
Appendices

A Wasserstein dimension selection

In order to compute the principal component scores ⇣1, . . . , ⇣n, one must choose the dimension
r. Traditionally and somewhat heuristically, this is done by finding the “elbow” in the scree plot
of eigenvalues. The bias-variance tradeoff associated with choosing r was explored by [49], who
suggested a data-splitting method of dimension selection for high-dimensional data using Wasserstein
distances. Whilst this method may be more costly than the traditional “elbow” approach, it was
empirically demonstrated in [49] to have superior performance.

Algorithm 2 Wasserstein PCA dimension selection [49]
Input: data vectors Y1, . . . ,Yn 2 Rp.

1: for r 2 {1, ...,min(n, p)} do
2: Let V 2 Rp⇥r denote the matrix whose columns are orthonormal eigenvectors associated

with the r largest eigenvalues of
Pdn/2e

i=1 YiY>
i

3: Orthogonally project Y1, . . . ,Ydn/2e onto the column space of V, Ŷi := VV>Yi

4: Compute Wasserstein distance dr between Ŷi, . . . , Ŷdn/2e and Ydn/2e+1, . . . ,Yn (as point
sets in Rp)

5: end for
Output: selected dimension r̂ = argmin {dr}.

We note that in practice, the eigenvectors appearing in this procedure could be computed sequentially
as r grows, and to limit computational cost one might consider r only up to some rmax < min(n, p).

B Implementation using scikit-learn

Algorithm 1 can be implemented using the Python module scikit-learn [38] via their
AgglomerativeClustering class, using the standard ‘average’ linkage criterion and a custom
metric function to compute the desired affinities. However, AgglomerativeClustering merges
clusters based on minimum distance metric, whereas algorithm 1 merges according to maximum
dot product. Therefore, the custom metric function we used in our implementation calculates all the
pairwise dot products and subtracts them from the maximum. This transformation needs to then be
rectified if accessing the merge heights.

All code released as part of this paper is under the MIT License and can be found at https:
//github.com/anniegray52/dot_product_hierarchical

C Proofs and supporting theoretical results

Lemma 2. The height function h(v) := ↵(v, v) satisfies h(v) � h(Pav) for all v 2 V except the
root.

Proof.

h(v) =
1

p
E[kX(v)�X(Pav) +X(Pav)k2]

=
1

p
E[kX(v)�X(Pav)k2] + 2

1

p
E[hX(v)�X(Pav),X(Pav)i] + h(Pav) � h(Pav),

where A2 combined with the tower property and linearity of conditional expectation implies
E[hX(v)�X(Pav),X(Pav)i] = 0.

Lemma 3. For all u, v 2 V , ↵(u, v) � 0.

14

https://github.com/anniegray52/dot_product_hierarchical
https://github.com/anniegray52/dot_product_hierarchical

Proof. If u = v, ↵(u, v) � 0 holds immediately from the definition of ↵ in (2). For u 6= v with most
recent common ancestor w,

E[hX(u),X(v)i] =
pX

j=1

E [E[Xj(u)Xj(v)|Xj(w)]]

=
pX

j=1

E [E[Xj(u)|Xj(w)]E[Xj(v)|Xj(w)]]

=
pX

j=1

E[|Xj(w)|2] � 0,

where the second equality uses A1 together with standard conditional independence aguments, and
the third equality uses A2.

Proof of lemma 1. Let w be the most recent common ancestor of u and v. For each j = 1, . . . , p, the
property A1 together with standard conditional independence arguments imply that Xj(u) and Xj(v)
are conditionally independent given Xj(w), and the property A2 implies that E[Xj(u)|Xj(w)] =
E[Xj(v)|Xj(w)] = Xj(w). Therefore, by the tower property of conditional expectation,

E[Xj(u)Xj(v)] = E [E[Xj(u)Xj(v)|Xj(w)]]

= E [E[Xj(u)|Xj(w)]E[Xj(v)|Xj(w)]]

= E[Xj(w)
2].

Hence, using the definitions of the merge height m, the height h and the affinity ↵,

m(u, v) = h(w) = ↵(w,w) =
1

p

pX

j=1

E[Xj(w)
2] =

1

p

pX

j=1

E[Xj(u)Xj(v)] = ↵(u, v),

which proves the first equality in the statement. The second equality is the definition of ↵.

For the third equality in the statement, we have

d(u, v) = h(u) + h(v)� 2h(w)

= ↵(u, u) + ↵(v, v)� 2↵(u, v)

=
1

p
E [hX(u),X(u)i] + 1

p
E [hX(v),X(v)i]� 2

1

p
E [hX(u),X(v)i]

=
1

p
E
⇥
kX(u)�X(v)k2

⇤
,

where the first equality uses the definition of d, and the second equality uses the definition of h and
h(w) = m(u, v) = ↵(u, v).

C.1 Proof of Theorem 1

The following lemma establishes an identity concerning the affinities computed in algorithm 1 which
will be used in the proof of theorem 1.
Lemma 4. Let Pm, m � 0, be the sequence of partitions of [n] constructed in algorithm 1 . Then for
any m � 0,

↵̂(u, v) =
1

|u||v|
X

i2u,j2v

↵̂(i, j), for all distinct pairs u, v 2 Pm. (9)

Proof. The proof is by induction on m. With m = 0, (9) holds immediately since P0 =
{{1}, . . . , {n}}. Now suppose (9) holds at step m. Then for any distinct pair w,w0 2 Pm+1,

15

either w or w0 is the result of merging two elements of Pm, or w and w0 are both elements of Pm. In
the latter case the induction hypothesis immediately implies:

↵̂(w,w0) =
1

|w||w0|
X

i2w,j2w0

↵̂(i, j).

In the case that w or w0 is the result of a merge, suppose w.l.o.g. that w = u [v for some u, v 2 Pm

and w0 2 Pm. Then by definition of ↵̂ in algorithm 1 ,

↵̂(w,w0) =
|u|
|w| ↵̂(u,w

0) +
|v|
|w| ↵̂(v, w

0)

=
|u|
|w|

1

|u||w0|
X

i2u,j2w0

↵̂(i, j) +
|v|
|w|

1

|v||w0|
X

i2v,j2w0

↵̂(i, j)

=
1

|w||w0|
X

i2w,j2w0

↵̂(i, j),

where the final equality uses w = u [v. The induction hypothesis thus holds at step m+ 1.

The following proposition establishes the validity of the height function constructed in algorithm 1.
Some of the arguments used in this proof are qualitatively similar to those used to study reducible
linkage functions by, e.g., Sumengen et al. [46], see also historical references therein.

Proposition 1. With V̂ the vertex set and ĥ the height function constructed in algorithm 1 with any
symmetric, real-valued input ↵̂(·, ·), it holds that ĥ(v) � ĥ(Pav) for all vertices v 2 V̂ except the
root.

Proof. The required inequality ĥ(v) � ĥ(Pav) holds immediately for all the leaf vertices v 2 P0 =
{{1}, . . . , {n}} by the definition of ĥ in algorithm 1. All the remaining vertices in the output tree, i.e.,
those in V̂ \P0, are formed by merges over the course of the algorithm. For m � 0 let wm = um[vm
denote the vertex formed by merging some um, vm 2 Pm. Then wm = Paum and wm = Pavm .
Each um is either a member of P0 or equal to wm0 for some m0 < m. The same is true of each
vm. It therefore suffices to show that ĥ(wm) � ĥ(wm+1) for m � 0, where by definition in the
algorithm, ĥ(wm) = ↵̂(um, vm). Also by definition in the algorithm, ĥ(wm+1) is the largest pairwise
affinity between elements of Pm+1. Our objective therefore is to upper-bound this largest affinity and
compare it to ĥ(wm) = ↵̂(um, vm).

The affinity between wm = um [vm and any other element w0 of Pm+1 (which must also be an
element of Pm) is, by definition in the algorithm,

↵̂(wm, w0) =
|um|

|um|+ |vm| ↵̂(um, w0) +
|vm|

|um|+ |vm| ↵̂(vm, w0)

 max{↵̂(um, w0), ↵̂(vm, w0)}
 ↵̂(um, vm),

where the last inequality holds because um, vm, by definition, have the largest affinity amongst all
elements of Pm. For the same reason, the affinity between any two distinct elements of Pm+1 neither
of which is wm (and therefore both of which are elements of Pm) is upper-bounded by ↵̂(um, vm).
We have therefore established ĥ(wm) = ↵̂(um, vm) � ĥ(wm+1) as required, and this completes the
proof.

Proof of theorem 1. Let us introduce some definitions used throughout the proof.

M := max
i 6=j

|↵̂(i, j)� ↵(zi, zj)|. (10)

We arbitrarily chose and then fix i, j 2 [n] with i 6= j, and define

H := m(zi, zj), Ĥ := m̂(i, j). (11)

16

Let u denote the most recent common ancestor of the leaf vertices {i} and {j} in D̂ and let m � 1
denote the step of the algorithm at which u is created by a merge, that is m = min{m0 � 1 : u 2
Pm0}. We note that by construction, u is equal to the union of all leaf vertices with ancestor u, and
by definition of ĥ in algorithm 1 ĥ(u) = Ĥ .

Let v denote the most recent common ancestor of zi and zj in D, which has height h(v) = H .

Lower bound on m(zi, zj)�m̂(i, j). There is no partition of u into two non-empty sets A,B ✓ [n]

such that ↵̂(k, l) < Ĥ for all k 2 A and l 2 B. We prove this by contradiction. Suppose that such a
partition exists. There must be a step m0  m at which some A0 ✓ A is merged some B0 ✓ B. The
vertex w formed by this merge would have height

ĥ(w) = ↵̂(A0, B0)

=
1

|A0||B0|
X

k2A0,l2B0

↵̂(k, l) < Ĥ = ĥ(u),

where the first equality is the definition of ĥ(w) in the algorithm and the second equality holds by
lemma 4. However, in this construction u is an ancestor of w, and ĥ(w) < ĥ(u) therefore contradicts
the result of proposition 1.

As a device to be used in the next step of the proof, consider an undirected graph with vertex set u, in
which there is an edge between two vertices k and l if and only if ↵̂(k, l) � Ĥ . Then, because there
is no partition as established above, this graph must be connected. Now consider a second undirected
graph, also with vertex set u, in which there is any edge between two vertices k and l if and only if
↵(zk, zl) � Ĥ �M . Due to the definition of M in (10), any edge in the first graph is an edge in the
second, so the second graph is connected too. Let k, l, and ` be any distinct members of u. Using
the fact established in lemma 1 that ↵(zk, zl) and ↵(zl, z`) are respectively the merge heights in D
between zk and zl, and zl and z`, it can be seen that if there are edges between k and l and between l
and ` in the second graph, there must also be an edge in that graph between k and `. Combined with
the connectedness, this implies that the second graph is complete, so that ↵(zk, zl) � Ĥ �M for all
distinct k, l 2 u. In particular ↵(zi, zj) � Ĥ �M , and since m(zi, zj) = ↵(zi, zj), we find

m(zi, zj)� m̂(i, j) � �M. (12)

Upper bound on m(zi, zj)� m̂(i, j). Let Sv = {i 2 [n] : zi = v or zi has ancestor v in D}. For
k, l 2 Sv , lemma 1 tells us ↵(zk, zl) is the merge height between zk and zl, so ↵(zk, zl) � H . Using
(10), we therefore have

↵̂(k, l) � H �M, 8k, l 2 Sv. (13)

It follows from the definition of ĥ in the algorithm that if Sv = [n], the heights of all vertices in D̂
are greater than or equal to H �M . This implies Ĥ � H �M . In summary, we have shown that
when Sv = [n],

m(zi, zj)� m̂(i, j)  M. (14)
It remains to consider the case Sv 6= [n]. The proof of the same upper bound (14) in this case is more
involved. In summary, we need to establish that the most recent common ancestor of {i} and {j} in
D̂ has height at least H �M . The main idea of the proof is to consider the latest step of the algorithm
at which a vertex with height at least H �M is formed by a merge, and show the partition formed by
this merge contains the most recent common ancestor of {i} and {j}, or an ancestor thereof.

To this end let m⇤ denote the latest step in algorithm 1 at which the vertex formed, w⇤, has height
greater than or equal to H �M . To see that m⇤ must exist, notice

max
k 6=l2[n]

↵̂(k, l) � ↵(zi, zj)�M, (15)

by definition of M in (10). Combined with the definition of ĥ in algorithm 1, the vertex formed by
the merge at step 1 of the algorithm therefore has height greater than or equal to H �M . Therefore
m⇤ is indeed well-defined.

Our next objective is to show that the partition Pm⇤ formed at step m? contains an element which
itself contains both i and j. We proceed by establishing some facts about Sv and Pm⇤ .

17

Let S̄v := [n] \ Sv. For k 2 Sv, l 2 S̄v, v cannot be an ancestor of zl, by lemma 1 ↵(zk, zl) is the
merge height of zk and zl, and b is the minimum branch length in D, so we have ↵(zk, zl)  H � b.
From (10) we then find

↵̂(k, l)  H � b+M, 8 k 2 Sv, l 2 S̄v. (16)

We claim that no element of Pm⇤ can contain both an element of Sv and an element of S̄v . We prove
this claim by contradiction. If such an element of Pm⇤ did exist, there would be a step m0  m⇤

at which some A0 ✓ Sv is merged with some B0 ✓ S̄v. But the vertex w0 formed by this merge
would be assigned height ĥ(w0) = ↵̂(A0, B0)  H � b+M < H �M , where the first inequality
uses lemma 4 and (16), and the second inequality uses the assumption of the theorem that M < b/2.
Recalling the definition of w? we have ĥ(w⇤) � H �M . We therefore see that w⇤ is an ancestor of
w0 with ĥ(w⇤) > ĥ(w0), contradicting the result of proposition 1.

Consider the elements of Pm⇤ , denoted A and B, which contain i and j respectively. We claim that
A = B. We prove this claim by contradiction. Suppose A 6= B. As established in the previous
paragraph, neither A nor B can contain an element of S̄v . Therefore, using lemma 4 and (13),

↵̂(A,B) =
1

|A||B|
X

k2A,l2B

↵̂(k, l) � H �M.

Again using the established fact that no element of Pm⇤ can contain both an element of Sv and an
element of S̄v, m⇤ cannot be the final step of the algorithm, since that would require Pm? = {[n]}.
Therefore ↵̂(A,B) is one of the affinities which algorithm 1 would maximise over at step m⇤ + 1, so
the height of the vertex formed by a merge at step m⇤ + 1 would be greater than or equal to H �M ,
which contradicts the definition of m⇤. Thus we have proved there exists an element of Pm⇤ which
contains both i and j. This element must be the most recent common ancestor of {i} and {j}, or an
ancestor thereof. Also, this element must have been formed by a merge at a step less than or equal to
m? and so must have height greater than or equal to H �M . Invoking proposition 1 we have thus
established Ĥ � H �M . In summary, in the case Sv 6= [n], we have shown

m(zi, zj)� m̂(i, j)  M. (17)

Combining the lower bound (12) with the upper bounds (14), (17) and the fact that i, j were chosen
arbitrarily, completes the proof.

C.2 Supporting material and proof for Theorem 2

Definitions and interpretation for assumptions A3 and A5

We recall the definition of '-mixing from, e.g., [39]. For a sequence of random variables {⇠j ; j � 1},
define:

'(k) := sup
j�1

sup
A2Fj

1 ,B2F1
j+k,P(A)>0

|P(B|A)� P(B)| .

where Fj
i is the �-algebra generated by ⇠i, . . . , ⇠j . Then {⇠j ; j � 1} is said to be '-mixing if

'(k) & 0 as k ! 1.

To interpret assumption A5 notice

E[kS(Zi)Eik2|Z1, . . . , Zn]  kS(Zi)k2opE[kEik2]  max
v2Z

kS(v)k2op pE[|E11|2],

where the first inequality uses the independence of Ei and Zi and the second inequality uses the
fact that the elements of the vectors Ei are i.i.d. Since Yi �X(Zi) = S(Zi)Ei, A5 thus implies
E[kYi �X(Zi)k2] 2 O(p) as p ! 1, which can be viewed as a natural growth rate since p is the
dimension of the disturbance vector Yi �X(Zi). In the proof of proposition 2 below, A5 is used in
a similar manner to control dot products of the form hYi �Xi,Xji and hYi �Xi,Yj �Xji.

18

Proof of Theorem 2. For the first claim of the theorem, proposition 2 combined with the tower
property of conditional expectation imply that for any � > 0,

P
✓

max
1i<jn

��p�1 hYi,Yji � ↵(Zi, Zj)
�� � �

◆

 1

�q
1

pq/2
n(n� 1)

2
C(q,')M(q,X,E,S), (18)

from which (6) follows.

The second claim of the theorem is in essence a corollary to [49][Thm 1]. A little work is needed
to map the setting of the present work on to the setting of Whiteley et al. [49][Thm 1]. To see the
connection, we endow the finite set Z in the present work with the discrete metric: dZ(u, v) := 0 for
u 6= v, and dZ(v, v) = 0. Then (Z, dZ) is a compact metric space, and in the setting specified in
the statement of theorem 2 where A3 is strengthened to independence, s = p and S(v) = �Ip for
all v 2 Z , the variables Y1 . . . ,Yn; {X(v), v 2 Z}; E1, . . . ,En exactly follow the Latent Metric
Model of Whiteley et al. [49].

Moreover, according to the description in section 2.1, the variables Z1, . . . , Zn are i.i.d. according
to a probability distribution supported on Z . As in [49], by Mercer’s theorem there exists a feature
map � : Z ! Rr associated with this probability distribution, such that h�(u),�(v)i = ↵(u, v), for
u, v 2 Z . Here r, as in A6, is the rank of the matrix with elements ↵(u, v), which is at most Z .

Theorem 1 of [49] in this context implies there exists a random orthogonal matrix Q 2 Rr⇥r such
that

max
i2[n]

���p�1/2Q⇣i � �(Zi)
��� 2 OP

✓r
nr

p
+

r
r

n

◆
. (19)

Consider the bound:

|↵̂pca(i, j)� ↵(Zi, Zj)| =
����
1

p
h⇣i, ⇣ji � h�(Zi),�(Zj)i

����


���
D
p�1/2Q⇣i � �(Zi), p

�1/2Q⇣j
E���

+
���
D
�(Zi), p

�1/2Q⇣j � �(Zj)
E���


���p�1/2Q⇣i � �(Zi)

���
⇣���p�1/2Q⇣j � �(Zj)

���+ k�(Zj)k
⌘

+ k�(Zi)k
���p�1/2Q⇣i � �(Zi)

��� ,

where orthogonality of Q has been used, and the final inequality uses Cauchy-Schwarz and the
triangle inequality for the k · k norm. Combining the above estimate with (19), the bound:

max
i2[n]

k�(Zi)k2  max
v2Z

k�(v)k2 = max
v2Z

↵(v, v)

 sup
j�1

max
v2Z

E[|Xj(v)|2]  sup
j�1

max
v2Z

E[|Xj(v)|2q]1/q (20)

and A4 completes the proof of the second claim of the theorem.

Proposition 2. Assume the model in section 2.1 satisfies assumptions A3-A5, and let ' and q be as in
A3 and A4. Then there exists a constant C(q,') depending only on q and ' such that for any � > 0,

P
✓

max
1i<jn

��p�1 hYi,Yji � ↵(Zi, Zj)
�� � �

����Z1, . . . , Zn

◆

 1

�q
1

pq/2
n(n� 1)

2
C(q,')M(q,X,E,S) (21)

19

where

M(q,X,E,S) := sup
k�1

max
v2Z

E
⇥
|Xk(v)|2q

⇤

+ E [|E11|q]
✓
sup
p�1

max
v2Z

kS(v)kqop
◆
sup
k�1

max
v2Z

E [|Xk(v)|q|]

+ E
h
|E11|2q

i
sup
p�1

max
v2Z

kS(v)k2qop .

Proof. Fix any i, j such that 1  i < j  n. Consider the decomposition:

p�1 hYi,Yji � ↵(Zi, Zj) =
4X

k=1

�k

where

�1 := p�1 hX(Zi),X(Zj)i � ↵(Zi, Zj)

�2 := p�1 hX(Zi),S(Zj)Eji
�3 := p�1 hX(Zj),S(Zi)Eii
�4 := p�1 hS(Zi)Ei,S(Zj)Eji

The proof proceeds by bounding E[|�k|q|Z1, . . . , Zn] for k = 1, . . . , 4. Writing �1 as

�1 =
1

p

pX

k=1

�1,k, �1,k := Xk(Zi)Xk(Zj)� E [Xk(Zi)Xk(Zj)|Z1, . . . , Zn] .

we see that �1 is a sum p random variables each of which is conditionally mean zero given Z1, . . . , Zn.
Noting that the two collections of random variables {Z1, . . . , Zn} and {X(v); v 2 V} are independent
(as per the description of the model in section 2.1), under assumption A3 we may apply a moment
inequality for '-mixing random variables [51][Lemma 1.7] to show that there exists a constant
C1(q,') depending only on q,' such that

E [|�1|q|Z1, . . . , Zn]

 C1(q,')

8
<

:
1

pq

pX

k=1

E [|�1,k|q|Z1, . . . , Zn] +

1

p2

pX

k=1

E
⇥
|�1,k|2

��Z1, . . . , Zn

⇤
!q/2

9
=

;

 C1(q,')

(
1

pq

pX

k=1

E [|�1,k|q|Z1, . . . , Zn] +
1

pq/2
1

p

pX

k=1

E [|�1,k|q|Z1, . . . , Zn]

)

 2C1(q,')
1

pq/2
sup
k�1

E [|�1,k|q|Z1, . . . , Zn]

 2q+1C1(q,')
1

pq/2
sup
k�1

max
v2Z

E
⇥
|Xk(v)|2q

⇤
, (22)

where second inequality holds by two applications of Jensen’s inequality and q � 2, and the final
inequality uses the fact that for a, b � 0, (a+ b)q  2q�1(aq + bq), the Cauchy-Schwartz inequality,
and the independence of {Z1, . . . , Zn} and {X(v); v 2 V}.

For �2, we have

�2 :=
1

p

pX

k=1

�2,k, �2,k := [S(Zj)
>X(Zi)]kEjk,

where [·]k denotes the kth element of a vector. Since the three collections of random variables,
{Z1, . . . , Zn}, {X(v); v 2 Z} and {E1, . . . ,En} are mutually independent, and the elements
of each vector Ej 2 Rp are mean zero and independent, we see that given {Z1, . . . , Zn} and
{X(v); v 2 V}, �2 is a simple average of conditionally independent and conditionally mean-zero

20

random variables. Applying the Marcinkiewicz–Zygmund inequality we find there exists a constant
C2(q) depending only on q such that

E [|�2|q|Z1, . . . , Zn,X(v); v 2 Z]

 C2(q)E

2

4
�����
1

p2

pX

k=1

|�2,k|2
�����

q/2
������
Z1, . . . , Zn,X(v); v 2 Z

3

5 . (23)

Noting that q � 2 and applying Minkowski’s inequality to the r.h.s. of (23), then using the indepen-
dence of {Z1, . . . , Zn}, {X(v); v 2 Z} and {E1, . . . ,En} and the i.i.d. nature of the elements of
the vector Ej ,

E

2

4
�����
1

p2

pX

k=1

|�2,k|2
�����

q/2
������
Z1, . . . , Zn,X(v); v 2 Z

3

5
2/q

 1

p2

pX

k=1

E [|�2,k|q|Z1, . . . , Zn,X(v); v 2 Z]
2/q

=
1

p2

pX

k=1

E
h��[S(Zj)

>X(Zi)]k
��q |Ejk|q

���Z1, . . . , Zn,X(v); v 2 Z
i2/q

=
1

p2
E [|E11|q]

2/q
pX

k=1

��[S(Zj)
>X(Zi)]k

��2

=
1

p2
E [|E11|q]

2/q ��S(Zj)
>X(Zi)

��2

 1

p2
E [|E11|q]

2/q
max
v2Z

kS(v)k2op kX(Zi)k2 .

Substituting into (23) and using the tower property of conditional expectation we obtain:

E [|�2|q|Z1, . . . , Zn]

 1

pq/2
E [|E11|q] max

v2Z
kS(v)kqop

1

pq/2
E [kX(Zi)kq|Z1, . . . , Zn]

=
1

pq/2
E [|E11|q] max

v2Z
kS(v)kqop E

2

4

1

p

pX

k=1

|Xk(Zj)|2
!q/2

������
Z1, . . . , Zn

3

5

 1

pq/2
E [|E11|q] max

v2Z
kS(v)kqop E

"
1

p

pX

k=1

|Xk(Zj)|q
�����Z1, . . . , Zn

#

 1

pq/2
E [|E11|q] max

v2Z
kS(v)kqop sup

k�1
max
v2Z

E [|Xk(v)|q|] (24)

where the second inequality holds by Jensen’s inequality (recall q � 2). Since the r.h.s. of (24) does
not depend on i or j, the same bound holds with �2 on the l.h.s. replaced by �3.

Turning to �4, we have

�4 :=
1

p
hS(Zi)Ei,S(Zj)Eji =

1

p

X

1k,`p

�4,k,`, �4,k,` := EikEj`[S(Zi)
>S(Zj)]k`.

Noting that i 6= j, and that the elements of Ei and Ej are independent, identically distributed, and
mean zero, we see that �4 is a sum of p2 random variables which are all conditionally mean zero and
conditionally independent given Z1, . . . , Zn. The Marcinkiewicz–Zygmund inequality gives:

E [|�4|q|Z1, . . . , Zn]  C2(q)E

2

64

������
1

p2

pX

1k,`s

|�4,k,`|2
������

q/2
�������
Z1, . . . , Zn

3

75 . (25)

21

Applying Minkowski’s inequality to the r.h.s. of (25),

E

2

64

������
1

p2

X

1k,`p

|�4,k,`|2
������

q/2
�������
Z1, . . . , Zn

3

75

2/q

 1

p2

X

1k,`p

E [|�4,k,`|q|Z1, . . . , Zn]
2/q

=
1

p2

X

1k,`p

E
h
|Eik|q |Ej`|q

��[S(Zi)
>S(Zj)]k`

��q
���Z1, . . . , Zn

i2/q

=
1

p2
E [|E11|q]

4/q
X

1k,`p

��[S(Zi)
>S(Zj)]k`

��2

 1

p2
E
h
|E11|2q

i2/q
max
u,v2Z

kS(u)>S(v)k2F,

where the final inequality holds by Jensen’s inequality. Substituting back into (25) and using
kS(u)>S(v)kF  p1/2kS(u)>S(v)kop  p1/2kS(u)kopkS(v)kop, we obtain:

E [|�4|q|Z1, . . . , Zn]  C2(q)
1

pq/2
E
h
|E11|2q

i
max
u2Z

kS(u)k2qop. (26)

Combining (22), (24) and (26) using the fact that for a, b � 0, (a+ b)q  2q�1(aq + bq), we find
that there exists a constant C(q,') depending only on q and ' such that

E
h��p�1 hYi,Yji � ↵(Zi, Zj)

��q
���Z1, . . . , Zn

i

 C(q,')
1

pq/2
M(q,X,E,S),

where M(q,X,E,S) is defined in the statement of the proposition and is finite by assumptions A4
and A5. By Markov’s inequality, for any � � 0,

P
� ��p�1 hYi,Yji � ↵(Zi, Zj)

�� � �
��Z1, . . . , Zn

�
 1

�q
C(q,')

1

pq/2
M(q,X,E,S) (27)

and the proof is completed by a union bound:

P
✓

max
1i<jn

��p�1 hYi,Yji � ↵(Zi, Zj)
�� < �

����Z1, . . . , Zn

◆

= P

0

@
\

1i<jn

��p�1 hYi,Yji � ↵(Zi, Zj)
�� < �

������
Z1, . . . , Zn

1

A

= 1� P

0

@
[

1i<jn

��p�1 hYi,Yji � ↵(Zi, Zj)
�� � �

������
Z1, . . . , Zn

1

A

� 1� n(n� 1)

2

1

�q
C(q,')

1

pq/2
M(q,X,E,S).

C.3 Interpretation of merge heights and exact tree recovery

Here we expand on the discussion in section 3.3 and provide further interpretation of merge heights
and algorithm 1. In particular our aim is to clarify in what circumstances algorithm 1 will asymptoti-
cally correctly recover underlying tree structure. For ease of exposition throughout section C.3 we
assume that Z are the leaf vertices of T .

As a preliminary we note the following corollary to theorem 1: assuming b > 0, if one takes
as input to algorithm 1 the true merge heights, i.e. (up to bijective relabelling of leaf vertices)

22

↵̂(·, ·) := m(·, ·) = ↵(·, ·), where n = |Z|, then theorem 1 implies that algorithm 1 outputs a
dendrogram D whose merge heights m̂(·, ·) are equal to m(·, ·) (up to bijective relabeling over
vertices). This clarifies that with knowledge of m(·, ·), algorithm 1) constructs a dendrogram which
has m(·, ·) as its merge heights.

We now ask for more: if once again m(·, ·) is taken as input to algorithm 1, under what conditions is
the output tree T̂ equal to T (upto bijective relabelling of vertices)? We claim this holds when T is a
binary tree and that all its non-leaf nodes have different heights. We provide a sketch proof of this
claim, since a complete proof involves many tedious and notationally cumbersome details.

To remove the need for repeated considerations of relabelling, suppose T = (V, E) is given, then
w.l.o.g. relabel the leaf vertices of T as {1}, . . . , {|Z|} and relabel each non-leaf vertex to be the
union of its children. Thus each vertex is some subset of [|Z|].
Now assume that T is a binary tree and that all its non-leaf nodes have different heights. Note that
|V| = 2|Z|� 1, i.e., there are |Z|� 1 non-leaf vertices. The tree T is uniquely characterized by a
sequence of partitions P̃0, . . . , P̃|Z|�1 where P̃0 := {{1}, . . . , {|Z|}}, and for m = 1, . . . , |Z|� 1,
P̃m is constructed from P̃m�1 by merging the two elements of P̃m�1 whose most recent common
ancestor is the mth highest non-leaf vertex (which is uniquely defined since we are assuming no two
non-leaf vertices have equal heights).

To see that in this situation algorithm 1, with ↵̂(·, ·) := m(·, ·) and n = |Z| as input, per-
forms exact recovery of the tree, i.e., T̂ = T , it suffices to notice that the sequence of
partitions P0, . . . , P|Z|�1 constructed by algorithm 1 uniquely characterizes T̂ , and moreover
(P̃0, . . . , P̃|Z|�1) = (P0, . . . , P|Z|�1). The details of this last equality involve simple but tedious
substitutions of m(·, ·) in place of ↵̂(·, ·) in algorithm 1, so are omitted.

D Further details of numerical experiments and data preparation

All real datasets used are publicly available under the CC0: Public domain license. Further, all
experiments were run locally on a laptop with an integrated GPU (Intel UHD Graphics 620).

D.1 Simulated data

For each v 2 V , X1(v), . . . , Xp(v) are independent and identically distributed Gaussian random
variables with:

Xj(1) ⇠ N(Xj(6), 5),

Xj(2) ⇠ N(Xj(6), 2),

Xj(3) ⇠ N(Xj(6), 2),

Xj(4) ⇠ N(Xj(7), 0.5),

Xj(5) ⇠ N(Xj(7), 7),

Xj(6) ⇠ N(Xj(8), 2),

Xj(7) ⇠ N(Xj(8), 1),

Xj(8) ⇠ N(0, 1),

for j = 1, . . . , p.

D.2 20 Newsgroups

The dataset originates from [29], however, the version used is the one available in the Python
package ‘scikit-learn‘ [38]. Each document is pre-processed in the following way: generic stopwords
and e-mail addresses are removed, and words are lemmatised. The processed documents are then
converted into a matrix of TF-IDF features. Labels can be found on the 20 Newsgroups website
http://qwone.com/~jason/20Newsgroups/, but are mainly intuitive from the title of labels,
with full stops separating levels of hierarchy. When using PCA a dimension of r = 34 was selected
by the method described in appendix A.

The following numerical results complement those in the main part of the paper.

23

http://qwone.com/~jason/20Newsgroups/

Table 2: Kendall ⌧b ranking performance measure, for Algorithm 1 and the 20 Newsgroups data set.
The mean Kendall ⌧b correlation coefficient is reported alongside the standard error (numerical value
shown is the standard error⇥103). This numerical results are plotted in figure 4 below.

Data Input p = 500 p = 1000 p = 5000 p = 7500 p = 12818

Newsgroups Y1:n 0.026 (0.55) 0.016 (1.0) 0.13 (2.2) 0.17 (2.5) 0.26 (2.9)
⇣1:n 0.017 (0.72) 0.047 (1.2) 0.12 (1.9) 0.15 (2.5) 0.24 (2.6)

Figure 4: Performance of Algorithm 1 for the 20 Newsgroups data set as a function of number of
TF-IDF features, p, with n fixed. See table 1 for numerical values and standard errors.

D.3 Zebrafish gene counts

These data were collected over a 24-hour period (timestamps available in the data), however, the
temporal aspect of the data was ignored when selecting a sub-sample. To process the data, we
followed the steps in [47] which are the standard steps in the popular SCANPY [50] – a Python
package for analysing single-cell gene-expression data to process the data. This involves filtering out
genes that are present in less than 3 cells or are highly variable, taking the logarithm, scaling and
regressing out the effects of the total counts per cell. When using PCA a dimension of r = 29 was
selected by the method described in appendix A.

D.4 Amazon reviews

The pre-processing of this dataset is similar to that of the Newsgroup data except e-mail addresses
are no longer removed. Some data points had a label of ‘unknown’ in the third level of the hierarchy,
these were removed from the dataset. In addition, reviews that are two words or less are not included.
When using PCA a dimension of r = 22 was selected by the method described in appendix A.

D.5 S&P 500 stock data

This dataset was found through the paper [8] with the authors code used to process the data. The
labels follow the Global Industry Classification Standard and can be found here: [3]. The return on
day i of each stock is calculated by

returni =
pcli � popi

popi
,

where popi and pcli is the respective opening and closing price on day i. When using PCA a dimension
of r = 10 was used as selected by the method described in appendix A.

24

D.6 Additional method comparison

Table 3 reports additional method comparison results, complementing those in table 1 which con-
cerned only the average linkage function (noting UPGMA is equivalent to using the average linkage
function with Euclidean distances). In table 3 we also compare to Euclidean and cosine distances
paired with complete and single linkage functions. To aid comparison, the first column (average
linkage with the dot product) is the same as in table 1. In general, using complete or single linkage
performs worse for both Euclidean and cosine distances. The only notable exception being a slight
improvement on the simulated dataset.

Table 3: Kendall ⌧b ranking performance measure. For the dot product method, i.e., algorithm 1, Y1:n

as input corresponds to using ↵̂data, and ⇣1:n corresponds to ↵̂pca. The mean Kendall ⌧b correlation
coefficient is reported alongside the standard error (numerical value shown is the standard error
⇥103).

Data Input Average linkage Complete linkage Single linkage
Dot product Euclidean Cosine Euclidean Cosine

Newsgroups Y1:n 0.26 (2.9) 0.022 (0.87) -0.010 (0.88) -0.0025 (0.62) -0.0025 (0.62)
⇣1:n 0.24 (2.6) 0.0041 (1.2) 0.036 (1.2) -0.016 (2.0) 0.067 (1.5)

Zebrafish Y1:n 0.34 (3.4) 0.15 (2.2) 0.24 (3.2) 0.023 (3.0) 0.032 (2.9)
⇣1:n 0.34 (3.4) 0.17 (2.0) 0.30 (3.4) 0.12 (2.8) 0.15 (3.2)

Reviews Y1:n 0.15 (2.5) 0.019 (0.90) 0.023 (1.0) 0.0013 (0.81) 0.0013 (0.81)
⇣1:n 0.14 (2.4) 0.058 (1.5) 0.063 (1.8) 0.015 (1.2) 0.038 (1.0)

S&P 500 Y1:n 0.34 (10) 0.33 (10) 0.33 (10) 0.17 (10) 0.17 (10)
⇣1:n 0.36 (9.4) 0.32 (10) 0.31 (10) 0.36 (13) 0.39 (12)

Simulated Y1:n 0.86 (1) 0.55 (8.7) 0.84 (2.0) 0.55 (8.7) 0.84 (2.0)
⇣1:n 0.86 (1) 0.55 (8.7) 0.84 (2.0) 0.55 (8.7) 0.84 (2.0)

Table 4: Kendall ⌧b ranking performance measure. The mean Kendall ⌧b correlation coefficient is
reported alongside the standard error (numerical value shown is the standard error⇥103).

Data Input UPGMA with dot product *dissimilarity* UPGMA with Manhattan distance

Newsgroups Y1:n -0.0053 (0.24) -0.0099 (1.3)
⇣1:n 0.0029 (0.33) 0.052 (1.6)

Zebrafish Y1:n 0.0012 (0.13) 0.16 (2.4)
⇣1:n 0.00046 (0.12) 0.050 (2.8)

Reviews Y1:n -0.0005 (0.29) 0.0018 (0.44)
⇣1:n -0.0015 (0.41) 0.061 (1.3)

S&P 500 Y1:n 0.0026 (7.7) 0.37 (9.4)
⇣1:n 0.0028 (7.5) 0.39 (11)

Simulated Y1:n -0.0026 (1.6) 0.55 (8.7)
⇣1:n -0.0023 (1.8) 0.84 (2)

E Understanding agglomerative clustering with Euclidean or cosine distances
in our framework

E.1 Quantifying dissimilarity using Euclidean distance

The first step of many standard variants of agglomerative clustering such as UPGMA and Ward’s
method is to find and merge the pair of data vectors which are closest to each other in Euclidean
distance. From the elementary identity:

kYi �Yjk2 = kYik2 + kYjk2 � 2hYi,Yji,
we see that, in general, this is not equivalent to finding the pair with largest dot product, because of
the presence of the terms kYik2 and kYjk2. For some further insight in to how this relates to our

25

(a) (b)

Figure 5: Illustration of how maximising merge height m(·, ·) may or may not be equivalent to
minimising distance d(·, ·), depending on the geometry of the dendrogram. (a) Equivalence holds (b)
Equivalence does not hold.

modelling and theoretical analysis framework, it is revealing to the consider the idealised case of
choosing to merge by maximising merge height m(·, ·) versus minimising d(·, ·) (recall the identities
for m and d established in lemma 1). Figure 5 shows two simple scenarios in which geometry of
the dendrogram has an impact on whether or not maximising merge height m(·, ·) is equivalent
to minimising d(·, ·). From this example we see that, in situations where some branch lengths are
disproportionately large, minimising d(·, ·) will have different results to maximising m(·, ·).
UPGMA and Ward’s method differ in their linkage functions, and so differ in the clusters they create
in practice after their respective first algorithmic steps. UPGMA uses average linkage to combine
Euclidean distances, and there does not seem to be a mathematically simple connection between this
and algorithm 1, except to say that in general it will return different results. Ward’s method merges
the pair of clusters which results in the minimum increase in within-cluster variance. When clusters
contain equal numbers of samples, this increase is equal to the squared Euclidean distance between
the clusters’ respective centroids.

E.2 Agglomerative clustering with cosine distance is equivalent to an instance of algorithm 1

The cosine ‘distance’ between Yi and Yj is:

dcos(i, j) := 1� hYi,Yji
kYikkYjk

.

In table 1 we show results for standard agglomerative clustering using dcos as a measure of dissimi-
larity, combined with average linkage. At each iteration, this algorithm works by merging the pair of
data-vectors/clusters which are closest with respect to dcos(·, ·), say u and v merged to form w, with
dissimilarities between w and the existing data-vectors/clusters computed according to the average
linkage function:

dcos(w, ·) :=
|u|
|w|dcos(u, ·) +

|v|
|w|dcos(v, ·). (28)

This procedure can be seen to be equivalent to algorithm 1 with input ↵̂(·, ·) = 1� dcos(·, ·). Indeed
maximising 1�dcos(·, ·) is clearly equivalent to minimizing dcos(·, ·), and with ↵̂(·, ·) = 1�dcos(·, ·)
the affinity computation at line 6 of algorithm 1 is:

↵̂(w, ·) := |u|
|w| ↵̂(u, ·) +

|v|
|w| ↵̂(v, ·)

=
|u|
|w| [1� dcos(u, ·)] +

|v|
|w| [1� dcos(v, ·)]

=
|u|+ |v|

|w| � |u|
|w|dcos(u, ·)�

|u|
|w|dcos(v, ·)

= 1�

|u|
|w|dcos(u, ·) +

|u|
|w|dcos(v, ·)

�
,

where on the r.h.s. of the final equality we recognise (28).

26

E.3 Using cosine similarity as an affinity measure removes multiplicative noise

Building from the algorithmic equivalence identified in section E.2, we now address the theoretical
performance of agglomerative clustering with cosine distance in our modelling framework.

Intuitively, cosine distance is used in situations where the magnitudes of data vectors are thought not
to convey useful information about dissimilarity. To formalise this idea, we consider a variation of
our statistical model from section 2.1 in which:

• Z are the leaf vertices of T , |Z| = n, and we take these vertices to be labelled Z = {1, . . . , n}
• X is as in section 2.1, properties A1 and A2 hold, and it is assumed that for all v 2 Z ,
p�1E[kX(v)k2] = 1.

• the additive model (1) is replaced by a multiplicative noise model:
Yi = �iX(i), (29)

where �i > 0 are all strictly positive random scalars, independent of other variables, but otherwise
arbitrary.

The interpretation of this model is that the expected square magnitude of the data vector Yi is entirely
determined by �i, indeed we have

1

p
E[kYik2|�i] = �2

i
1

p
E[kX(i)k2] = �2

i h(i) = �2
i ,

where h is as in section 2.1. We note that in this multiplicative model, the random vectors Ei and
matrices S(v) from section 2.1 play no role, and one can view the random variables Z1, . . . , Zn as
being replaced by constants Zi = i, rather than being i.i.d.

Now define:
↵̂cos(i, j) :=

hYi,Yji
kYikkYjk

= 1� dcos(i, j).

Theorem 3. Assume that the model specified in section E.3 satisfies A3 and for some q � 2,
supj�1 maxv2Z E[|Xj(v)|2q] < 1. Then

max
i,j2[n],i 6=j

|↵(i, j)� ↵̂cos(i, j)| 2 OP

✓
n2/q

p
p

◆
.

Proof. The main ideas of the proof are that the multiplicative factors �i,�j in the numerator ↵̂cos(i, j)
cancel out with those in the denominator, and combined with the condition p�1E[kX(v)k2] = 1 we
may then establish that ↵(i, j) and ↵̂cos(i, j) are probabilistically close using similar arguments to
those in the proof of proposition 2.

Consider the decomposition:

↵(i, j)� ↵̂cos(i, j) = ↵(i, j)� p�1hX(i),X(j)i
p�1/2kX(i)kp�1/2kX(j)k

= ↵(i, j)� 1

p
hX(i),X(j)i (30)

+
1
p hX(i),X(j)i

p�1/2kX(i)kp�1/2kX(j)k

h
p�1/2kX(i)kp�1/2kX(j)k � 1

i
. (31)

Applying the Cauchy-Schwartz inequality, and adding and subtracting p�1/2kX(j)k and 1 in the
final term of this decomposition leads to:

max
i,j2[n],i 6=j

|↵(i, j)� ↵̂cos(i, j)|

 max
i,j2[n],i 6=j

����↵(i, j)�
1

p
hX(i),X(j)i

���� (32)

+max
i2[n]

���p�1/2kX(i)k � 1
��� (33)

+

✓
1 + max

i2[n]

���p�1/2kX(i)k � 1
���
◆
max
j2[n]

���p�1/2kX(j)k � 1
��� . (34)

27

The proof proceeds by arguing that the term (32) is in OP
�
n2/q/

p
p
�
, and the terms (33) and (34)

are in OP
�
n1/q/

p
p
�
, where we note that this asymptotic concerns the limit as n2/q/

p
p ! 0.

In order to analyse the term (32), let P̃ denote the probability law of the additive model for Y1, . . . ,Yn

in equation (1) in section 2.1, in the case that S(v) = 0 for all v 2 Z . Let Ẽ denote the associated
expectation. Then for any � > 0 and i, j 2 [n], i 6= j,

P
✓����↵(i, j)�

1

p
hX(i),X(j)i

���� > �

◆

= P̃
✓����

1

p
hYi,Yji � ↵(Zi, Zj)

���� > �

����Z1 = 1, . . . , Zn = n

◆

=
Ẽ
h
I{Z1 = 1, . . . , Zn = n}P̃

⇣��� 1p hYi,Yji � ↵(Zi, Zj)
��� > �

���Z1, . . . , Zn

⌘i

P̃({Z1 = 1, . . . , Zn = n})
.

The conditional probability on the r.h.s of the final equality can be upper bounded using the inequal-
ity (27) in the proof of proposition 2, and combined with the same union bound argument used
immediately after (27), this establishes (32) is in OP

�
n2/q/

p
p
�

as required.

To show that (33) and (34) are in OP
�
n1/q/

p
p
�
, it suffices to show that maxi2[n]

��p�1/2kX(i)k � 1
��

is in OP
�
n1/q/

p
p
�
. By re-arranging the equality: (|a|� 1)(|a|+ 1) = |a|2 � 1, we have

���p�1/2kX(i)k � 1
��� 

��p�1kX(i)k2 � 1
�� =

������
p�1

pX

j=1

�j(i)

������
, (35)

where �j(i) := |Xj(i)|2�1. Thus under the model from section E.3, p�1
Pp

j=1 �j(i) is an average
of p mean-zero random variables, and by the same arguments as in the proof of proposition 2 under the
mixing assumption A3 and the assumption of the theorem that supj�1 maxv2Z E[|Xj(v)|2q] < 1,
combined with a union bound, we have

max
i2[n]

��p�1kX(i)k2 � 1
�� 2 OP(n

1/q/
p
p).

Together with (35) this implies maxi2[n]

��p�1/2kX(i)k � 1
�� is in OP

�
n1/q/

p
p
�

as required, and
that completes the proof.

E.4 Limitations of our modelling assumptions and failings of dot-product affinities

As noted in section 5, algorithm 1 is motivated and theoretically justified by our modelling assump-
tions, laid out in sections 2-3 and E.3. If these assumptions are not well matched to data in practice,
then algorithm 1 may not perform well.

The proof of lemma 3 shows that, as a consequence of the conditional independence and martingale-
like assumptions, A1 and A2, ↵(u, v) � 0 for all u, v. By theorems 2 and 3, ↵̂data, ↵̂pca approximate
↵ (at the vertices Z) under the additive model from section 2.1, and ↵̂cos approximates ↵ under
the multiplicative model from section E.3. Therefore if in practice ↵̂data(i, j), ↵̂pca(i, j) or ↵̂cos(i, j)
are found to take non-negligible negative values for some pairs i, j, that is an indication that our
modelling assumptions may not be appropriate.

Even if the values taken by ↵̂data(i, j), ↵̂pca(i, j) or ↵̂cos(i, j) are all positive in practice, there could
be other failings of our modelling assumptions. As an academic but revealing example, if instead of
(1) or (29), the data were to actually follow a combined additive and multiplicative noise model, i.e.,

Yi = �iX(Zi) + S(Zi)Ei,

then in general neither ↵̂data, ↵̂pca nor ↵̂cos would approximate ↵ as p ! 1.

28

	Introduction
	Model and algorithm
	Statistical model, tree and dendrogram
	Algorithm

	Performance Analysis
	Merge distortion is upper bounded by affinity estimation error
	Affinity estimation error vanishes with increasing dimension and sample size
	Interpretation

	Numerical experiments
	Comparing algorithm 1 to existing methods
	Simulation study of dot product estimation with and without PCA dimension reduction
	Comparing dot product affinities and Euclidean distances for the 20 Newsgroups data

	Limitations and opportunities
	Wasserstein dimension selection
	Implementation using scikit-learn
	Proofs and supporting theoretical results
	Proof of Theorem 1
	Supporting material and proof for Theorem 2
	Interpretation of merge heights and exact tree recovery

	Further details of numerical experiments and data preparation
	Simulated data
	20 Newsgroups
	Zebrafish gene counts
	Amazon reviews
	S&P 500 stock data
	Additional method comparison

	Understanding agglomerative clustering with Euclidean or cosine distances in our framework
	Quantifying dissimilarity using Euclidean distance
	Agglomerative clustering with cosine distance is equivalent to an instance of algorithm 1
	Using cosine similarity as an affinity measure removes multiplicative noise
	Limitations of our modelling assumptions and failings of dot-product affinities

