
EvoRainbow: Combining Improvements in Evolutionary Reinforcement
Learning for Policy Search

Pengyi Li 1 Yan Zheng 1 Hongyao Tang 1 Xian Fu 1 Jianye Hao 1

Abstract
Both Evolutionary Algorithms (EAs) and Rein-
forcement Learning (RL) have demonstrated pow-
erful capabilities in policy search with different
principles. A promising direction is to combine
the respective strengths of both for efficient pol-
icy optimization. To this end, many works have
proposed various mechanisms to integrate EAs
and RL. However, it is still unclear which of
these mechanisms are complementary and can be
fully combined. In this paper, we revisit different
mechanisms from five perspectives: 1) Interac-
tion Mode, 2) Individual Architecture, 3) EAs
and Operators, 4) Impact of EA on RL, and 5)
Fitness Surrogate and Usage. We evaluate the
effectiveness of each mechanism and experimen-
tally analyze the reasons for the more effective
mechanisms. Using the most effective mecha-
nisms, we develop EvoRainbow and EvoRainbow-
Exp, which outperform strong baselines and pro-
vide state-of-the-art performance across various
tasks with distinct characteristics. To promote
community development, we release the code on
https://github.com/yeshenpy/EvoRainbow.

1. Introduction
Policy search is a crucial research direction in the field
of machine learning, aimed at finding feasible solutions
to sequential decision problems. Evolutionary Algorithms
(EAs) (Bäck & Schwefel, 1993) and Reinforcement Learn-
ing (RL) (Sutton & Barto, 1998) are two widely used meth-
ods in this context, with applications in domains such as
robot control (Johannink et al., 2019), game AI (Vinyals
et al., 2019), and recommender systems (Zou et al., 2019).
EAs are gradient-free optimization algorithms that rely on

1College of Intelligence and Computing, Tianjin University,
China. Correspondence to: Yan Zheng <yanzheng@tju.edu.cn>,
Jianye Hao <jianye.hao@tju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

TD
3

ER
L

CE
M

-R
L

ER
L-

Re
2

Ev
oR

ai
nb

ow
-E

xp

Ev
oR

ai
nb

ow

Locomotion

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Pe
rfo

rm
an

ce

SA
C

ER
L

CE
M

-R
L

ER
L-

Re
2

Ev
oR

ai
nb

ow
-E

xp

Ev
oR

ai
nb

ow

Maze Tasks

0.5

1.0

1.5

Pe
rfo

rm
an

ce

DQ
N

ER
L

CE
M

-R
L

ER
L-

Re
2

Ev
oR

ai
nb

ow
-E

xp

Ev
oR

ai
nb

ow

MinAtar

0.0

0.2

0.5

0.8

Su
cc

es
s R

ate

SA
C

ER
L

CE
M

-R
L

ER
L-

Re
2

Ev
oR

ai
nb

ow
-E

xp

Ev
oR

ai
nb

ow

Manipulation

Figure 1. Overview. EvoRainbow and EvoRainbow-Exp compare
favorably to existing ERL methods across various tasks.

a population of individuals and mimic the process of bio-
logical evolution through selection, mutation, and reproduc-
tion (Bäck & Schwefel, 1993; Chalumeau et al., 2022). EAs
excel in exploration, convergence, and robustness but suf-
fer from sample inefficiency due to the iterative population
evaluation (Such et al., 2017; Salimans et al., 2017). In con-
trast, RL maintains a single individual and employs value
function approximation to provide reliable gradients for pol-
icy search (Cobbe et al., 2021). Besides, RL exhibits high
sample efficiency (Fujimoto et al., 2018; Haarnoja et al.,
2018), especially for off-policy RL, but they often strug-
gle with exploration and convergence (Duan et al., 2016;
Haarnoja et al., 2018; Fortunato et al., 2018; Raileanu &
Fergus, 2021; Li et al., 2022; Hao et al., 2023b; Liu et al.,
2024; Li et al., 2024). Building upon their distinct charac-
teristics, the integration of EAs and RL for policy search
has emerged as a promising research direction. This inte-
gration leverages their complementary strengths, leading to
outstanding performance on various tasks (Sigaud, 2022; Li
et al., 2024).

ERL (Khadka & Tumer, 2018) stands as the earliest and
most influential work that combines EAs and RL for pol-
icy search. ERL utilizes the Deep Deterministic Policy
Gradient (DDPG) algorithm (Lillicrap et al., 2016) in com-
bination with Genetic Algorithm (GA), where GA maintains
a population of policy networks and employs the cumulative
reward of individuals interacting with the environment as a
fitness measure for population evaluation. By leveraging the

1

https://github.com/yeshenpy/EvoRainbow

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

diverse experiences generated during the population eval-
uation process, ERL addresses the challenge of the poor
exploration capability of RL. Furthermore, ERL periodi-
cally injects the RL policy into the population to participate
in the evolution process of GA. Notably, ERL demonstrates
significant improvements over DDPG on MUJOCO tasks.
Subsequently, several mechanisms are proposed to further
integrate the strengths of EAs and RL. These mechanisms
include distillation-based crossover and safety mutation op-
erators in PDERL (Bodnar et al., 2020), the use of the
RL Critic for population evaluation, and two additional
mechanisms to enhance sample efficiency in SC (Wang
et al., 2022), the adoption of Cross-Entropy Method and
TD3 in CEM-RL (Pourchot & Sigaud, 2019), using EA
to improve RL learning efficiency with Genetic Soft Up-
date in Supe-RL (Marchesini et al., 2021), the variant of
CEM-RL scheme and Elite Policy Guide in PGPS (Kim
et al., 2021), and the efficient knowledge transfer and policy
search through shared state representation and independent
policy representation in ERL-Re2 (Hao et al., 2023a). We re-
visit these mechanisms in Section 3. For hybrid algorithms
related to policy search, we recommend readers to refer to
the following surveys (Sigaud, 2022; Zhu et al., 2023; Li
et al., 2024) for a more comprehensive understanding.

Previous researches propose various mechanisms to inte-
grate EA and RL from different perspectives (Li et al., 2024).
However, these mechanisms often lack systematic analysis
and a comprehensive understanding of their complemen-
tarity and potential for further performance improvement.
Additionally, most previous researches primarily focus on
MUJOCO tasks with dense rewards, limiting the general-
izability of their conclusions. To address these limitations
and provide more insights, we revisit numerous mechanisms
from five perspectives: 1) Interaction Mode, 2) Individual
Architecture, 3) EAs and Operators, 4) Impact of EA on
RL, and 5) Fitness Surrogate and Usage. We systematically
compare these different mechanisms on three categories of
tasks: dense reward, deceptive reward, and sparse reward.
This evaluation approach allows us to gain a comprehensive
understanding of the mechanisms’ effectiveness across vari-
ous types of tasks. Subsequently, we fuse complementary
mechanisms to build EvoRainbow and EvoRainbow-Exp, in-
corporating the best mechanisms from different perspectives.
EvoRainbow excels in handling tasks with standard rewards,
whereas EvoRainbow-Exp is designed for exploration tasks
with low-quality rewards (e.g., sparse or deceptive rewards).
The results summarized in Figure 1 demonstrate EvoRain-
bow and EvoRainbow-Exp outperform the current state-of-
the-art baselines on 20 tasks, including MinAtar (Young &
Tian, 2019), MUJOCO (Todorov et al., 2012), Trap tasks,
Maze tasks, and Robot manipulation tasks (Yu et al., 2019a).

Our contributions can be summarized as follows: i) We con-
duct a systematic comparison of the mechanisms proposed

by previous ERL-related methods from different perspec-
tives and provide in-depth analysis to offer more insights. ii)
We propose EvoRainbow and EvoRainbow-Exp as the best
frameworks by integrating the most effective mechanisms
from different perspectives. iii) We demonstrate the superi-
ority of EvoRainbow and EvoRainbow-Exp over all existing
ERL-related algorithms on a wide range of tasks, includ-
ing MinAtar, MuJoCo, PointMaze, AntMaze, and Robot
manipulation tasks, thereby demonstrating their efficiency.

2. Background
Reinforcement Learning can be formalized as a Markov
Decision Process (MDP) (Puterman, 1990) which can be
defined by a tuple ⟨S,A,P,R, γ, T, ρ⟩, where S is the state
set, A is the action set, P : S × A × S → R is the tran-
sition function, R : S × A → R is the reward function,
γ ∈ [0, 1) is the discounted factor and T is the horizon. ρ
represents the distribution of the initial state. The agent
interacts with the environment by performing its policy
π : S → A. RL (Sutton & Barto, 1998) aims to optimize
the policy to maximize the expected discounted cumulative
reward J(π) = Eat∼π(st),st+1∼P(st+1|st,at)[

∑T
t=0 γ

trt],
where rt = R (st, at) and s0 ∼ ρ. The state-
action value function Qπ is defined as Qπ(s, a) =

Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

Evolutionary Algorithms (EAs) (Bäck & Schwefel, 1993)
are gradient-free optimization methods that utilize a pop-
ulation of individuals (policies) P = {π1, π2, ..., πn} to
explore the policy space. EAs evaluate individuals based
on their fitness {f(π1), f(π2), ..., f(πn)}, typically defined
as the average cumulative reward obtained by interacting
with the environment f(π) = 1

e

∑e
i=1[

∑T
t=0 rt | π]. Two

commonly used EAs in this context are Genetic Algorithm
(GA) (Mitchell, 1998; Such et al., 2017) and Cross-Entropy
Method (CEM) (Boer et al., 2005). GA is a classic evolu-
tionary algorithm that employs genetic operators such as
crossover and mutation to explore the policy search space.
The individuals (policies) in the population are selected
based on their fitness, and new offspring are created through
crossover and mutation operations. k-point crossover and
Gaussian mutation are commonly used operators. The k-
point crossover randomly exchanges segment-wise (net-
work) parameters of parents, whereas the Gaussian mutation
adds Gaussian noises to the parameters to randomly generate
offspring. CEM is an Estimation of Distribution Algorithm
(EDA) (Larrañaga & Lozano, 2001). It represents the pop-
ulation as a distribution using a covariance matrix. CEM
iteratively updates the distribution by sampling individuals
from it xi ∼ N (µ,Σ), evaluating their fitness, and using the
top-performing individuals {z1, ..., zn

2
} to update the distri-

bution parameters. The process aims to converge toward the
optimal solution by gradually shifting the distribution. We

2

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

follow the CEM-RL (Pourchot & Sigaud, 2019) scheme and
update CEM distribution as follows: µnew =

∑|P|/2
i=1 λizi,

Σnew =
∑Ke

i=1 λi (zi − µold)
2
+ϵI., where λi is the weight

given to the individual i.

3. Revisiting ERL Literature
3.1. High-level Overview from Five Perspectives

Many works integrate EAs and RL to design efficient hybrid
policy search algorithms (Li et al., 2024). However, due
to the complexity of algorithms, i.e., an algorithm involves
multiple mechanisms, coupled with the lack of a comprehen-
sive and systematic comparison, it remains unclear which
mechanisms are more efficient for different types of tasks.
To facilitate further analysis, we revisit these mechanisms.
However, the number of possible combinations for different
mechanisms exceeds one thousand, making it impractical to
consider analyzing all of them in experiments. Therefore,
we decouple the algorithms into combinations of multiple
mechanisms and categorize them into the following five
perspectives:

✩ Interaction Mode: The foundational framework that
determines the dominance between EA and RL in pol-
icy search.

✩ Individual Architecture: The basic policy architec-
ture for individuals in the population and RL agent.

✩ Evolutionary Algorithms and Operator Selection:
This determines the EA used to improve the population.

✩ How EA impacts RL: This entails the mechanisms
through which EA facilitates RL.

✩ Fitness Surrogate Selection and Usage: These mech-
anisms are employed for population evaluation, aiming
to reduce the sample cost.

These five perspectives constitute the process of construct-
ing an ERL algorithm. We study these five perspectives
sequentially. By exploring these perspectives, we aim to
provide a thorough understanding of the related ERL ap-
proaches and shed light on their strengths and limitations.

3.2. Mechanisms Classification

In this section, we provide a detailed description of the
mechanisms involved from various perspectives to facilitate
a better understanding.

Interaction Mode: The interaction modes primarily con-
sist of three types: Parallel mode, EA-Master mode, and
RL-Master mode. i) In Parallel mode, EAs and RL si-
multaneously conduct policy searches and influence each

other. The algorithms typically consist of an RL policy
(Actor), a value function (Critic), and a population of pol-
icy networks. EAs improve the population with evolution
operators. The samples generated during the population
evaluation process are provided to RL, which improves the
experience diversity. During the RL process, the RL policy
interacts with the environment and is optimized based on
the shared experience replay buffer obtained from both the
RL and population interactions. The optimized RL policy
is then injected into the population for evolution. If the
policy performs better than the individuals in the popula-
tion, it will be selected as an elite, or it will be discarded.
Many methods fall into this mode, such as ERL (Khadka &
Tumer, 2018), CERL (Khadka et al., 2019), PDERL (Bod-
nar et al., 2020), PGPS (Kim et al., 2021), ERL-Re2 (Hao
et al., 2023a). ii) In EA-Master mode, EA is the primary
approach and RL plays a secondary role. In this mode, RL
no longer maintains its policy but only maintains an RL
Critic. EA serves as the main loop, and RL can be seen as a
component within the evolutionary loop. CEM-RL (Pour-
chot & Sigaud, 2019) and its subsequent works (Tang, 2021;
Pretorius & Pillay, 2021; Liu & Feng, 2021) fall under this
mode. In the learning process, half of the individuals in
the population are used to optimize the Critic, which is
then used to provide policy gradients guidance for these
individuals. The optimized individuals are re-introduced
into the population. Then the population interacts with the
environment and evolves based on the obtained fitness. iii)
In RL-Master mode, RL is the primary approach for policy
search while EA plays a secondary role. The population is
always led by the RL policy. RL serves as the main loop,
and EA serves as an auxiliary role. The typical algorithm
under this mode is Supe-RL (Marchesini et al., 2021) and
its subsequent work (Marchesini & Amato, 2023), where
the population is generated by adding Gaussian noise to the
parameters of the RL policy.

Individual Architecture Selection. All the ERL algorithms
except ERL-Re2 (Hao et al., 2023a) maintain an indepen-
dent policy network πi parameterized as θi for each in-
dividual in the population. We refer to this architecture
as the Private Architecture. Each policy can be seen as
composed of independent state representation Sϕi and pol-
icy representation Wi, i.e., πθi = Sϕi

(s)⊤Wi. Intuitively,
the Private Architecture leads to limited knowledge shar-
ing among individuals. In contrast, the Shared Architec-
ture (Hao et al., 2023a) is characterized by shared state
representations among individuals. In this architecture, each
individual can be expressed as πθi = Sϕ(s)

⊺Wi, where
Sϕ(s) represents the shared representation network. The
shared state representation is improved by maximizing the
Q-values of all individuals. To reduce costs, Policy-extend
Value Function (PeVFA (Tang et al., 2022)) is maintained
instead of managing multiple value functions. PeVFA takes

3

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

the policy representation as input and generalizes the Q-
values across multiple policies. The shared representation
eliminates the need for redundant learning of state represen-
tations for each policy and reduces the policy search space.
Shared Architecture has also proven to efficiently combine
EAs with Multi-Agent RL to enhance multi-agent collab-
oration (Li et al., 2023). Moreover, it can further improve
the sample efficiency of Quality Diversity algorithms (Xue
et al., 2023).

Evolutionary Algorithms and Operator Selection. Dif-
ferent ERL frameworks employ different EAs, where CEM
and GA are the two most commonly used ones (Khadka
& Tumer, 2018; Pourchot & Sigaud, 2019). Our focus is
primarily on the commonly used EAs and their variants in-
volved in ERL-related works, which include: 1) CEM (Pour-
chot & Sigaud, 2019). 2) Vanilla GA (Khadka & Tumer,
2018) using k-point crossover and Gaussian mutation. These
two algorithms are introduced in Section 2. 3) PD-GA (Bod-
nar et al., 2020) using Q-value distillation operator and
safe mutation operator. Q-value distillation clones good
behaviors from the parents to the offspring based on their
Q-values and safe mutation considers the sensitivity of the
action outputs to the parameters to ensure safe mutations.
4) Behavior-level GA (Hao et al., 2023a) using behavior-
level crossover and mutation operators. These operators
perform crossover and mutation on specific action output
dimensions, without affecting other behaviors. Behavior-
level GA is unique in that it only modifies the last layer of
the network, thus more suitable for use in conjunction with
Shared Architecture.

How EA impacts RL. The impact of EA on RL can be
classified into two main categories: i) Indirect impact, in
which EA provides diverse experiences to RL. This is the
most commonly used approach. Buffer Filter (Marchesini
et al., 2021) is a variant of this mechanism that only retains
the experience of a subset of elite individuals, thereby en-
suring the quality of the provided experience. ii) Direct
impact, in which the EA population directly influences the
parameters of RL policy, including 1) Genetic Soft Update,
2) Elite Guide. Genetic Soft Update (Marchesini et al.,
2021) involves the direct soft update of parameters of elite
individuals in the population to the RL policy (If a target
network is present, it is necessary to perform soft updates
of target networks as well): θrl = τ ′θElite + (1− τ ′) θRL.
Elite Guide (Kim et al., 2021) utilizes imitation learning to
influence the RL policy learning by encouraging the out-
put of behaviors to be similar to elites in the population by
minimizing ED

[
∥πrl(s)− πElite(s)∥22

]
.

Fitness Surrogate Selection and Usage. EAs often suf-
fer from low sample efficiency, mainly due to the evalu-
ation of individuals in the population. To reduce the in-
teraction cost of individuals, there are two types of sur-

(a) Locomotion (b) Ant Maze (c) Trap Maze (d) Wall Task

Figure 2. Task with different characteristics.

rogate fitness evaluation methods. The first one uses the
average Q-value computed over the state samples from
the replay buffer as surrogate fitness (Wang et al., 2022),
which we refer to as Critic (Buffer). It can be formal-
ized as: fi = 1

k

∑k
j=1 Q (sj , πi (sj)), where k is the

samples size. The second one is based on the H-step re-
turn with the Policy-extend Value Function Approxima-
tor (PeVFA) Q (s, a,W) . (Hao et al., 2023a; Tang et al.,
2022). PeVFA maintains the Q-values of multiple poli-
cies by taking additional policy representations as inputs,
alleviating the problem of policy bias (Hao et al., 2023a)
compared to Critic. We refer to this surrogate fitness as
PeVFA (H-step Bootstrap), which can be formalized as:
fi =

∑H−1
t=0 γtrt+γHQθ (sH , πi (sH) ,Wi) . Furthermore,

we have also taken into account two additional variations:
the combination of replay buffer with PeVFA, and the com-
bination of H-step Bootstrap with Critic, which are named
PeVFA (Buffer) and Critic (H-step Bootstrap) respectively.

With a surrogate fitness function, there are two ways to
increase the efficiency of evolution. The first approach is
Individual Control (Wang et al., 2022; Kim et al., 2021),
where a population twice the size of the actual population
is maintained. The surrogate fitness is used to filter the
larger population and the top half of individuals are selected
to initialize the actual population. The second approach is
Generation Control (Wang et al., 2022; Hao et al., 2023a),
where the surrogate fitness function is used with a certain
probability to evaluate the population in each generation.
From this perspective, we investigate which fitness surrogate
is more accurate and which usage scheme is more efficient.

4. Integrating the Best Mechanisms: A
Comparative Analysis

In this section, we systematically revisit the five perspectives
through experimental analysis. We compare mechanisms
within each perspective under fair conditions and provide
in-depth analysis. As the analysis progresses, we gradually
integrate the most effective mechanisms for various tasks,
constructing EvoRainbow and EvoRainbow-Exp.

4.1. Environments Setting

In contrast to previous studies that focus on validating in
a single task type, i.e., MUJOCO (Pourchot & Sigaud,

4

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000
Av

er
ag

e E
pi

so
de

 R
etu

rn
Humanoid

EA-Master
Parallel
RL-Master
TD3 or SAC

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

35000

30000

25000

20000

15000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant Maze

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

Av
er

ag
e E

pi
so

de
 R

etu
rn

Trap Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0
20
40
60
80

100
120

Av
er

ag
e E

pi
so

de
 R

etu
rn

Large Maze (Sparse)

Figure 3. Performance comparison of different interaction modes

0

20

40

60

80

100

(a) EA-Master Mode

0

20

40

60

80

100

(b) RL-Master Mode

0

20

40

60

80

100

(c) Parallel Mode

Figure 4. Heatmap showing trajectories of different algorithms in
the Trap Maze (From the top-left corner of the maze to the top-
right corner). Only the parallel mode succeeds, whereas others get
trapped in a local optimum.

2019), we specifically focus on three types of tasks with
distinct characteristics: i) High-dimensional locomotion
tasks with dense reward: Following the ERL literature,
we select the two most high-dimensional locomotion tasks,
Humanoid and Ant, for our analysis. In these tasks, agents
need to control different joints to maximize forward speed
while minimizing energy consumption. ii) Trap tasks with
deceptive rewards: These tasks are commonly used in the
EA literature (Chalumeau et al., 2022), where the policy
controls the agent to reach a target point (refer to Figure 2(b)
2(c), 2(d)). The reward in these tasks is calculated as the
exponentiation of the negative distance between the agent’s
current position and the target point. It is important to note
that these tasks exhibit a gradient deception phenomenon,
leading to unreliable policy gradients and suboptimal or un-
stable results, such as getting stuck on a wall and failing to
reach the target point. iii) Maze tasks with sparse reward:
Apart from the aforementioned deceptive reward maze en-
vironments, we also incorporate maze environments with
sparse rewards, which have been extensively investigated
in both EA and RL studies (Pugh et al., 2016; Wiering &
Van Hasselt, 2008). In these tasks, rewards are only obtained
upon successfully reaching the target location, highlighting
the significance of exploration. More detailed information
is shown in Appendix A. By evaluating the mechanisms
in diverse tasks, we aim to provide comprehensive insights
into their performance and effectiveness.

4.2. Interaction Mode Selection

We begin by conducting comparative experiments on the
three interaction modes mentioned in Section 3, referred to
as Interaction Mode Selection. The GA-RL interaction

modes are categorized as follows: Parallel Mode, where
GA provides experience for RL and RL injects optimized
policies into GA; EA-Master Mode, where RL Critic is
trained based on half of the individuals in the EA popula-
tion, and policy gradients are injected into these individuals
through Critic before reintroducing them into the popula-
tion; RL-Master Mode, where individuals trained by RL
always occupy the elite position in the population, and other
individuals conduct crossover and mutation around the RL
policy. To ensure fairness, we implement these modes based
on the corresponding official codes. In the EA aspect, we
utilize Vanilla GA. In the RL aspect, we employ SAC for
maze and trap tasks and TD3 for locomotion tasks. All other
hyperparameters are finetuned and the best results are pro-
vided. More implementation details and experiment settings
can be found in Appendix E.

As depicted in Figure 3, for locomotion tasks, both Paral-
lel and RL-Master modes exhibit comparable performance,
surpassing the EA-Master Mode. This can be attributed to
the relatively sufficient reward signals in these tasks, mak-
ing RL-based methods more efficient, whereas EA-oriented
approaches weaken the influence of RL, leading to less
remarkable performance in such tasks. In maze and trap
tasks, we observe that the Parallel Mode outperforms the
EA-Master and RL-Master modes. These tasks emphasize
exploration ability, which is relatively limited in RL (SAC
fails in all maze tasks). Additionally, the RL-Master Mode
does not maintain the elite individual for EA, compromising
the exploration ability of EA. Moreover, the EA-dominant
approach utilizes the Critic to maintain the Q values of
multiple individuals, resulting in half of the population opti-
mizing towards an average direction, thus weakening the ex-
ploration ability. Furthermore, we provide heatmaps based
on the trajectories collected during the learning process of
different algorithms on the Trap Maze in Figure 4. These
heatmaps provide a visualization of the visitation frequency,
with higher values indicating more frequent visits. From the
heatmaps, we observe that both RL-Master and EA-Master,
influenced by deceptive rewards, have become trapped in
local suboptimal areas. In contrast, Parallel Mode shows a
strong exploration ability and successfully guides the agent
to reach the target point.

In conclusion, through experiments conducted on tasks of
different natures, we find that the Parallel Mode is more
effective and outperforms other modes.

4.3. Individual Architecture Selection

In this section, we delve deeper into the selection of indi-
vidual architectures based on the findings from the previ-
ous section. We consider two types of architectures: Pri-
vate Architecture, which maintains individual policies, and
Shared Architecture, which utilizes a shared state repre-

5

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000
Av

er
ag

e E
pi

so
de

 R
etu

rn
Humanoid

Private Architecture
Shared Architecture
TD3 or SAC

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

35000

30000

25000

20000

15000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

100

200

300

400

500

Av
er

ag
e E

pi
so

de
 R

etu
rn

Trap Maze

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

20

40

60

80

100

120

Av
er

ag
e E

pi
so

de
 R

etu
rn

Large Maze (Sparse)

Figure 5. Performance comparison of Private Architecture and
Shared Architecture.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Humanoid

Shared w/ B-GA
Shared w/ CEM
Shared w/ V-GA
Shared w/ PD-GA

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

40000

35000

30000

25000

20000

15000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Trap Maze

Private w/ V-GA
Private w/ CEM
Private w/ PD-GA

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

20

40

60

80

100

120

Av
er

ag
e E

pi
so

de
 R

etu
rn

Large Maze (Sparse)

Figure 6. Performance comparison of different EAs.

sentation for all policies. These architectures are imple-
mented based on the Parallel Mode discussed in the previ-
ous subsection.The results depicted in Figure 5 on six tasks
reveal that Shared Architecture outperforms Private Archi-
tecture in locomotion tasks, whereas Private Architecture
surpasses Shared Architecture in Trap Maze, Wall Task, and
Large Maze (Sparse Reward). The primary reason for this
phenomenon lies in the optimization process of the shared
architecture, which relies on maximizing the Q-values of
all individuals. However, in exploration tasks with sparse
rewards and deceptive rewards, the low-quality reward sig-
nals reduce the accuracy of the value function estimates.
Consequently, the expressive capacity of the shared state
representation becomes limited, impeding the construction
of favorable policy space, whereas Private Architecture is
less affected by the reward signal quality, enabling more
efficient exploration.

Based on these experimental results, we conclude that
Shared Architecture tends to be more efficient on tasks
with higher-quality reward signals, whereas Private Archi-
tecture exhibits better performance in exploration tasks with
lower-quality reward signals. Therefore, in the subsequent
analysis experiments, we utilize Shared Architecture for
locomotion-related tasks and Private Architecture for explo-
ration tasks.

4.4. Evolutionary Algorithms and Operator Selection.

In this section, we focus on the selection of Evolutionary
Algorithms and operators, with a particular emphasis on

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Environment Steps (×1e6)

1000

2000

3000

4000

5000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Humanoid

PSC
PSC w/ Elite Guide
PSC w/ Genetic Update

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

35000

30000

25000

20000

15000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant Maze

0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Trap Maze

PPC
PPC w/ Elite Guide
PPC w/ Genetic Update

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

20

40

60

80

100

120

Av
er

ag
e E

pi
so

de
 R

etu
rn

Large Maze (Sparse)

Figure 7. Performance comparison of the mechanism of impact of
EA on RL.

two commonly used EAs in ERL: CEM and GA. Previous
works propose various GA variants using different operators,
such as k-point crossover and Gaussian-weighted mutation
(referred to as V-GA), Q-value distillation crossover and
safety mutation (referred to as PD-GA), and crossover and
mutation based on the behavioral semantic level (referred to
as B-GA). We replace the V-GA used in Shared Architecture
and Private Architecture from the previous section with
these EAs to conduct comprehensive comparisons.

The experimental results, presented in Figure 6, demon-
strate the superior performance of CEM compared to other
operators in five out of the six tasks. Although PD-GA per-
forms well in most tasks, it exhibits limitations in highly
exploratory tasks such as Trap Maze. This limitation can be
attributed to the constraints imposed by safety constraints,
which restrict its exploration capability. CEM’s advantage
lies in its utilization of a Gaussian distribution to model the
solution space and its adaptive adjustment of the covariance
matrix, which efficiently guides the search process. This
adaptability allows CEM to better align with the character-
istics of the problem (Pourchot & Sigaud, 2019; Sigaud,
2022), resulting in improved search efficiency and enhanced
exploration capability. Overall, CEM is more advantageous,
so we integrate it into our algorithm.

4.5. How EA impacts RL

In this section, we explore the impact of EA on RL. In
the previous sections, we adopt the classic architecture in
which EA provides experiences to RL, and RL updates its
policy back into the population. Now, we introduce three
additional mechanisms to our algorithm one by one.

We first examine the direct impact mechanisms: Genetic
Soft Update and Elite Policy Guide. These mechanisms
are integrated into two combinations: Parallel Mode, Shared
Architecture, and CEM (referred to as PSC), and Parallel
Mode, Private Architecture, and CEM (referred to as PPC).
The experimental results depicted in Figure 7 demonstrate
that Genetic Soft Update generally performs better, whereas
Elite Policy Guide exhibits poor performance in Maze and
Trap tasks. Additionally, Elite Policy Guide incurs more

6

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0.75
0.50
0.25
0.00
0.25
0.50
0.75

Sp
ea

rm
an

 C
or

re
lat

io
n

 C
oe

ffi
cie

nt

Ant

Critic(Buffer)
Critic(H-step Boostrap)
PeVFA(Buffer)
PeVFA(H-step Boostrap)

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0.4
0.2
0.0
0.2
0.4
0.6
0.8

Sp
ea

rm
an

 C
or

re
lat

io
n

 C
oe

ffi
cie

nt

Trap Maze

(a) Ranking Correlation

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

20

40

60

80

100

120

Ap
pr

ox
im

ati
on

 E
rro

r

Ant

Critic
PeVFA

(b) Error

Figure 8. Analysis on fitness surrogates.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

1000

2000

3000

4000

5000

6000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Humanoid

PSCG
PSCG w/ Critic(Buffer)+Generation
PSCG w/ Critic(Buffer)+Individual
PSCG w/ Critic(H-Step)+Generation
PSCG w/ Critic(H-Step)+Individual

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Ant

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

35000

30000

25000

20000

15000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Ant Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Trap Maze

PPCG
PPCG w/ Critic(Buffer)+Generation
PPCG w/ Critic(Buffer)+Individual
PPCG w/ Critic(H-step)+Generation
PPCG w/ Critic(H-step)+Individual

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

20

40

60

80

100

120

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Large Maze (Sparse)

Figure 9. Performance comparison of fitness and surrogate usages.

time overhead than Genetic Soft Update as it requires su-
pervised learning to ensure similarity between RL behavior
and elite behavior. It is important to note that Genetic Soft
Update does not guarantee consistent performance improve-
ment across all tasks. For instance, there may be a slight
decline in performance observed in tasks such as Trap Maze.
The reason for Genetic Soft Update being more efficient
may lie in its substantial modifications to the RL policy
parameters. This change enhances the plasticity of the RL
policy (Nikishin et al., 2022), enabling it to more fully uti-
lize existing experiences and escape suboptimal solutions.
The experiments on Experience Filter are presented in the
Appendix D, where we discover that Experience Filter does
not further enhance the algorithm’s performance.

By analyzing different mechanisms, we observe that Genetic
Soft Update is more effective. Therefore, we integrate it
into PSC and PPC, resulting in PSCG and PPCG.

4.6. Fitness Surrogate Selection and Usage.

In this section, we investigate Fitness Surrogate Selection
and Usage. We begin by examining the four fitness sur-
rogate options: Critic(Buffer), Critic(H-step Bootstrap),
PeVFA(Buffer), and PeVFA(H-step Bootstrap). These
mechanisms vary in terms of whether they utilize Critic or
PeVFA for fitness estimation and whether they directly use
experiences from the buffer or interact with the environment
for a certain number of steps before value estimation.

The population evaluation solely focuses on individual rank-
ings, without considering specific scores. Thus we first ana-
lyze the Spearman’s rank correlation coefficient (Sedgwick,
2014). The correlation coefficient is particularly suitable for

quantifying the similarity of rankings between two variables
and is not influenced by the specific values of the variables.
It is defined within the range of -1 to 1, and its formula is
given as rs = 1− 6

∑n
i=1 d2

i

n(n2−1) , where n represents the popula-
tion size and d represents the differences in ranks between
the two variables. During the learning process, we calculate
the Spearman correlation coefficient of the four different sur-
rogates and the true values. These true values are obtained
by evaluating individual performance through 10 episodic
runs in the environment. Figure 8(a) illustrates that the H-
step Bootstrap methods generally exhibit higher correlation
and the correlation of Critic(Buffer) gradually increases as
learning progresses, especially in the Ant task. Despite the
overall superiority of the H-step Bootstrap approaches over
the Buffer approaches in terms of correlation in Ant and
Trap tasks, it is still difficult to determine which solution
is more suitable due to the additional sample overhead as-
sociated with H-step Bootstrap approaches. However, it is
worth noting that the PeVFA approach consistently performs
worse than the Critic approach overall, primarily due to the
increased difficulty of maintaining Q-values for multiple
policies. The results in Figure 8(b) indicate that PeVFA
often has a larger approximation error compared to Critic,
making it more challenging to provide accurate Q-values.
Based on these findings, we can conclude that the Critic
approach is more capable of providing more accurate rank-
ings compared to the PeVFA approach. Thus we choose
Critic as the value estimator. However, we cannot determine
whether the H-step Bootstrap or Buffer approach is more
advantageous for policy learning.

Next, we directly compare the performance of using Critic
(H-step Bootstrap) and Critic (Buffer), which involves the
two ways of using surrogates: Individual Control and Gen-
eration Control. The experimental results in Figure 9 show
that Critic(H-Step) Generation Control outperforms other
combinations and leads to improvements in locomotion
tasks. However, in Trap Maze and Wall Task, the algorithm
performance collapses. This phenomenon can be explained
by the RL individual elitism rate. For example, in the Ant
task, RL individuals have about a 50% probability of be-
ing selected as elites and about a 30% probability of being
discarded. Even if there is a misleading fitness surrogate
and the population is promoted with poor individuals being
selected as elites, periodically injecting RL individuals into
the population prevents performance loss or fluctuation. In
contrast, in exploration tasks with low-quality reward sig-
nals, RL struggles to learn effective policies. In these cases,
EAs dominate and have an approximately 80% elitism rate,
making it difficult for RL individuals to be selected as elites.
When the population is promoted based on inaccurate sig-
nals, the elite individuals may be removed while the RL
individuals fail to reach the elite performance, resulting in a
significant impact on the final performance.

7

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Humanoid

EvoRainbow
EvoRainbow-Exp
ERL-Re2

PGPS
CEM-RL
PDERL
ERL
SAC/TD3/DQN

0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

1000

2000

3000

4000

5000

6000

Av
er

ag
e E

pi
so

de
 R

etu
rn

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

1000

2000

3000

4000

5000

6000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Walker

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0
50

100
150
200
250
300
350

Av
er

ag
e E

pi
so

de
 R

etu
rn

Swimmer

0 1 2 3 4 5
Environment Steps (×1e6)

0

10

20

30

40

50

60

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Freeway

0 1 2 3 4
Environment Steps (×1e6)

10

20

30

40

50

60

70

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Breakout

0 1 2 3 4
Environment Steps (×1e6)

5
10
15
20
25
30
35

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Asterix

0 1 2 3 4
Environment Steps (×1e6)

20

40

60

80

100

120

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Space Invaders

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Environment Steps (×1e6)

40000

35000

30000

25000

20000

15000

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Ant Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

100

200

300

400

500

Av
er

ag
e E

pi
so

de
 R

etu
rn

Trap Maze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

100

200

300

400

500

600

Av
er

ag
e E

pi
so

de
 R

etu
rn

Wall Task

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0
20
40
60
80

100
120

Av
er

ag
e E

pi
so

de
 R

etu
rn

Large Maze (Sparse)

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Plate Slide

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Peg Unplug Side

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate
Coffee Push

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

Push Back

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

ate

Soccer

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

ate

Peg Insert Side

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Button Press Topdown

0.0 0.2 0.4 0.6 0.8
Environment Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Sweep Into

Figure 10. Performance comparison on different types of tasks.

Based on the above findings, we integrate Critic(H-Step) +
Generation with PSCG to form EvoRainbow, which excels
in general tasks. However, the fitness surrogate can not
yield benefits in exploration tasks. Therefore, we retain
the combination with the best exploration capability, PPCG,
resulting in EvoRainbow-Exp.

5. Further Experimental Evaluation
Through the comparison and analysis of 18 different mecha-
nisms, we integrate the most effective ones to form EvoRain-
bow and EvoRainbow-Exp, The former incorporates mech-
anisms Parallel mode, Shared Architecture, CEM, Genetic
Soft Update, and Surrogate with Critic (H-Step Bootstrap)
and is primarily utilized for general tasks, whereas the latter
integrates mechanisms Parallel mode, Private Architecture,
CEM, and Genetic Soft Update and is mainly suitable for

exploration tasks. To provide a comprehensive experimental
comparison, we further validate the efficiency of EvoRain-
bow and EvoRainbow-Exp and compare them with other
methods, including ERL, PDERL, CERL, CEM-RL, PGPS,
ERL-Re2, SAC (Haarnoja et al., 2018), TD3 (Fujimoto
et al., 2018), DQN (Mnih et al., 2013). We conduct com-
parisons on 20 tasks, including locomotion tasks, MinAtar
tasks (Young & Tian, 2019), maze tasks (Fu et al., 2020),
and manipulation tasks (Yu et al., 2019b). All compared
algorithms are based on their official implementation. For
the RL algorithms, we adopt TD3 for comparison in loco-
motion tasks, DQN in MinAtar tasks, and SAC in maze
and manipulation tasks. All results are obtained from 5
independent runs. This is consistent with the setting in
ERL and PDERL. We report the average with 95% con-
fidence regions. For more implementation details, please

8

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

refer to Appendix E. The results in Figure 10 reveal that Evo-
Rainbow exhibits outstanding performance in most tasks,
whereas EvoRainbow-Exp outperforms other algorithms
significantly in exploration tasks. These experiments con-
vincingly demonstrate the superiority of both algorithms.

6. Further Analysis and Validation
In Section 4, we systematically analyze different mecha-
nisms step-by-step based on their importance, and select
the best mechanisms to construct new combinations for
subsequent analysis. Due to not considering all possible
combinations, concerns about reliability may arise: con-
clusions under some combinations may differ from those
under others. To solve the problem, we conduct additional
experiments to revalidate the mechanisms involved in each
perspective across various combinations. Due to space con-
straints, the experiments are shown in Appendix B. The ex-
perimental results indicate that across various combinations,
the conclusions drawn from different mechanism selections
align with those presented in the main text. This demon-
strates the reliability of the conclusions presented in the
main text.

Additionally, in Appendix C, we conduct ablation stud-
ies, component replacements, and analyses on EvoRain-
bow across tasks in five different domains: Ant, Breakout,
Trap Maze, Push Back, and Large Maze (Sparse Reward).
Readers can refer to the appendix for more details.

7. Conclusion
In this paper, we provide a comprehensive review of the
mechanisms proposed in previous ERL literature from five
perspectives. We conduct systematic analysis and exper-
imental comparisons on tasks with dense, deceptive, and
sparse rewards to evaluate the effectiveness of these mech-
anisms. Based on our experimental findings, we carefully
select the most effective components from different perspec-
tives to construct EvoRainbow and EvoRainbow-Exp. The
superiority of these two algorithms is demonstrated through
experiments conducted on 20 tasks.

Here, we offer insights from our experiments that may help
researchers make more informed and efficient selection.

• Regarding the interaction mode, we believe that choos-
ing the parallel mode directly for future research should
become the default choice for ERL architectures.

• If the quality of the reward signal is good, the shared
architecture representation should be preferred; other-
wise, opt for the private architecture.

• We find that the shared architecture cannot solve the
problem of poor reward signal, and we have identified

the reason for this problem as the reliance on value
function approximation for shared representation learn-
ing. Researchers can develop more efficient shared
representations that not only facilitate efficient knowl-
edge sharing but also construct robust policy spaces.

• More efficient EAs or operators are also necessary.
Current work mostly revolves around algorithms such
as CEM and GA, overlooking more advanced EAs.

• According to the analysis in Figure 8, we can also pro-
pose more efficient surrogate mechanisms to improve
overall sample efficiency.

The above are some conclusions and insights we have iden-
tified in current ERL research. Researchers can use these
findings to construct more efficient alternative mechanisms
or to conduct further research.

However, it is important to acknowledge the limitations
of our work. Firstly, we decouple and compare various
mechanisms step by step based on their importance, without
encompassing all possible combinations. This approach to
some extent overlooks the interactions between mechanisms.
Secondly, we have not identified a single framework capable
of addressing all types of tasks, necessitating the selection
between two proposed methods based on task characteristics.
These limitations will be investigated as follow-up work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine learning. There are many potential social con-
sequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgments
This work is supported by the National Natural Science
Foundation of China (Grant Nos. 92370132, 62106172),
the National Key R&D Program of China (Grant No.
2022ZD0116402) and the Xiaomi Young Talents Program
of Xiaomi Foundation.

References
Bäck, T. and Schwefel, H. An overview of evolutionary

algorithms for parameter optimization. Evol. Comput.,
1993.

Bodnar, C., Day, B., and Lió, P. Proximal distilled evolu-
tionary reinforcement learning. In AAAI, 2020.

Boer, P. D., Kroese, D., Mannor, S., and Rubinstein, R.
A tutorial on the cross-entropy method. Ann Oper Res,
2005.

9

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Chalumeau, F., Boige, R., Lim, B., Macé, V., Allard, M.,
Flajolet, A., Cully, A., and Pierrot, T. Neuroevolution is a
competitive alternative to reinforcement learning for skill
discovery. CoRR, 2022.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J. Phasic
policy gradient. In ICML, 2021.

Duan, Y., X.Chen, Houthooft, R., Schulman, J., and Abbeel,
P. Benchmarking deep reinforcement learning for contin-
uous control. In ICML, 2016.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy networks
for exploration. In ICLR, 2018.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint, 2020.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
ICML, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In ICML, 2018.

Hao, J., Li, P., Tang, H., Zheng, Y., Fu, X., and Meng, Z.
Erl-re$ˆ2$: Efficient evolutionary reinforcement learning
with shared state representation and individual policy
representation. In ICLR, 2023a.

Hao, J., Yang, T., Tang, H., Bai, C., Liu, J., Meng, Z., Liu, P.,
and Wang, Z. Exploration in deep reinforcement learning:
From single-agent to multiagent domain. TNNLS, 2023b.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A.,
Loskyll, M., Ojea, J. A., Solowjow, E., and Levine, S.
Residual reinforcement learning for robot control. In
ICRA, 2019.

Khadka, S. and Tumer, K. Evolution-guided policy gradient
in reinforcement learning. In NeurIPS, 2018.

Khadka, S., Majumdar, S., Nassar, T., Dwiel, Z., Tumer, E.,
Miret, S., Liu, Y., and Tumer, K. Collaborative evolution-
ary reinforcement learning. In ICML, 2019.

Kim, N., Baek, H., and Shin, H. Pgps: Coupling policy
gradient with population-based search. 2021.

Larrañaga, P. and Lozano, J. A. Estimation of distribution
algorithms: A new tool for evolutionary computation.
Springer Science & Business Media, 2001.

Li, P., Tang, H., Yang, T., Hao, X., Sang, T., Zheng, Y.,
Hao, J., Taylor, M. E., Tao, W., Z. Wang, Z., et al. Pmic:
Improving multi-agent reinforcement learning with pro-
gressive mutual information collaboration. ICML, 2022.

Li, P., Hao, J., Tang, H., Zheng, Y., and Fu, X. Race: Im-
prove multi-agent reinforcement learning with represen-
tation asymmetry and collaborative evolution. In ICML,
2023.

Li, P., Hao, J., Tang, H., Fu, X., Zheng, Y., and Tang,
K. Bridging evolutionary algorithms and reinforcement
learning: A comprehensive survey. arXiv preprint, 2024.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR, 2016.

Liu, J. and Feng, L. Diversity evolutionary policy deep
reinforcement learning. Comput. Intell. Neurosci., 2021.

Liu, J., Wang, Z., Zheng, Y., Hao, J., Bai, C., Ye, Y., Wang,
Z., Piao, H., and Sun, Y. Ovd-explorer: Optimism should
not be the sole pursuit of exploration in noisy environ-
ments. In AAAI, 2024.

Marchesini, E. and Amato, C. Improving deep policy gradi-
ents with value function search. In ICLR, 2023.

Marchesini, E., Corsi, D., and Farinelli, A. Genetic soft up-
dates for policy evolution in deep reinforcement learning.
In ICLR, 2021.

Mitchell, M. An introduction to genetic algorithms. MIT
Press, 1998.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A. Play-
ing atari with deep reinforcement learning. arXiv preprint,
2013.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P., and
Courville, A. C. The primacy bias in deep reinforcement
learning. In ICML, 2022.

Pourchot, A. and Sigaud, O. CEM-RL: combining evolu-
tionary and gradient-based methods for policy search. In
ICLR, 2019.

Pretorius, K. W. and Pillay, N. Population based reinforce-
ment learning. In SSCI, 2021.

Pugh, J. K., Soros, L. B., and Stanley, K. O. Quality diver-
sity: A new frontier for evolutionary computation. Front.
Robot. AI, 2016.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 1990.

10

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Raileanu, R. and Fergus, R. Decoupling value and policy
for generalization in reinforcement learning. In ICML,
2021.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. arXiv preprint, 2017.

Sedgwick, P. Spearman’s rank correlation coefficient. Bmj,
2014.

Sigaud, O. Combining evolution and deep reinforcement
learning for policy search: a survey. arXiv preprint, 2022.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. Deep neuroevolution: Genetic algo-
rithms are a competitive alternative for training deep neu-
ral networks for reinforcement learning. arXiv preprint,
2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning
- an introduction. Adaptive computation and machine
learning. 1998.

Tang, H., Meng, Z., Hao, J., Chen, C., Graves, D., Li,
D., Yu, C., Mao, H., Liu, W., Yang, Y., Tao, W., and
Wang, L. What about inputting policy in value function:
Policy representation and policy-extended value function
approximator. In AAAI, 2022.

Tang, Y. Guiding evolutionary strategies with off-policy
actor-critic. In AAMAS, 2021.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IROS, 2012.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre,
Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft II using
multi-agent reinforcement learning. Nat., 2019.

Wang, Y., Zhang, T., Chang, Y., Liang, B., Wang, X., and
Yuan, B. A surrogate-assisted controller for expensive
evolutionary reinforcement learning. Inf. Sci., 2022.

Wiering, M. A. and Van Hasselt, H. Ensemble algorithms
in reinforcement learning. IEEE SMC B, 2008.

Xue, K., Wang, R., Li, P., Li, D., Jianye, H., and Qian, C.
Sample-efficient quality-diversity by cooperative coevo-
lution. In ICLR, 2023.

Young, K. and Tian, T. Minatar: An atari-inspired testbed
for more efficient reinforcement learning experiments.
CoRR, 2019.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C.,
and Levine, S. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. In CoRL,
2019a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C.,
and Levine, S. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. In CoRL,
2019b.

Zhu, Q., Wu, X., Lin, Q., Ma, L., Li, J., Ming, Z., and
Chen, J. A survey on evolutionary reinforcement learning
algorithms. Neurocomputing, 2023.

Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., and Yin,
D. Reinforcement learning to optimize long-term user
engagement in recommender systems. In KDD, 2019.

11

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

A. Details of Environments
We evaluate the methods on a total of 20 tasks, divided into the following categories: Maze Tasks, Locomotion Tasks, and
MinAtar, Manipulation Tasks. The details of each environment are as follows:

Maze Tasks: We design four maze tasks in total according to previous EA and RL literature, including Ant Maze, Trap
Maze, Wall Task, and Large Maze (Sparse Rewards). All environments are built based on the D4RL (Fu et al., 2020) code
repository1. We provide a detailed description of each task below.

• Ant Maze: In this task, the algorithm aims to learn a policy for guiding the ant agent to reach the target point in the
upper right corner of the maze. The reward signal is deceptive, represented by the negative Euclidean distance between
the Ant and the target point. Due to the need for simultaneous movement and navigation control, this reward signal can
often cause the Ant to collide with walls and become stuck. The task is considered successfully completed when the
score reaches -20000.

• Trap Maze: The goal of this task is to navigate the point agent through a maze to reach the target point. The reward
signal is deceptive, calculated as the exponentiation of the negative distance between the agent’s current position and
the target point. However, learning based on the reward signal gradient can lead to the agent getting trapped at multiple
locations, and unable to reach the target point.

• Wall Task: In this task, the algorithm must guide the point agent to bypass a wall obstacle and reach the target position.
The reward signal is the same as the Trap Maze and is deceptive. The agent often faces challenges of getting stuck
inside the wall and failing to reach the target point.

• Large Maze: The objective of this task is to explore a large maze and guide the point agent to the target point. The
reward signal is sparse, where the agent receives a reward of 1 upon reaching the target point. Due to the sparsity of the
reward signal, effective exploration strategies are crucial in this task.

In all four types of tasks, the algorithm needs to provide sufficient exploration capability to avoid suboptimal solutions and
achieve the task’s goal successfully.

Lomotation Task: We include four tasks from the MUJOCO environment: Humanoid, Ant, Walker, and Swimmer.
These tasks involve controlling different types of physical agents and serve as commonly used benchmarks in the field of
reinforcement learning.

MinAtar: For the MinAtar benchmark, we conduct experiments on the official tasks2 for Breakout, Asterix, Freeway, and
Space Invaders with the default settings.

Manipulation Tasks: We chose Metaworld (Yu et al., 2019a) for algorithm validation on Manipulation Tasks. We conduct
experiments with the default settings in the official implementation3. The eight tasks involved in the experiments are Plate
Slide, Peg Unplug Side, Coffee Push, Push Back, Soccer, Peg Insert Side, Button Press Topdown, and Sweep Into.

B. Mechanism Comparison with Various Combination
In the previous section, we systematically compare different mechanisms based on their importance. At each step, we
construct a new combination based on the mechanism chosen in the previous step for further analysis. However, this may
raise concerns about the consistency of conclusions across different combinations. To address this problem, we validate the
robustness of our findings by employing various combinations.

Specifically, we conduct a comprehensive re-evaluation of various mechanisms, based on different combinations, and
evaluate them on four tasks with different characteristics: Ant, Trap Maze, Large Maze (Sparse Reward), and Push-Back.
Among them, Ant and Push-Back are conventional tasks with relatively superior reward signals, while Trap Maze and Large
Maze (Sparse Reward) are exploration tasks with deceptive and sparse reward signals. Each experiment is conducted based
on five independent runs. We evaluate these combinations with two metrics: final performance and learning efficiency

1https://github.com/Farama-Foundation/D4RL
2https://github.com/kenjyoung/MinAtar
3https://github.com/Farama-Foundation/Metaworld

12

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

All Tasks
Private + CEM +

Genetic + Surrogate Share + CEM Share + CEM + Surrogate
Share + CEM +

Genetic + Surrogate

Parallel Mode 0.91 | 0.78 0.89 | 0.72 0.76 | 0.61 0.86 | 0.82
RL-Master Mode 0.76 | 0.64 0.82 | 0.67 0.72 | 0.67 0.72 | 0.55
EA-Master Mode 0.20 | 0.11 0.39 | 0.29 0.38 | 0.26 0.38 | 0.26

Table 1. Performance and efficiency comparison across different combinations for Interaction Mode Selection on all four tasks.

Conventional Tasks
EA Master + CEM +
Genetic + Surrogate

Parallel + CEM +
Genetic + Surrogate

RL-Master + CEM +
Genetic + Surrogate

RL-Master + PD-GA +
Genetic + Surrogate

Shared Architecture 0.52 | 0.26 0.97 | 0.92 0.83 | 0.73 0.92 | 0.80
Private Architecture 0.30 | 0.16 0.85 | 0.67 0.84 | 0.69 0.72 | 0.84

Table 2. Performance and efficiency comparison across different combinations for Individual Architectures Selection on conventional
tasks.

(area under the curve), wherein the scores have been normalized by dividing them by the maximum value. Finally, we
present the average normalized scores across various tasks. Each cell in the result table represents the average scores for the
corresponding combination, including the average final performance score on the left and the average sample efficiency
score on the right.

B.1. Interaction Mode Selection across Various Combinations

In the main text, we explore the comparison with the combination of Private Architecture + V-GA under three modes. Here,
we provide additional comparisons for four other combinations, including Private Architecture + CEM + Genetic Soft
Update + H-Step Bootstrap w/ Generation (Surrogate), Share Architecture + CEM, Share Architecture + CEM + H-Step
Bootstrap w/ Generation (Surrogate), Share Architecture + CEM + Genetic Soft Update + H-Step Bootstrap w/ Generation
(Surrogate).

We combine the three modes with the aforementioned four combinations and compare them across four tasks. The
experimental results in Table 1 indicate that the scores achieved by combining Parallel Mode with the four combinations
consistently outperform those of RL-Master Mode and EA-Master Mode. This aligns with the conclusion drawn in the main
text regarding the higher efficiency of Parallel Mode.

B.2. Individual Architectures Selection across Various Combinations

In the main text, we explore Individual Architectures Selection based on the combination of Parallel Mode + V-GA. Here,
we present the results for four additional combinations, including EA Master Mode + CEM + Genetic Soft Update + H-Step
Bootstrap w/ Generation (Surrogate), Parallel Mode + CEM + Genetic Soft Update + H-Step Bootstrap w/ Generation
(Surrogate), RL-Master Mode + CEM + Genetic Soft Update + H-Step Bootstrap w/ Generation (Surrogate), RL-Master
Mode + PD-GA + Genetic Soft Update + H-Step Bootstrap w/ Generation (Surrogate).

We combine the two architectures with the aforementioned four combinations and compare them. We categorized the test
tasks into two groups based on the quality of the reward signals. The first group includes the conventional tasks Ant and
Push-Back, while the second group includes the exploration tasks Trap Maze and Large Maze (Sparse). The experimental
results are shown in Table 2 and 3. We observe that in conventional tasks, the shared architecture generally outperforms the
private architecture, both in terms of final performance and sample efficiency. However, in exploratory tasks, the private
architecture is typically more efficient. This is consistent with the conclusion drawn in our main text.

B.3. EAs and Operators Selection

In the main text, we primarily explore the results based on two combinations: Parallel Mode + Shared Architecture
and Parallel Mode + Private Architecture. Here, we provide three additional combinations for further evaluation. The
combinations include EA-Master Mode + Share Architecture + Genetic Soft Update + H-Step Bootstrap w/ Generation

13

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Exploration Tasks
EA Master + CEM +
Genetic + Surrogate

Parallel + CEM +
Genetic + Surrogate

RL-Master + CEM +
Genetic + Surrogate

RL-Master + PD-GA +
Genetic + Surrogate

Shared Architecture 0.23 | 0.26 0.76 | 0.77 0.47 | 0.41 0.27 | 0.26
Private Architecture 0.09 | 0.07 0.81 | 0.79 0.68 | 0.59 0.56 | 0.54

Table 3. Performance and efficiency comparison across different combinations for Individual Architectures Selection on exploration tasks.

All Tasks
EA Master + Share +
Genetic + Surrogate

RL Master + Share +
Genetic + Surrogate

RL Master + Private +
Genetic + Surrogate

CEM 0.40 | 0.30 0.78 | 0.62 0.83 | 0.73
PD-GA 0.33 | 0.20 0.60 | 0.55 0.64 | 0.54
B-GA 0.27 | 0.19 0.70 | 0.66 -
V-GA 0.31 | 0.24 0.75 | 0.58 0.56 | 0.45

Table 4. Performance and efficiency comparison across different combinations for EAs and Operators Selection on all tasks.

(Surrogate), RL-Master Mode + Share Architecture + Genetic Soft Update + H-Step Bootstrap w/ Generation (Surrogate)
and RL-Master Mode + Private Architecture + Genetic Soft Update + H-Step Bootstrap w/ Generation (Surrogate).

We combine the four EAs with the aforementioned three combinations and compare them on all tasks. The experimental
results in Table 4 indicate that across the three combinations, CEM is more efficient compared to the other three EAs. This
aligns with our conclusion in the main text that CEM is more efficient.

B.4. Analysis of Genetic Soft updates

In the main text, we find that Elite Guide is more time-consuming and can even result in negative performance gains.
Therefore, here we primarily evaluate the robustness of Genetic Soft Update in enhancing performance. We present
four additional combinations including: Parallel Mode + Share Architecture + CEM + H-Step Bootstrap w/ Generation
(Surrogate), RL-Master Mode + Share Architecture + CEM + H-Step Bootstrap w/ Generation (Surrogate), RL-Master Mode
+ Private Architecture + CEM + H-Step Bootstrap w/ Generation (Surrogate), and RL-Master Mode + Share Architecture +
PD-GA + H-Step Bootstrap w/ Generation (Surrogate).

We combine Genetic Soft Update with the aforementioned three combinations and compare them on all tasks. The
experimental results in Table 5 demonstrate that incorporating Genetic Soft Update tends to yield improvements in both
final performance and sample efficiency. This finding is consistent with the conclusion drawn in the main text.

B.5. Analysis of the Surrogate Mechanism

We also analyze the robustness of the H-Step Bootstrap w/ Generation. We provided four additional combinations including:
Parallel Mode + Share Architecture + CEM + Genetic Soft Update, RL-Master Mode + Share Architecture + CEM +
Genetic Soft Update, RL-Master Mode + Private Architecture + CEM + Genetic Soft Update, and RL-Master Mode + Share
Architecture + PD-GA + Genetic Soft Update.

We combine the H-Step Bootstrap w/ Generation with the aforementioned four combinations and compare them. In the
main text, we find that the use of Surrogate varies significantly across different types of tasks. Thus we categorize the test
tasks into two groups based on the quality of the reward signals. The first group includes the conventional tasks Ant and

All Tasks
Parallel + Share +
CEM + Surrogate

RL Master + Share +
CEM + Surrogate

RL Master + Share +
CEM + Surrogate

RL Master + Share +
PD-GA + Surrogate

w/ Genetic 0.86 | 0.82 0.72 | 0.55 0.77 | 0.67 0.60 | 0.53
w/o Genetic 0.76 | 0.61 0.72 | 0.67 0.67 | 0.49 0.59 | 0.55

Table 5. Performance and efficiency comparison across different combinations for Genetic Soft updates on all tasks.

14

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Conventional Tasks
Parallel + Share +
CEM + Genetic

RL Master + Share +
CEM + Genetic

RL Master + Private +
CEM + Genetic

RL Master + Share +
PD-GA + Genetic

w/ Surrogate 0.97 |0.92 0.97 |0.70 0.84 | 0.69 0.92 | 0.80
w/o Surrogate 0.92 | 0.68 0.89 | 0.89 0.77 | 0.52 0.81 | 0.60

Table 6. Performance and efficiency comparison across different combinations for Surrogate Mechanism on conventional tasks.

Exploration Tasks
Parallel + Share +
CEM + Genetic

Parallel + Share +
CEM + Genetic

RL Master + Private +
CEM + Genetic

RL Master + Share
+ PD-GA + Genetic

w/ Surrogate 0.74 | 0.71 0.47| 0.41 0.70 | 0.65 0.27 | 0.26
w/o Surrogate 0.87 | 0.72 0.69 | 0.65 0.74 | 0.65 0.51 | 0.31

Table 7. Performance and efficiency comparison across different combinations for Surrogate Mechanism on exploration tasks.

Push-Back, while the second group includes the exploration tasks Trap Maze and Large Maze (Sparse).

The experimental results in Table 6 and Table 7 indicate that using Surrogate in conventional tasks can significantly improve
both final performance and sample efficiency. However, in exploratory tasks, the use of Surrogate leads to a decrease in
performance. The conclusion here is consistent with the conclusion provided in our main text.

The experiments above mainly aim to further validate different mechanisms through various combinations, thereby
mitigating potential biases resulting from the single combination or the order of combinations. Additionally,
evaluation based on different mechanisms for each mechanism can significantly enhance the robustness and reliability
of the experimental conclusions.

C. Ablation Study and Analysis Experiments
In this section, we conduct in-depth analyses of EvoRainbow. Throughout the main text, we gradually build the entire
algorithm from scratch. In this section, we perform ablation and replacement experiments on each component of EvoRainbow
and test it on tasks with five different characteristics. These tasks cover five major categories mentioned in the main text,
including Ant, Trap Maze, Large Maze (Sparse Reward), Breakout, and Push Back.

C.1. Ablation Study on Fitness Surrogate Selection and Usage

In this subsection, we conduct an ablation analysis on Fitness Surrogate Selection and Usage. We remove the usage of
Critic(H-Step) + Generation in EvoRainbow. The experimental results in Figure 11 indicate that using fitness surrogates
leads to performance improvement in general tasks, such as Breakout, Ant, and Push Back. In these tasks, the quality
of reward signals is typically high. However, for tasks with poor reward signal quality, e.g., sparse rewards or deceptive
rewards, fitness surrogates may result in performance loss. This is mainly because the errors in fitness surrogates can lead to
the removal of population elites, and in maze tasks where the importance of the population is greater than RL, it can lead
to performance loss. The conclusion obtained here is consistent with the conclusion in the main text, i.e., utilizing fitness
surrogates contributes to the policy search in general tasks, but has a negative impact on exploration tasks with low-quality
reward signals.

C.2. Ablation Study on How EA impacts RL

In this subsection, we conduct an ablation analysis on How EA impacts RL. We remove the Genetic Soft Update in
EvoRainbow. The experimental results shown in Figure 12 demonstrate that the use of Genetic Soft Update can improve
performance across different types of tasks. This improvement can be attributed to the direct influence of Genetic Soft
Update on the RL parameters, potentially breaking the RL policy out of suboptimal situations. It enhances the plasticity of
the RL policy, facilitating more effective utilization of experiences collected by EA, ultimately leading to improved policy
performance. The conclusions drawn from experiments under EvoRainbow in this context align with those presented in the
main text, i.e., Genetic Soft Update can accelerate policy learning, leading to better results.

15

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Breakout

Ant

Trap Maze Push Back

Breakout

Large Maze (Sparse) EvoRainbow w/ Surrogates

EvoRainbow w/o Surrogates

RL Baselines

Figure 11. Ablation study on Fitness Surrogate Selection and Usage in EvoRainbow. we first average the score over five seeds up to 1
million environment steps. In most tasks, we compute the area under the score curve as it captures not only the final performance but
also the amount of interaction required to achieve it. For the Maze tasks, we use the final performance since we find the area can not
capture the final performance. Since absolute values vary greatly across games, we report relative quantities by dividing by the maximum
value obtained in each game. The experimental results under EvoRainbow once again confirm the conclusion in the main text,
that is, Fitness Surrogate is more suitable for general tasks, whereas for tasks with high exploration requirements, using Fitness
Surrogate may lead to performance loss due to the potential errors of value estimates.

Breakout

Ant

Trap Maze Push Back

Breakout

Large Maze (Sparse) EvoRainbow w/ Generic Soft Update

EvoRainbow w/o Generic Soft Update

RL Baselines

Figure 12. Ablation study on Genetic Soft Update for EvoRainbow. we first average the score over five seeds up to 1 million environment
steps. In most tasks, we compute the area under the score curve as it captures not only the final performance but also the amount of
interaction required to achieve it. For the Maze tasks, we use the final performance since we find the area can not capture the final
performance. Since absolute values vary greatly across games, we report relative quantities by dividing by the maximum value obtained in
each game. The experimental results indicate that Genetic Soft Update can improve algorithm performance across various tasks,
consistent with the conclusions presented in the main text. The primary reason for this enhancement is likely the direct impact on
RL parameters, which enhances the plasticity of the RL policy. This, in turn, enables better utilization of collected experiences
and the ability to break free from suboptimal situations.

16

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Breakout

Ant

Trap Maze Push Back

Breakout

Large Maze (Sparse) EvoRainbow (Shared)

EvoRainbow (Private)

RL Baselines

Figure 13. Comparison of shared architecture and private architecture in EvoRainbow across five tasks with different characteristics.
we first average the score over five seeds up to 1 million environment steps. In most tasks, we compute the area under the score curve
as it captures not only the final performance but also the amount of interaction required to achieve it. For the Maze tasks, we use the
final performance since we find the area can not capture the final performance. Since absolute values vary greatly across games, we
report relative quantities by dividing by the maximum value obtained in each game. The experimental results indicate that the shared
architecture is more effective for general tasks, leading to accelerated learning and superior final performance, whereas the
private architecture is more suitable for exploration tasks, especially in scenarios with sparse or deceptive rewards. The relatively
independent nature of individuals ensures strong exploration capabilities. The conclusions drawn from EvoRainbow regarding
the shared and private architectures align with the conclusion in the main text.

17

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Breakout

Ant

Trap Maze Push Back

Breakout

Large Maze (Sparse) EvoRainbow(Parallel)

EvoRainbow(EA-Master)

EvoRainbow(RL-Master)

RL Baselines

Figure 14. Comparison of Interaction Mode in EvoRainbow across five tasks with different characteristics. we first average the score over
five seeds up to 1 million environment steps. In most tasks, we compute the area under the score curve as it captures not only the final
performance but also the amount of interaction required to achieve it. For the Maze tasks, we use the final performance since we find the
area can not capture the final performance. Since absolute values vary greatly across games, we report relative quantities by dividing by
the maximum value obtained in each game. The experimental results indicate that Parallel Mode is more efficient than other modes
across various tasks. Since Parallel Mode ensures both the exploration capability of EA and the learning ability of RL. The mode
replacement based on EvoRainbow further confirms the superiority of Parallel Mode, consistent with the conclusions drawn from
the initial architecture in the main text.

C.3. Analysis on Individual Architecture

In this subsection, we analyze the choice of individual architecture, which is one of the main differences between EvoRainbow
and EvoRainbow-Exp. EvoRainbow utilizes a shared architecture and fitness surrogate, whereas EvoRainbow-Exp uses
a private architecture. We compare the performance of EvoRainbow and EvoRainbow (Private). EvoRainbow (Private)
replaces the shared architecture with the private architecture. The experimental results are shown in Figure 13. We
can observe that the shared architecture outperforms the private architecture in various tasks, except for maze tasks. In
general tasks, the shared architecture achieves better performance, thanks to the smaller policy space constructed by shared
representations, which simplifies the difficulty of policy search. For exploration tasks, the performance gap between the two
architectures is small in Large Maze, whereas it is significant in Trap Maze. This is mainly because Large Maze provides
sparse but non-deceptive signals. Once the policy explores successful trajectories, it can rapidly construct effective shared
representations, leading to performance similar to the Private architecture. In Trap Maze, where reward signals are deceptive,
the shared representation space constructed based on these signals is prone to collapse, hindering policy search. Overall, the
shared architecture is more suitable for regular tasks, whereas the private architecture is more suitable for exploration tasks.
The conclusions drawn from EvoRainbow in this context align with the main findings in the main text.

C.4. Analysis on Interaction Mode

In the main text, we analyze the choice of Interaction Mode, which is the cornerstone of EvoRainbow, and its selection
directly determines the dominant role of EA and RL in the entire algorithm framework. In the main text, based on the most
basic version, the Parallel mode outperforms EA-Master mode and RL-Master mode on various types of tasks. Here, we
reanalyze based on EvoRainbow to verify whether the conclusion is consistent with the initial findings.

The experimental results, as shown in Figure 14, indicate that building on EvoRainbow, Parallel mode remains significantly
superior to EA-Master mode and RL-Master mode across different types of tasks, RL-Master mode outperforms RL
baselines, showing significant improvements in three out of the five tasks. However, both RL-Master mode and EA-Master
mode fail to successfully reach the target point in the Trap Maze, which requires strong exploration. In RL-Master mode, the

18

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

1000

2000

3000

4000

5000

6000
Av

er
ag

ed
 E

pi
so

di
c R

ew
ar

d
Humanoid

PSCG w/ Top 100%
PSCG w/ Top 20%
PSCG w/ Top 40%
PSCG w/ Top 60%
PSCG w/ Top 80%

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×1e6)

0

100

200

300

400

500

Av
er

ag
ed

 E
pi

so
di

c R
ew

ar
d

Trap Maze

Figure 15. Analysis of Experience Filter on Humanoid and Trap Maze.

population individuals are confined to exploring around the RL policy, whereas EA-Master mode uses RL gradients to guide
half of the individuals, without maintaining RL individuals. The former reduces the random exploration capability of EA,
and the latter simultaneously diminishes both the exploration capability of EA and the learning ability of RL. Ultimately,
both modes struggle to achieve efficient learning. Overall, Parallel mode proves to be more efficient across various tasks,
ensuring both the exploration capability of EA and the learning ability of RL. This aligns with the conclusions drawn in the
main text.

D. Additional Experiments
Experiments on Experience Filter: We evaluate the Experience Filter mechanism in ”How EA impacts RL”, which aims
to ensure data quality by filtering the experiences provided by EA to RL. We provide RL with experiences from the top 20%,
40%, 60%, 80%, and 100% of individuals, and incorporate this mechanism into PSCG and PPCG. We conduct experiments
on the Humanoid task and Trap Maze, and the results are illustrated in Figure 15. However, the results show that Experience
Filter may lead to a decrease in both sample efficiency and final performance.

E. Experiment details
E.1. Implementation Details in Analysis Experiments

Our code is based on the official implementations of ERL4, ERL-Re25, PDERL6, CEM-RL7, and PGPS8. The TD3 algorithm
follows the official code of ERL-Re2. For the RL aspect, we use the PyTorch implementation of SAC9. The DQN algorithm
uses the official implementation provided by MinAtar10. For the EA aspect, CEM uses the implementation from CEM-RL,
Vallina-GA uses the implementation from ERL, PD-GA uses the implementation from PDERL, and Behavior-level GA uses
the implementation from ERL-Re2. Below, we provide the experimental details for five subsections of analysis experiments:

• Interaction Mode: We compare three modes: Parallel, RL-Master, and EA-Master. The Parallel mode follows the
training architecture of ERL, PDERL, and ERL-Re2. RL-Master follows the implementation of Supe-RL. EA-Master
follows the training architecture of CEM-RL. To ensure fairness and stability in training, Vallina-GA is used for the EA
aspect in all experiments. We finetune and provide the best results for all methods.

4https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
5https://github.com/yeshenpy/ERL-Re2
6https://github.com/crisbodnar/pderl
7https://github.com/apourchot/CEM-RL
8https://github.com/NamKim88/PGPS
9https://github.com/denisyarats/pytorch sac

10https://github.com/kenjyoung/MinAtar

19

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

• Individual Architecture: We compare Shared Architecture and Private Architecture. The Shared Architecture follows
the implementation of ERL-Re2 and the Private Architecture follows the implementation in ERL and PDERL. This
experiment is based on the best Parallel architecture discovered in the first part for further analysis.

• Evolutionary Algorithms and Operators: This section compares Vallina-GA, PD-GA, Behavior-level GA, and
CEM. Vallina-GA adjusts the percentage of parameter mutation to {0.5, 0.2, 0.1, 0.05, 0.01}. PD-GA adjusts the
mutation magnitude hyperparameter following the original paper to {0.2, 0.1, 0.01, 0.001, 0.0001}. CEM mainly
adjusts the noise magnitude hyperparameter to {0.1, 0.01, 0.001, 0.0001, 0.00001}. Behavior-level GA adjusts the
percentage of mutation parameters to {1.0, 0.7, 0.5, 0.2} following the original paper, the other hyperparameters of the
evolutionary algorithm remain consistent with the original paper. In the experiments, the non-evolutionary algorithm
hyperparameters are kept consistent across all the algorithms. Finally, we combine these mechanisms based on the best
Parallel + Shared and Parallel + Private architectures discovered in the previous sections and report the optimal results
under different combinations.

• How EA impacts RL: This section explores three mechanisms: Genetic Soft Update, Elite Policy Guide, and
Experience Filter. Genetic Soft Update follows the implementation in Supe-RL and we adjust τ to {0.1, 0.3, 0.6, 1.0},
Elite Policy Guide follows the official code of PGPS. Experience Filter directly filters the experiences provided by
EA to RL, testing different proportions of experiences, including only providing the experiences of the top 80%, 60%,
40%, and 20% individuals to the replay buffer for RL training. The above mechanisms are further tested and evaluated
on the previously obtained optimal structures.

• Fitness Surrogate Selection and Usage: In this section, we first discuss the selection of fitness surrogates, including
Critic (Buffer), Critic (H-step Bootstrap), PeVFA (Buffer), and PeVFA (H-step Bootstrap). Critic (Buffer) follows
the settings in the SC paper, and the data sample size for sampling is set to 50,000. PeVFA (H-step Bootstrap) uses
the settings from ERL-Re2, where we use one-fifth of a game’s episode length as the value for H . Critic (H-step
Bootstrap) and PeVFA (Buffer) also follow the aforementioned settings. Regarding the usage of fitness surrogates,
we explore Individual Control and Generation Control. For Individual Control, the initial population size is twice the
actual population size. For Generation Control, we introduce additional probabilities to control the usage of fitness
surrogates, with values of {0.2, 0.4, 0.6, 0.8, 1.0}.

E.2. Hyperparameter Settings

This section provides a comprehensive overview of the various hyperparameters used in the 20 tasks. Specifically,
EvoRainbow includes the settings for noise magnitude in CEM, the τ hyperparameters for Genetic Soft Update, and the
probability 1-p of utilizing Critic (H-Step Bootstrap) in fitness surrogates. EvoRainbow-Exp includes the settings for noise
magnitude in CEM, the τ parameter for Genetic Soft Update. The detail hyperparameters specific to EvoRainbow and
Rainbow are shown in Table 8 and Table 9, other hyperparameters are consistent with ERL-Re2.

20

EvoRainbow: Combining Improvements in Evolutionary Reinforcement Learning for Policy Search

Table 8. Details of the hyperparameters of EvoRainbow across tasks.
Env name Noise Magnitude τ p
MUJOCO Humanoid 1e-2 0.1 0.2
MUJOCO Ant 1e-4 0.1 0.2
MUJOCO Walker 1e-1 0.1 0.6
MUJOCO Swimmer 1e-3 0.3 0.4
Maze Ant Maze 1e-1 0.6 0.6
Maze Trap Maze 1e-5 0.6 1.0
Maze Wall Task 1e-3 1.0 1.0
Maze Large Maze 1e-1 0.6 1.0
MinAtar Freeway 1e-2 0.1 0.2
MinAtar Space Invaders 1e-2 0.1 0.4
MinAtar Breakout 1e-3 0.1 0.4
MinAtar Asterix 1e-2 0.3 0.8
Metaworld Plate Slide 1e-2 0.1 0.2
Metaworld Peg Unplug Side 1e-2 0.3 0.8
Metaworld Coffee Push 1e-4 0.3 0.2
Metaworld Push Back 1e-4 1.0 0.2
Metaworld Soccer 1e-2 0.3 0.2
Metaworld Peg Insert Side 1e-1 0.1 0.8
Metaworld Sweep Into 1e-1 0.1 0.8
Metaworld Button Press Topdown 1e-3 0.1 0.8

Table 9. Details of the hyperparameters of EvoRainbow-Exp across tasks.
Env name Noise Magnitude τ
MUJOCO Humanoid 1e-1 0.0
MUJOCO Ant 1e-3 0.1
MUJOCO Walker 1e-3 0.1
MUJOCO Swimmer 1e-3 0.1
Maze Ant Maze 1e-1 0.0
Maze Trap Maze 1e-1 0.0
Maze Wall Task 1e-2 0.1
Maze Large Maze 1e-1 0.3
MinAtar Freeway 1e-4 0.0
MinAtar Space Invaders 1e-2 0.3
MinAtar Breakout 1e-3 0.3
MinAtar Asterix 1e-3 0.1
Metaworld Plate Slide 1e-1 0.1
Metaworld Peg Unplug Side 1e-4 1.0
Metaworld Coffee Push 1e-5 1.0
Metaworld Push Back 1e-5 0.3
Metaworld Soccer 1e-3 1.0
Metaworld Peg Insert Side 1e-3 0.1
Metaworld Sweep Into 1e-2 1.0
Metaworld Button Press Topdown 1e-2 0.1

21

