompts, or if they find something more subtle.

We conduct a large-scale study on three state-of-the-art models in text-to-image generation, open-
set object detection, and zero-shot classification. We optimize 4,800 new embeddings for Stable
Diffusion (Rombach et al., 2022), OWL-v2 (Minderer et al., 2022), and CLIP (Radford et al., 2021;
Cherti et al., 2023; Fang et al., 2023) to generate, detect, and classify 40 diverse visual concepts
across four standard datasets. For all tested models and datasets, visual prompt tuning finds solutions
within an ϵ-ball to unrelated discrete prompts that reprogram models to generate, detect, and classify
arbitrary subjects. We refer to this redundancy of solutions as fracturing of the embedding space.
Fractured solutions found by visual prompt tuning have noteworthy properties: first, solutions are
robust to their location in the embedding space, and second, they target specific layers in the model.

Across all models and tasks, fractured solutions anchored to unrelated discrete prompts perform
comparably to solutions anchored to related discrete prompts. In both cases, fractured solutions
target the final layers of text encoders to steer text encoder representations away from the original
discrete prompt, and towards the desired subject. We explore the transferability of solutions found
by visual prompt tuning, and find the perturbations are specialized to the model, and anchor prompt.
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Figure 1: Large multimodal models can learn specific concepts, such as black Labrador retriever in the figure,
after fine-tuning just the prompt. How do soft prompts obtained via prompt tuning methods that encode specific
visual concepts (i.e. black dog) differ from typical discrete prompts? We study the solutions found by prompt
tuning methods on three models, and show their solutions are akin to adversarial attacks on text encoders.

Indeed, the perturbations found by visual prompt tuning are akin to adversarial attacks (Goodfellow
et al., 2015; Brown et al., 2017), on the embedding space of the text encoder.

This work contributes a large-scale study of soft prompts that encode specific visual concepts across
generation, detection, and classification tasks. We provide a benchmark for training such prompts
on a diverse set of visual concepts, and evaluating their transferability across three models. Our
work aims to galvanize the interoperability of large multimodal models following Figure 1, allow-
ing prompts trained for generating black Labradors to be re-used for detection, and other tasks.
Transferring prompts can significantly improve the adaptability and cost of machine learning sys-
tems by eliminating the need to re-train prompts when new models are released. We highlight the
difficulty of transferring prompts for current models, investigate what these prompts learn, and what
prevents them from transferring successfully. Code for reproducing our work, and benchmarking
new transfer methods is available at the following official website: wayward-concepts.github.io.

2 RELATED WORKS

Text-To-Image Generation. With the advent of diffusion-based architectures, large-scale gener-
ative models have developed impressive photo-realism. Approaches like Stable Diffusion (Rom-
bach et al., 2022), DALL-E 2 (Ramesh et al., 2022), and Imagen (Saharia et al., 2022) employ
diffusion-based approaches (Ho et al., 2020; Sohl-Dickstein et al., 2015) that start from an initial
Gaussian noise map, and iteratively denoise the image over several denoising diffusion steps. These
approaches incorporate pretrained text-encoders, such as CLIP (Radford et al., 2021) in Stable Dif-
fusion (Rombach et al., 2022), to guide generation in the diffusion process. Guidance is typically
applied through Classifier-free Guidance (Ho & Salimans, 2022), which allows the influence of the
text-encoder to be increased, at the expense of generation quality. Diffusion models have remark-
able flexibility, and can generate new subjects from a handful of examples by learning embeddings
for pseudo tokens representing the subject in the prompt (Gal et al., 2023; Trabucco et al., 2023).
Fine-tuning both the model and the prompt, as in Dreambooth (Ruiz et al., 2023), leads to improved
generation of subjects, while retaining the controllability of pseudo tokens. Pseudo tokens in diffu-
sion models are an application of visual prompt tuning, and our investigation considers them.

Open-Vocabulary Object Detection. Parallel to work in generation, large-scale object detection
models have developed a comparable strong versatility, and can detect new objects from short de-
scriptions of their appearance (i.e. detect black dog) (Zou et al., 2023b; Liu et al., 2023b; Minderer
et al., 2022). Models like Grounding DINO (Liu et al., 2023b), SEEM (Zou et al., 2023b), and
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OWLv2 (Minderer et al., 2022) employ a pretrained text encoder to produce representations for clas-
sifying bounding boxes. In OWLv2 (Minderer et al., 2022), representations from a pretrained CLIP
(Radford et al., 2021) text encoder are contrasted with region-based representations from a vision
transformer backbone. Grounding DINO (Liu et al., 2023b), and SEEM (Zou et al., 2023b) em-
ploy representations from a pretrained text encoder (BERT (Devlin et al., 2019), and UniCL (Yang
et al., 2022), respectively) to directly guide bounding box proposal. We show open-vocabulary ob-
ject detectors can detect new objects from a handful of examples by optimizing just new prompt
embeddings for the object. Our analysis shows key properties of these optimized prompts in open-
vocabulary object detection are shared with text-to-image generation.

Zero-Shot Classification. We use recent models (Fang et al., 2023) derived from CLIP (Radford
et al., 2021) for zero-shot classification experiments. We insert new word embeddings optimized
for classifying new visual concepts in the prompt of the CLIP text encoder, and contrast text rep-
resentations with image representations from the CLIP vision encoder on test images. Prior work
shows CLIP is an effective zero-shot classifier (Radford et al., 2021; Novack et al., 2023). We use
checkpoints from OpenAI CLIP (Radford et al., 2021), OpenCLIP (Cherti et al., 2023), and Data
Filtering Networks (Fang et al., 2023), trained on LAION-5B (Schuhmann et al., 2022). Diffusion
models can also be used as zero-shot classifiers (Li et al., 2023; Clark & Jaini, 2023), but we focus
on CLIP for better task coverage. Our analysis shows that CLIP has a fractured embedding space,
and visual prompt tuning for zero-shot classification finds fractured solutions.

Prompt-Tuning. The word embeddings we optimize for visual concept learning tasks are closely
related to prompt-tuning (Lester et al., 2021; Li & Liang, 2021). Prompt tuning aims to find a prefix
or an entire prompt that causes a pretrained language model to perform a specialized task, such as
reading tables (Lester et al., 2021; Li & Liang, 2021). These methods treat the prompt as a trainable
parameter, and optimize the embeddings of the prompt to minimize a task loss function. Prior work
has shown the resulting soft prompts in language modelling tasks are hard to interpret (Khashabi
et al., 2022), as their closest discrete prompts are often unrelated to the desired task. Transferring
learned prompts is an important task in jail-breaking LLMs (Zou et al., 2023a; Robey et al., 2023),
and researchers are searching over discrete prompts (Wen et al., 2023; Shin et al., 2020; Zou et al.,
2023a; Robey et al., 2023). In pure language modelling tasks, researchers have shown that certain
soft prompts can transfer between models with the same architecture and task, but different weights
(Passigan et al., 2023; Ju et al., 2023; Wu et al., 2023). We extend this investigation to visual tasks,
models with different label modalities (images, bounding boxes, and class labels).

Adversarial Examples. Perturbations found by visual prompt tuning near discrete prompts are
akin to adversarial attacks on the embeddings of the text encoder. Adversarial robustness is an ex-
tensively studied field in computer vision (Goodfellow et al., 2015), with a variety of attack methods,
including (Goodfellow et al., 2015; Brown et al., 2017; Madry et al., 2018; Kurakin et al., 2017; Car-
lini & Wagner, 2017), and defense methods, including (Madry et al., 2018; Qin et al., 2019; Tramèr
et al., 2018; Kannan et al., 2018). Adversarial attacks in computer vision traditionally focus on mod-
ifying the pixels in an image, whereas we modify word embeddings. Adversarial attacks on language
include jail-breaking (Zou et al., 2023a; Robey et al., 2023), and typically involve searching over
discrete prompts (Zhang et al., 2020; Li et al., 2020), rather than continuous embeddings.

3 TRANSFER EVALUATION METHODOLOGY

Transferring prompt tuning solutions involves finding a map between the embedding spaces of dif-
ferent models. We call this mapping the Transfer Function T (v), depicted in Figure 2. The Transfer
Function maps word representations for visual concepts from the vector space X = Rdx for word
embeddings in one model, to the vector space Y = Rdy for word embeddings in another model.
Space X may correspond to Stable Diffusion Rombach et al. (2022) word embeddings for a gen-
eration task, and Y may be OWL-v2 Minderer et al. (2022) word embeddings for a detection task.
Given these vector spaces, the Transfer Function predicts the representation x⃗(w) in the vector space
X for a word w originally from the vector space Y given just the word vector representation y⃗(w).

T y→x : Y → X = argmin
T

Ew∼pw
∥x⃗(w)− T (y⃗(w))∥22 (1)
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Figure 2: Transferring prompt embeddings from generation to detection tasks. We fine-tune the vector embed-
dings for new tokens (such as <orange-cat> for the orange cat in the figure) to minimize a noise prediction
loss for generation. Vector embeddings are transferred from generation to detection using a linear map, and
used to produce zero-shot instance detections for the target visual concept (in this case, orange cats).

The Transfer Function T (v) minimizes the average prediction error between transferred word em-
beddings T (y⃗(w)) and real word embeddings x⃗(w) from the vector space X . We average this error
over a uniform distribution pw of words that exist in both vector spaces X and Y . In our experiments
on Stable Diffusion 2.1 Rombach et al. (2022) and OWL-v2 Minderer et al. (2022), the number of
words in pw (> 40,000) is larger than the number of components dx and dy in each vector space.

3.1 FINDING A LINEAR TRANSFER FUNCTION

Solving the optimization problem given by Equation 1 is hard in general, and to simplify the investi-
gation, we restrict our focus to the class of linear Transfer Functions. This restriction transforms the
hard problem in Equation 1 into a Linear Least Squares estimator, which has a closed-form solution.
Consider a pair of matrices X ∈ Rn×dx and Y ∈ Rn×dy , where each pair of rows in X and Y
is a pair of word vector embeddings x⃗(w) and y⃗(w) for a word w contained in the support of the
distribution pw. The Linear Least Squares estimator we employ for T y→x is given below.

T y→x = argmin
T

Ew∼pw∥x⃗(w)− T y⃗(w)∥22 = (Y TY )−1Y TX (2)

One can interpret T y→x as lining up the directions in the vector spaces X and Y that correspond
to the same visual concepts. Word embeddings often have algebraic relationships (Mikolov et al.,
2013), and a linear Transfer Function preserves these relationships by distributing over addition.

3.2 EVALUATING PROMPTS ON TRANSFERRED TASKS

Using Equation 2, we estimate Transfer Functions between all six ordered subsets of the three mod-
els, and evaluate prompts optimized for visual concepts on one task (such as generation), and trans-
ferred to the same visual concepts on another task (such as classification). Consider a dataset D of
images I depicting a specific visual concept, such as a black Labrador retriever, and task-specific
annotations ay , such as bounding boxes (ay ∈ Rb×4), or class labels (ay ∈ N). We first optimize the
prompt embeddings v⃗y ∈ Y to minimize a task-specific loss function Ly . We then zero-shot transfer
embeddings v⃗y to task x using the linear map v⃗x = T y→xv⃗y , and evaluate a task-specific perfor-
mance metric Mx. Loss functions and performance metrics for each task are shown in Table 1.

EI,ax∼Dtest Mx(T
y→xv⃗y, I, ax) s.t. v⃗y = argmin

v⃗
EI,ay∼Dtrain Ly(v⃗, I, ay) (3)

For Stable Diffusion 2.1 (Rombach et al., 2022), we use the denoising loss function originally pro-
posed in Ho et al. (2020), where the goal is to predict a noise map ϵ added to an image I at a particular
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Task Loss Function Performance Metric

Generation EI∼Dtrain ∥ϵ− ϵθ(
√
αtI +

√
1− αtϵ, t, v⃗)∥2 EI∼pθ(·|v⃗) 1[ I has the concept ]

Detection EI,b,w∼Dtrain [w · (e⃗object(I, b)
T e⃗text(v⃗))] Mean Average Precision

Classification EI,w∼Dtrain [w · (e⃗image(I)
T e⃗text(v⃗))] Classifier Accuracy

Table 1: Loss Functions and Performance Metrics. We benchmark transfer of prompt embeddings across
generation, detection, and classification tasks. In each row, I corresponds to an image, b to an object bounding
box, and w ∈ {−1, 1} to a weight multiplied onto the loss function. This weight controls whether the objective
is maximized or minimized, where w = −1 when the image and bounding box contain the target concept, and
w = 1 otherwise. The functions e⃗ are image and text encoders that return vector representations: e⃗image is the
CLIP vision encoder, e⃗text is the CLIP text encoder, and e⃗object is an OWL-v2 region proposal feature.

timestep in the diffusion process t. We optimize the prompt embeddings v⃗ so that Stable Diffusion
generates images of a particular class (such as black Labrador). This optimization uses a training
dataset Dtrain, and a separate dataset Dtest that contains different images of the same visual concept
(such as black Labrador) is used for evaluation. For evaluating generation, we measure the prob-
ability that generations contain the target visual concept, measured by OpenAI’s pretrained CLIP
L-14 model given the prompt ”a photo of {subject name}”. This procedure employs Textual
Inversion (Gal et al., 2023) with the additional prompt embedding transfer step in Figure 2.

We use standard loss functions and performance metrics adapted from recent literature when training
and evaluating visual prompts. Each loss function and performance metric is discussed further in
Section 4.3. Now equipped for training, evaluating, and transferring prompts, we can pose our
motivating question: how do solutions from prompt tuning differ from typical discrete prompts?

4 PROMPT TUNING FINDS FRACTURED SOLUTIONS

Near any discrete prompt in the embedding space of Large Multimodal Models, there are perturba-
tions that reprogram models to generate, detect, and classify arbitrary subjects. For example, the
prompt tuning solution in the top-left of Figure 3 is closest to the discrete prompt “cat”, but Stable
Diffusion generates a vase. We observe this high degree of model reprogrammability consistently
across three model classes, four standard datasets, and 40 diverse visual concepts, suggesting a gen-
eral phenomenon in Large Multimodal Models. We refer to this phenomenon as fracturing of the
embedding space, as prompts that encode (i.e. generate) specific visual concepts are scattered across
the entire embedding space. Figure 3 shows example solutions—each row corresponds to a visual
concept from a standard dataset, and each column is a discrete anchor prompt. In several cases, an
identical image is generated by several perturbations near different anchors, such as generations for
the duck concept (second row) from the vase (column two) and candle anchors (column four).

4.1 DATASET PREPARATION

We explore the fracturing phenomenon using four standard datasets, adapted from recent literature
in generation, detection, and classification. We adapt the 2014 ImageNet detection dataset (Deng
et al., 2009), the DreamBooth dataset (Ruiz et al., 2023), COCO (Lin et al., 2014), and PASCAL
VOC (Everingham et al., 2010). For each dataset, we select 10 concepts uniformly at random from
available classes to use for benchmarking, and select 8 images per concept from the training set (see
Appendix D). These cover a diverse range of concepts likely to be encountered in real use cases.
For ImageNet, each image is annotated with an integer class label, and a set of bounding boxes that
contain the target concept. For the DreamBooth dataset, bounding box labels are missing. To obtain
bounding box labels, we ran a pretrained OWL-v2 on every image using the name of the subject as
the prompt, and manually verified the labels as correct. For COCO and PASCAL VOC, class labels
are not present, so we assign each image a class label equal to the class of the largest bounding box.
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Figure 3: Example generations and detections for various concepts (row labels) using solutions found in the
immediate neighborhood of unrelated words (column labels). We consistently find soft prompts for generating
and detecting arbitrary concepts near unrelated discrete prompt anchors across ImageNet (examples in Ap-
pendix J), DreamBooth (first three rows), COCO (last two rows), and PASCAL VOC (Appendix J) datasets.
The same objects are detected, and in several cases, near-identical images are generated for different anchors.

4.2 MODEL DETAILS

We select three state-of-the-art models in text-to-image generation, open-set object detection, and
zero-shot classification. Each model accepts a text-based prompt as input, containing the prompt
embeddings to be optimized (i.e. “<dog>” for the dog concept). For generation, we select Stable
Diffusion 2.1, a latent diffusion model proposed by Rombach et al. (2022). For detection, we select
OWL-v2 (Minderer et al., 2022), a two-stage object detection model with a region proposal stage,
and a classification stage that labels region proposals with classes. For classification, we select Data
Filtering Networks (Fang et al., 2023), which use CLIP-based language-image contrastive learning
(Radford et al., 2021) on a filtered dataset. These models have different image size requirements.
We resize images to 768x768 pixels for Stable Diffusion (Rombach et al., 2022), 960x960 pixels for
OWL-v2 (Minderer et al., 2022), and 224x224 for Data Filtering Networks (Fang et al., 2023).

4.3 EXPERIMENT DETAILS

Training We take all combinations of models, datasets, and concepts, and perform 10 randomized
trials varying the discrete prompt anchor to initialize prompt tuning. Anchors are selected as the
closest single token in the model’s tokenizer to the name of the target anchor concept. For example,
“sombrero” tokenizes to multiple subwords, so we use ’hat’ as the anchor. This choice ensures the
experiments account for a broad range of initializations. We optimize the prompt embeddings for
each concept using the Adam (Kingma & Ba, 2015) optimizer with a learning rate of 0.0001, and
a batch size of 8 (these hyperparameters are shared across all models). We train for 1000 gradient
descent steps, and report performance metrics using the final optimized prompt embeddings.
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Figure 4: Performance (y-axis) of soft prompts optimized to cause generation, detection, and classification of
new visual concepts, for different constraint levels (x-axis). In-domain performance saturates at a constraint
level of δ = 0.5, which corresponds to solutions where the nearest existing word vector is the anchor wanchor.
Constrained solutions perform well in-domain, but typically don’t perform well on transferred tasks for δ < 1.
Each line in the figure corresponds to the 95% confidence interval of 100 randomized trials for 10 concepts,
and 10 anchor words per dataset. Refer to Appendix D for the concepts and anchor words used for each dataset.

Loss Functions For generation, we employ the standard reparameterized denoising objective, in-
troduced by Ho et al. in DDPM (Ho et al., 2020). For detection, we maximize the cosine similarity
between the text and region feature containing the target object, and minimize cosine similarity to all
other region features proposed by OWL-v2 (Minderer et al., 2022) in the image. For classification,
we maximize cosine similarity between text and images of the target concept, and minimize cosine
similarity to images that don’t contain the target concept. Table 1 shows the exact loss definitions.

Metrics For evaluating the quality of generations, we report the rate at which a pretrained OpenAI
CLIP L-14 (Radford et al., 2021) classifier predicts that generations are the target class, labeled
Generation Accuracy in Table 1. The label set for Generation Accuracy is the set of all concepts from
the corresponding dataset (names listed in Appendix D). For detection, we report the Mean Average
Precision of OWL-v2 (Minderer et al., 2022) bounding box predictions on a held-out validation set.
For classification, we report the accuracy of DFN CLIP (Fang et al., 2023; Radford et al., 2021)
given images of all concepts (both positive and negative examples) from a held-out validation set.
All metrics are reported as 95% confidence intervals over 10 randomized trials varying the anchor.

4.4 CONTROLLING THE LOCATION OF SOLUTIONS

Large Multimodal Models are highly reprogrammable. We explore this phenomenon by considering
a constrained objective for soft prompts in Equation 4, where given an anchor token wanchor used to
initialize v⃗, and a threshold δ normalized by the distance of the closest discrete token to the anchor,
we constrain solutions for v⃗ to an l2-ball of radius δ, implemented using projected gradient descent.
We conduct a large-scale experiment, optimizing 4,800 prompt embeddings for 40 visual concepts
across four standard datasets, three models, and four constraint thresholds δ ∈ {0.1, 0.2, 0.5, 1.0}.

v⃗y = argmin
v⃗

EI,ay∼Dtrain Ly(v⃗, I, ay) s.t.
∥v⃗ − y(wanchor)∥2

minw ̸=wanchor ∥y(w)− y(wanchor)∥2
≤ δ (4)
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Figure 5: Performance (x-axis) of soft prompts optimized to cause generation, detection, and classification of
new visual concepts under a constraint level of δ = 0.5, split by the relevance of the prompt anchor (y-axis).
Optimal prompt anchor corresponds to selecting the target concept name (i.e. “cat”) as the anchor, and random
prompt anchor corresponds to the mean performance of all other unrelated concept names (see Appendix D).
Each bar corresponds to the 95% confidence interval of the corresponding metric across the 10 target concepts.
We observe no impact of the relevance of the prompt anchor to the target concept in task performance.

This experiment controls the location of solutions found by prompt tuning in the embedding space,
to help us understand the relationship between location, and fidelity of the solution. Using this tool,
we will ask: where are the performant solutions to prompt tuning found in the embedding space?

Abundance of Performant Solutions We measure the performance of solutions from prompt tun-
ing under varying constraint levels δ ∈ {0.1, 0.2, 0.5, 1.0}, and discrete prompt anchors. Figure 4
shows a consistent behavior across models, and datasets that performance saturates at a constraint
level of δ = 0.5, when the nearest neighbor is still the anchor wanchor. For constraint levels δ > 1,
performance does not improve further, despite the larger solution space. Solutions lose a consider-
able degree of performance when transferred, which suggests the perturbations ϵ = v⃗y − y(wanchor)
are model-specialized, and strikingly not emergent embeddings akin to the typical discrete prompts.
Instead, performant solutions to prompt tuning are closer to adversarial perturbations than traditional
prompts, and appear to be found in the vicinity of most discrete prompts in the embedding space.

Resilience to Anchor Points We explore the relationship between the relevance of the discrete
prompt anchor, and the target concept to performance in Figure 5, and observe no major impact.
We take the solutions found under a constraint level of δ = 0.5, and stratify performance based on
whether the discrete prompt anchor is related to the target concept. Despite intuition suggesting they
would require more optimization to modify the default behavior of the model, solutions anchored
to random discrete prompts perform just as well as those constrained to the optimal related anchor.
The surprising resilience of prompt tuning solutions to their anchor point suggests the underlying
model has such a high degree of reprogrammability that a perturbation can be found that targets any
discrete prompt in the embedding space and overrides the model’s original behavior for that prompt.

4.5 SOLUTIONS TARGET SPECIFIC LAYERS

Performant solutions are numerous in the embedding space, and these solutions are specialized.
How can we tell these solutions apart from typical discrete prompts? One characteristic that iden-
tifies prompt tuning solutions is their effect on the representations predicted by the text encoder.
Solutions following those in Figure 4 target the final layers of the text encoder, and steer the pre-
dicted representation towards the target concept. Figure 6 shows generations from Stable Diffusion
2.1 Rombach et al. (2022) when truncating the text encoder to just the first N transformer blocks
(block = Norm → Attention → Residual → Norm → MLP → Residual). The bottom row shows
TSNE visualizations of the pooling token representation at four evenly spaced layers in the text
encoder of Stable Diffusion when generating concepts from the ImageNet (Deng et al., 2009) task.
The representations initially cluster around strawberry, the anchor concept, and generations from
early layers yield strawberries instead of the target concept, sombrero. As we probe deeper layers in
the text encoder, representations are gradually steered towards the target concept by the final layer.
This can be observed by the evolution of TSNE clusters towards a full separation by color, and the
change in generations from the initial strawberry to the final sombrero by layer 24.
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Anchor Word: “ strawberry ”    Prompt: “ a photo of a <sombrero> ”
✔✔✘ ✘ ✘ ✘

Evolution of Text Encoder ActivationsMismatched Fully Separated

40 20 0 20 40

40

20

0

20

40

Text Encoder Layer 1

20 0 20 40
50

25

0

25

50
Text Encoder Layer 8

40 20 0 20

20

0

20

Text Encoder Layer 16

40 20 0 20 40

20

0

20

Text Encoder Layer 24

strawberry harp sturgeon gorilla throne pelican honeycomb barrel sombrero scuba diver

Figure 6: Prompt tuning solutions target the final layers in text encoders. We show images generated by
Stable Diffusion when truncating the text encoder to the first N layers, and create TSNE visualizations of
the text encoder representations for the pooling token at four evenly spaced layers. Each color represents a
different visual concept. Representations in plots 1-16 cluster around anchors instead of the target concept.
When truncating the text encoder to just these layers, the anchor concept (strawberry) is generated instead of
the target concept (sombrero). As we probe deeper into the text encoder, representations are gradually steered
away from the anchor and towards the target concept so that clusters and generations are correct by layer 24.
Additional visualizations in Appendix K show clusters for the remaining models and datasets.

Understanding The Results The results suggest that soft prompts obtained via prompt tuning
methods that encode specific visual concepts are more akin to adversarial perturbations than tradi-
tional discrete prompt embeddings. Solutions can be found in the close neighborhood of any discrete
prompt that reprogram the model to generate, detect, or classify an arbitrary target concept. Prompt
tuning solutions commandeer the final layers of text encoders, and steer the representations towards
the target concept. The ease of finding performant solutions independent of their initialization, and
anchor point suggests that Large Multimodal Models are highly reprogrammable.

5 SEMANTIC SIMILARITY OF INPUT EMBEDDINGS

To contextualize these results, we conduct an analysis to explore the degree of semantic similarity
of the input embeddings of tested models. We seek to confirm that the input embeddings share a
high degree of semantic similarity for these models, despite being training on different tasks, and to
illustrate that the non-transferability of prompt-tuning solutions arises due to adversarial behavior.
To begin, we will show that embeddings for discrete prompts, and randomly sampled embeddings
in the neighborhood of discrete prompts are transferable between these models.

5.1 NON-TUNED EMBEDDINGS ARE TRANSFERABLE

To show that transferable embeddings exist, we lookup embeddings for the anchor word of each
visual concept, and compare the performance of generation, detection, and classification with the
anchor word embedding, to generation, detection, and classification with transferred embeddings.
Importantly, when constructing the Transfer Function based on Equation 2 for this experiment, we
hold our the set of anchor words as a test set. Shown in Figure 7, embeddings for anchor words are
transferable in nearly every example, and nearly match the performance of the in-domain prompt.
A minimal reduction in performance is observed when transferring embeddings to detection, but the
resulting performance is significantly higher than transferred prompt-tuning solutions. A secondary
experiment exploring the transferability of randomly sampled embeddings in the neighborhood of
these discrete prompt is shown in Appendix H, and shows a similar result.
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Figure 7: Transfer results for embeddings of anchor words. In nearly all cases, embeddings for existing
discrete prompts can be transferred from the input embedding space of one model to another, and nearly match
the in-domain performance. Base models exhibit a high degree of semantic similarity in their input embeddings.

Task A Task B CKA (RBF)

generation detection 0.636
generation classification 0.759
detection classification 0.626

Task A Task B CKA (Linear)

generation detection 0.514
generation classification 0.633
detection classification 0.506

Table 2: Values for the CKA metric between input embeddings. Using an RBF, and Linear kernel,
we measure the centered kernel alignment score of the embeddings for shared tokens in the text
encoders of large multimodal models. Values for CKA range from 0.5 to 0.75, which indicates a
relatively high degree of semantic similarity in the structure of the input embeddings.

5.2 EMBEDDING SPACES ARE SIMILARLY STRUCTURED

The transferability of discrete prompts, and randomly sampled prompts in their neighborhood, sug-
gests that large multimodal models acquire similarly structured input embedding spaces. To confirm
this hypothesis, we measure the centered kernel alignment score (Kornblith et al., 2019) for the
embeddings of shared tokens in the text encoders of these models. We report scores in Table 2.
Based on ranges presented in Kornblith et al. (2019), the measured values appear relatively high,
which perhaps makes the fractured-ness of prompt-tuning solutions more surprising than otherwise.
Transferable embeddings for visual concepts do exist, but prompt tuning struggles to find them.

6 DISCUSSION

How do soft prompts obtained via prompt tuning methods that encode specific visual concepts (i.e.
black dog) differ from typical discrete prompts? We conduct a large-scale study of prompt embed-
dings that encode specific visual concepts across generation, detection, and classification tasks, and
show that prompt tuning solutions are akin to adversarial attacks on text encoders. Our results sug-
gest that Large Multimodal Models have fractured embedding spaces, where perturbations can be
found within an ϵ-ball to any discrete prompt that reprogram the behavior of the underlying model.
The ease of finding these perturbations for any discrete prompt with performance comparable to an
optimal initialization suggests that Large Multimodal Models are highly reprogrammable in general.
One consequence of these findings is that, without careful regularization, it is unlikely that solutions
found by prompt tuning in Large Multimodal Models will be interpretable to another model.

Our work aims to galvanize the interpretability of solutions found via prompt tuning by exploring
their relationship to discrete prompts, and their affect on the underlying model. We provide a bench-
mark for evaluating the transferability of soft prompts to enable researchers to further study and
improve the interoperability of prompts following Figure 1, allowing prompts trained for generating
black Labradors to be re-used for detection, and other tasks. Transferring prompts can significantly
improve the adaptability and cost of machine learning systems by eliminating the need to re-train
when new models are released. We highlight the difficulty of transferring soft prompts for current
models, and our analysis begins to explain why transferring soft prompts is so challenging.
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A LIMITATIONS & SAFEGUARDS

We employ pretrained diffusion models, object detectors, and classifiers in this work, and these
models are known to have biases, obtained from their training data. Diffusion models in-particular
can generate harmful or dangerous content, including graphic imagery of violence, and pornography.
We employ the Stable Diffusion safety checker to flag generations after transferring soft prompts
for unsafe content as a mitigation strategy for this potential limitation. Transferring soft prompts
currently does not perform very well outside of certain common concepts, and one limitation of
this paper is its scope: we do not propose new methodology for transferring soft prompts with high
fidelity. Rather, we benchmark popular methods for soft prompt-tuning on three recent models, and
show that most prompts are not transferable. Our experiments suggest that non-transferable prompts
have certain properties that can be used to identify them, but turning this identification strategy into
a mitigation method is outside the scope of this paper, and left for future research.

B ETHICAL CONSIDERATIONS

Diffusion models currently require pristine data showing a subject in clear view in order to generate
new photos of that subject. Transferring soft prompts from an object detector has the potential
to allow for training on less pristine data that shows the subject amidst many distracting objects.
One potentially harmful consequence of transfer between object detection models and generative
models is related to privacy. Individuals that don’t upload photos of themselves online are currently
protected from their likeness being generated by diffusion models. However, transfer from object
detectors to generative models would allow for their likeness to be generated, even when photos
only show them in crowded spaces. Likewise, transferring prompts from generation to detection
allows for the rapid creation of detectors for specific individuals. This technology could be used by
malicious actors to track the activity of specific individuals, invading their privacy.

C BROADER IMPACTS

Transferring prompts for specialized tasks significantly improves the adaptability and cost of ma-
chine learning systems by removing the need to re-train when new models are released. The cadence
of multimodal machine learning is such that new models are released every month, and the state-of-
the-art is in constant flux. Currently, soft prompts trained for older models are discarded when newer
models are released, or when the task changes (i.e. classification becomes detection). Enabling the
re-use of soft prompts would allow users to download prompts trained by someone else, like plugins,
even when the original use-case for that soft prompt was for a different task (such as generation).

One negative broader impact that results from improved transferability is that soft prompts encoding
negative and harmful behaviours become easier to use and maintain. Currently, harmful prompts be-
come obsolete quickly as newer models are released, but once they can be transferred, they become
permanent. Mitigation strategies for this risk could involve moderating online databases containing
soft prompts to remove ones that perpetuate harmful behaviors, and filtering the outputs of models
using the soft prompts to directly remove the harmful content (in the same vein as a safety checker).

D SELECTED CONCEPTS & ANCHOR WORDS

In this section, we discuss the concepts that were selected from ImageNet Deng et al. (2009), COCO
Lin et al. (2014), PASCAL Everingham et al. (2010), and the DreamBooth dataset Ruiz et al. (2023).
These concepts were selected uniformly at random without replacement from the available classes in
each dataset. Ten classes were sampled per dataset in order to reduce the computational complexity
of the experiments in the paper (results take 3 days to produce on just 40 visual concepts). These
classes cover a diverse set of visual concepts.

On the ImageNet dataset Deng et al. (2009), we select [’strawberry’, ’harp’,
’sturgeon’, ’gorilla’, ’throne’, ’pelican’, ’honeycomb’, ’barrel’,
’sombrero’, ’scuba diver’] as target concepts.
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Hyperparameter Name Hyperparameter Value
Generation Model Name Stable Diffusion 2.1 Rombach et al. (2022)
Generation Model HuggingFace ID stabilityai/stable-diffusion-2-1
Generation Image Size 768 x 768
Detection Model Name OWL-v2 Minderer et al. (2022)
Detection Model HuggingFace ID google/owlv2-base-patch16-ensemble
Detection Image Size 960 x 960
Classification Model Name Data Filtering Networks Fang et al. (2023)
Classification Model HuggingFace ID apple/DFN2B-CLIP-ViT-L-14
Classification Image Size 224 x 224
Examples Per Concept 8
Embedding Vectors Per Concept 4
Denoising Steps 50
Batch Size 8
Learning Rate 1e-04
Gradient Descent Steps 1000
Optimizer Adam
Adam Beta1 0.9
Adam Beta2 0.999
Adam Epsilon 1e-08
Weight Precision float16

Table 3: Hyperparameters used in the experiments of the paper. These parameters are held constant
across all datasets and models. These choices are adapted from relevant prior work.
On the DreamBooth Dataset Ruiz et al. (2023), we select [’cat2’, ’vase’, ’duck toy’,
’candle’, ’colorful sneaker’, ’backpack dog’, ’grey sloth plushie’,
’fancy boot’, ’clock’, ’pink sunglasses’] as target concepts.

On the COCO dataset Lin et al. (2014), we select [’laptop’, ’scissors’, ’donut’,
’bear’, ’cup’, ’dog’, ’bottle’, ’umbrella’, ’cat’, ’remote’] as target
concepts.

On the PASCAL VOC dataset Everingham et al. (2010), we select [’airplane’,
’bicycle’, ’bird’, ’boat’, ’person’, ’train’, ’car’, ’cat’,
’horse’, ’cow’] as target concepts.

In addition to selecting concepts, we select anchor words that tokenize to a single token across all of
the tested models. These are derived from the above target concepts.

On the ImageNet dataset Deng et al. (2009), we select [’strawberry’, ’harp’,
’sturgeon’, ’gorilla’, ’throne’, ’pelican’, ’honeycomb’, ’barrel’,
’hat’, ’scuba’] as anchor words.

On the DreamBooth Dataset Ruiz et al. (2023), we select [’cat’, ’vase’, ’duck’,
’candle’, ’sneaker’, ’backpack’, ’plush’, ’boot’, ’clock’,
’sunglasses’] as anchor words.

On the COCO dataset Lin et al. (2014), we select [’laptop’, ’scissors’, ’donut’,
’bear’, ’cup’, ’dog’, ’bottle’, ’umbrella’, ’cat’, ’remote’] as an-
chor words.

On the PASCAL VOC dataset Everingham et al. (2010), we select [’airplane’,
’bicycle’, ’bird’, ’boat’, ’person’, ’train’, ’car’, ’cat’,
’horse’, ’cow’] as anchor words.

E HYPERPARAMETERS

In this section, we enumerate the hyperarameters used in the experiments in the paper. We choose
hyperparameters agnostic to the model and task, so that results in the experiments are general, and
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Figure 9: Visual prompt embeddings trained for one task (i.e. generation) perform well on that task, but may
not perform well when transferred to another task (i.e. generation → detection). In certain directions, such as
classification → generation, transfer works better than others. To understand when transfer fails, we perform
extensive ablations across four standard datasets, and three models in generation, detection, and classification.

not specific to the model. In Table 3 we note the HuggingFace model ID used, model configuration
details, and hyperparameters from training, and evaluation.

F UNCONSTRAINED SOLUTIONS

Trained For Generation

Target Images

Trained For Classification

Trained For Detection

DreamBooth PASCAL

✔✔✔✔

✔✔✘✘

✘✘ ✘✘

Figure 8: Generations (rows 2-4) from
Stable Diffusion for target concepts (top
row) from the DreamBooth and PASCAL
datasets. The second row trains prompt
embeddings for generation. The third row
transfers prompt embeddings from classifi-
cation to generation. The final row trans-
fers from detection. prompts trained for gen-
eration capture fine-grain details. prompts
trained for classification work for common
concepts on PASCAL, but fail at fine-grain
concepts on DreamBooth. prompts trained
for detection generally don’t transfer.

We consider a variant of the experiment in Figure 4,
where we optimize prompt embedding using an uncon-
strained objective, and evaluate their task performance.
We conduct a large-scale experiment, training 1200 new
prompts for the same 40 visual concepts used in the
main paper. We use standard gradient descent, instead
of projected gradient descent to calculate gradients, and
backpropagate gradients directly into the prompt embed-
dings. After training prompt embeddings to optimal per-
formance on the training task, we evaluate on a different
test task using metrics discussed in Section 4.3.

F.1 EXPLORING TRANSFERABILITY

Results of the experiment in Figure 9 show that prompts
optimized for visual tasks can perform well in-domain,
but are typically not re-usable. In most transfer scenar-
ios, prompts optimized for one task don’t solve a different
task than they were trained on with comparable fidelity to
in-domain training. Prompts optimized for classification
transfer best, achieving up to 84% of the performance of
in-domain training for generation (PASCAL), and up to
28% of the in-domain detection performance (ImageNet).
Prompts optimized for detection are least transferable,
achieving up to 26% of in-domain classification perfor-
mance (COCO), and up to 30% of in-domain generation
performance (PASCAL). Prompts optimized for genera-
tion are in the middle in terms of their transferability, at-
taining up to 59% of the in-domain classification perfor-
mance (COCO), and up to 28% of the in-domain detec-
tion performance (ImageNet). Generation shows a significant difference in performance between
prompts transferred from classification vs. detection, what’s happening here?
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Figure 10: Transfer results for randomly sampled embeddings near anchor words. We sample an independent
random perturbation for each trial from a Normal distribution with mean 0, and standard deviation 0.01, and
add to the embeddings for anchor words in Figure 7. These randomly perturbed embeddings show a robustness
when transferred, and nearly match the performance of the in-domain discrete prompt.

Understanding The Results Using generation as a case study, we show images generated by
Stable Diffusion 2.1 in Figure 8 using embeddings trained for generation (second row), transferred
from classification (third row), and from detection (fourth row). We select two fine-grain concepts
from the DreamBooth dataset, and two common concepts from PASCAL VOC. prompt embeddings
trained for generation succeed at learning both fine-grain details for subjects in the DreamBooth
dataset, and common classes in PASCAL. For prompts trained for classification, however, fine-grain
details are missed, but common classes are learned. Results trained for detection miss fine-grain
details, and common classes when transferred to generation, explaining patterns in Figure 9.

G VERIFYING THE GENERATION ACCURACY METRIC

In the table below, we report the baseline classification accuracies of ther CLIP model used in our
Generation Accuracy metric. On each domain, the classifier attains an accuracy of more than 88%,
suggesting that it can reliably discern each visual concept in each dataset.

ImageNet DreamBooth COCO PASCAL VOC

98.8% 97.5% 88.8% 95.0%

Table 4: Baseline 10-way classification accuracy of the CLIP model selected for evaluating genera-
tions from Stable Diffusion 2.1, tested on each domain.

H TRANSFER FOR RANDOMLY-PERTURBED EMBEDDINGS

We continue the analysis from Section 5, and show that randomly sampled prompts in the neighbor-
hood of existing discrete prompts maintain performance when transferred. We employ a Gaussian
distribution with mean 0, and standard deviation 0.01 to sample perturbations, and add these pertur-
bations to the embeddings for anchor words used in Figure 7. Results are shown in Figure 10, and
illustrate that randomly sampled prompts have comparable transferability to discrete prompts. This
suggests the non-transferability of prompt-tuning solutions is due primarily to adversarial behavior.

I MORE COMPLEX TRANSFER FUNCTIONS

In the main text of the paper, we explored a linear transfer function, and showed that under such
a map, soft prompts optimized for one multimodal model were non-transferable. We provide ad-
ditional results with an MLP transfer function in Figure 11, and find consistent behavior with the
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Figure 11: Performance of word vectors (y-axis) optimized for one task, and transferred to another
model using a two-layer MLP transfer function, for various constraint levels δ (x-axis). Under an
MLP transfer function, transferability of word vectors did not improve.

linear transfer function. We train a two-layer MLP with ReLU activation functions, and 4096 hidden
units to optimize the embedding transfer loss function in Equation 1. Transfer performance of soft
prompts is marginally worse with this MLP transfer function than with a linear transfer function.

J MORE EXAMPLES

In this section, we show more examples of generations from Stable Diffusion for perturbations to
various unrelated anchor words in the embedding space. We show results for all combinations of 10
target concepts (row labels) and 10 anchor words (column labels) on ImageNet Deng et al. (2009),
COCO Lin et al. (2014), PASCAL Everingham et al. (2010), and the DreamBooth dataset Ruiz et al.
(2023). In several cases, nearly identical images are generated by Stable Diffusion for perturbations
near to different unrelated anchor words.

K ADDITIONAL VISUALIZATIONS

We provide additional TSNE visualizations of the text encoder activations for different models and
datasets in this section. Patterns in Section 4.5 hold across all tested models and datasets. Pertur-
bative soft prompts like those found in Section 4.4 target the final layers in text encoders, and early
activations in text encoders disagree with later activations. Generating images when truncating the
text encoder to the first N layers leads to generations of the anchor, instead of the target concept we
are optimizing for (see Figure 6). When perturbative solutions are transferred, this transition stops.

Fine-tuning that targets the final layers of text encoders does not transfer, and Figure 22 shows that
activations stop clustering by concept (color) when soft prompts are transferred.
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Figure 12: Visualizations of detections from OWL-v2 Minderer et al. (2022) using new embeddings
optimized for detecting visual concepts on COCO Lin et al. (2014). Performant solutions for detect-
ing arbitrary target concepts (row labels) are found with a constraint threshold δ = 0.5 of unrelated
anchor words (column labels).
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Figure 13: Visualizations of detections from OWL-v2 Minderer et al. (2022) using new embeddings
optimized for detecting visual concepts on PASCAL Everingham et al. (2010). Performant solutions
for detecting arbitrary target concepts (row labels) are found with a constraint threshold δ = 0.5 of
unrelated anchor words (column labels).
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Figure 14: Visualizations of generations from Stable Diffusion 2.1 Rombach et al. (2022) using new
embeddings optimized for generating visual concepts on ImageNet Deng et al. (2009). Performant
solutions for generating arbitrary target concepts (row labels) are found with a constraint threshold
δ = 0.5 of unrelated anchor words (column labels). In several cases, different solutions far apart
generate the same image.
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Figure 15: Visualizations of generations from Stable Diffusion 2.1 Rombach et al. (2022) using new
embeddings optimized for generating visual concepts on DreamBooth Ruiz et al. (2023). Performant
solutions for generating arbitrary target concepts (row labels) are found with a constraint threshold
δ = 0.5 of unrelated anchor words (column labels). In several cases, different solutions far apart
generate the same image.
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Figure 16: Visualizations of text encoder activations for OWL-v2 Minderer et al. (2022) on COCO
Lin et al. (2014) at four evenly spaced layers when optimizing soft prompts for detecting visual
concepts (colored points), constrained to the neighborhood of various anchor tokens (clusters in
plots 1-8).

40 20 0 20 40

40

20

0

20

40

Text Encoder Layer 1

25 0 25 50

40

20

0

20

40
Text Encoder Layer 4

20 0 20
50

25

0

25

50

Text Encoder Layer 8

50 25 0 25 50

25

0

25

50

Text Encoder Layer 12

airplane bicycle bird boat person train car cat horse cow

Figure 17: Visualizations of text encoder activations for OWL-v2 Minderer et al. (2022) on PASCAL
Everingham et al. (2010) at four evenly spaced layers when optimizing soft prompts for detecting
visual concepts (colored points), constrained to the neighborhood of various anchor tokens (clusters
in plots 1-8).

40 20 0 20 40

20

0

20

40
Text Encoder Layer 1

40 20 0 20 40
40

20

0

20

40
Text Encoder Layer 4

40 20 0 20 40

20

0

20

Text Encoder Layer 8

40 20 0 20 40
40

20

0

20

40

Text Encoder Layer 12

strawberry harp sturgeon gorilla throne pelican honeycomb barrel sombrero scuba diver

Figure 18: Visualizations of text encoder activations for DFN CLIP Fang et al. (2023); Radford et al.
(2021) on ImageNet Deng et al. (2009) at four evenly spaced layers when optimizing soft prompts
for classifying visual concepts (colored points), constrained to the neighborhood of various anchor
tokens (clusters in plots 1-8).
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Figure 19: Visualizations of text encoder activations for DFN CLIP Fang et al. (2023); Radford et al.
(2021) on DreamBooth Ruiz et al. (2023) at four evenly spaced layers when optimizing soft prompts
for classifying visual concepts (colored points), constrained to the neighborhood of various anchor
tokens (clusters in plots 1-8).
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Figure 20: Visualizations of text encoder activations for Stable Diffusion 2.1 Rombach et al. (2022)
on DreamBooth Ruiz et al. (2023) at four evenly spaced layers when optimizing soft prompts for
generating visual concepts (colored points), constrained to the neighborhood of various anchor to-
kens (clusters in plots 1-16).
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Figure 21: Visualizations of text encoder activations for Stable Diffusion 2.1 Rombach et al. (2022)
on ImageNet Deng et al. (2009) at four evenly spaced layers when optimizing soft prompts for gen-
erating visual concepts (colored points), constrained to the neighborhood of various anchor tokens
(clusters in plots 1-16).
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Figure 22: Visualizations of text encoder activations for Stable Diffusion 2.1 Rombach et al. (2022)
on ImageNet Deng et al. (2009) at four evenly spaced layers when optimizing soft prompts for
classifying visual concepts (colored points) and transferring to generation, constrained to the neigh-
borhood of various anchor tokens (clusters in plots 1-24). The evolution of clusters towards clean
separation for in-domain evaluation stops when soft prompts are transferred. Fine-tuning that targets
the original model is lost.
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