Under review as a conference paper at ICLR 2021

Appendix for
STATUS-QUO POLICY GRADIENT IN MULTI-AGENT REINFORCEMENT
LEARNING

A DESCRIPTION OF ENVIRONMENTS USED FOR DYNAMIC SOCIAL
DILEMMAS

h"s *

whs
‘ LEFT / RIGHT / ‘ *
UP /DOWN
“He &

-
w4 5 - -
wzZs
r ‘ LEFT / RIGHT / ‘
UP/DOWN
() (b)

Figure 5: Illustration of two agents (Red and Blue) playing the dynamic games: (a) Coin Game and
the (b) Stag-Hunt Game

A.1 CoIN GAME

Figure [5aillustrates the agents playing the Coin Game. The agents, along with a Blue or Red coin,
appear at random positions in a 3 x 3 grid. An agent observes the complete 3 x 3 grid as input and
can move either left, right, up, or down. When an agent moves into a cell with a coin, it picks the
coin, and a new instance of the game begins where the agent remains at their current positions, but
a Red/Blue coin randomly appears in one of the empty cells. If the Red agent picks the Red coin,
it gets a reward of 41, and the Blue agent gets no reward. If the Red agent picks the Blue coin, it
gets a reward of +1, and the Blue agent gets a reward of —2. The Blue agent’s reward structure is
symmetric to that of the Red agent.

A.2 STAG-HUNT

Figure [5b] shows the illustration of two agents (Red and Blue) playing the visual Stag Hunt game.
The STAG represents the maximum reward the agents can achieve with HARE in the center of the
figure. An agent observes the full 7 x 7 grid as input and can freely move across the grid in only
the empty cells, denoted by white (yellow cells denote walls that restrict the movement). Each agent
can either pick the STAG individually to obtain a reward of 44, or coordinate with the other agent
to capture the HARE and obtain a better reward of +25.

B GameDistill: ARCHITECTURE AND PSEUDO-CODE

B.1 GameDistill: ARCHITECTURE DETAILS

GameDistill consists of two components.

The first component is the state sequence encoder that takes as input a sequence of states (input
sizeis 4 X 4 x 3 x 3, where 4 x 3 x 3 is the dimension of the game state, and the first index in the
state input represents the data channel where each channel encodes data from both all the different
colored agents and coins) and outputs a fixed dimension feature representation. We encode each state
in the sequence using a common trunk of 3 convolution layers with relu activations and kernel-size
3 x 3, followed by a fully-connected layer with 100 neurons to obtain a finite-dimensional feature
representation. This unified feature vector, called the trajectory embedding, is then given as input to

12

e X N N R W N -

L < P =
N R W N =D

Under review as a conference paper at ICLR 2021

the different prediction branches of the network. We also experiment with different dimensions of
this embedding and provide results in Figure [6]

The two branches, which predict the self-reward and the opponent-reward (as shown in Figure [I),
independently use this trajectory embedding as input to compute appropriate output. These branches
take as input the trajectory embedding and use a dense hidden layer (with 100 neurons) with linear
activation to predict the output. We use the mean-squared error (MSE) loss for the regression tasks
in the prediction branches. Linear activation allows us to cluster the trajectory embeddings using a
linear clustering algorithm, such as Agglomerative Clustering (Friedman et al., [2001). In general,
we can choose the number of clusters based on our desired level of granularity in differentiating out-
comes. In the games considered in this paper, agents broadly have two types of policies. Therefore,
we fix the number of clusters to two.

We use the Adam (Kingma & Bal [2014)) optimizer with learning-rate of 3e — 3. We also experiment
with K-Means clustering in addition to Agglomerative Clustering, and it also gives similar results.
We provide additional results of the clusters obtained using GameDistill in Appendix [D}

The second component is the oracle network that outputs an action given a state. For each oracle
network, we encode the input state using 3 convolution layers with kernel-size 2 x 2 and relu activa-
tion. To predict the action, we use 3 fully-connected layers with relu activation and the cross-entropy
loss. We use L2 regularization, and Gradient Descent with the Adam optimizer (learning rate le —3)
for all our experiments.

B.2 GameDistill: PSEUDO-CODE

Algorithm 1: Pseduo-code for GameDistill

Collect list of episodes with (r1,72) > 0 from random game play;
for agents do
Create dataset: {list Episodes, myRewards, opponent Rewards} < {[1,[],[1};
for episode in episodes do
for (s,a,1s’) in episode do
if » > 0 then
add sequence of last three states leading up to s’ to listEpisodes ;
add respective rewards to myRewards and opponentRewards
end
end
end
Train Sequence Encoding Network;
Train with NetLoss;
Cluster embeddings using Agglomerative Clustering;
Map episode to clusters from Step 14;
Train oracle for each cluster.

end

C SQLoss: EVOLUTION OF COOPERATION

Equation [6] (Section [2.3.2) describes the gradient for standard policy gradient. It has two
terms. The logrm!(u}|s;) term maximises the likelihood of reproducing the training trajectories
[(s¢—1,ut—1,7¢—1), (St, ut,7¢), (St41, Utt1,7¢+1), - - - |- The return term pulls down trajectories that
have poor return. The overall effect is to reproduce trajectories that have high returns. We refer to

this standard loss as Loss for the following discussion.

Lemma 1. For agents trained with random exploration in the IPD, Q. (D|s;) > Q,(C|s;) for all
St.

13

Under review as a conference paper at ICLR 2021

Let Qr(at|st) denote the expected return of taking a; in s;. Let V;(s;) denote the expected return
from state s;.

Q- (C|CC) =0.5[(—1) + V(CC)] + 0.5[(—3) + V(CD)]
Q-(C|CC) = =2+ 0.5[V(CC) + V(CD)]
Q- (D|CC) = =14 0.5[V(DC) + V;(DD)]
Q-(C|CD) = =2+ 0.5[V,(CC) + V,(CD)]
Qx(D|CD) = —1 + 0.5[V;(DC) + Vi (DD)])
Q- (C|DC) = =24 0.5[V(CC) + V(CD)]
Q- (D|DC) = —1 + 0.5[V4(DC) + V4 (DD)]
Q- (C|DD) = =2+ 0.5[V,(CC) + V(CD)]
Q- (D|DD) = -1+ 0.5[V;(DC) + V,(DD)]

Since V,(CC) = V,(CD) = V(DC) = V(DD) for randomly playing agents, Q,(D|s:) >

Qr(C|sy) for all s;.

Lemma 2. Agents trained to only maximize the expected reward in IPD will converge to mutual
defection.

This lemma follows from Lemma [T} Agents initially collect trajectories from random exploration.
They use these trajectories to learn a policy that optimizes for a long-term return. These learned
policies always play D as described in Lemmal[T}

Equation 7 describes the gradient for SQ Loss. The logm! (u}_,|s;) term maximises the likelihood
of taking w;—; in s;. The imagined episode return term pulls down trajectories that have poor
imagined return.

Lemma 3. Agents trained on random trajectories using only SQ Loss oscillate between C'C' and
DD.

For IPD, s; = (u}_;,u?_ ;). The SQLoss maximises the likelihood of taking u;_1 in s; when the

return of the imagined trajectory Ry (t;) is high.

Consider state CC, with u;_, = C. 7(D|CC) is randomly initialised. The SQLoss term reduces
the likelihood of 7! (C|C'C)) because Ry (%) < 0. Therefore, 7' (D|CC) > n' (C|CC).

Similarly, for C'D, the SQLoss term reduces the likelihood of 7'(C|CD). Therefore,
7}(D|CD) > «'(C|CD). For DC, Ry(t1) = 0, therefore 7' (D|DC) > 7'(C|DC). Interest-
ingly, for DD, the SQ Loss term reduces the likelihood of 7w (D|D D) and therefore 7' (C|DD) >
~1(D|DD).

Now, if s¢ is CC or DD, then s;11 is DD or C'C and these states oscillate. If s; is C' D or DC, then
S¢+1 18 DD, 5449 1s CC and again C'C and DD oscillate. This oscillation is key to the emergence
of cooperation as explained in section 2.3.1.

Lemma 4. For agents trained using both standard loss and SQ Loss, 7(C|CC) > w1 (D|CC).

For C'D, DC, both the standard loss and SQ Loss push the policy towards D. For DD, with
sufficiently high x, the SQLoss term overcomes the standard loss and pushes the agent towards
C. For CC, initially, both the standard loss and SGQ) Loss push the policy towards D. However,
as training progresses, the incidence of C'D and DC' diminish because of SQ)Loss as described
in Lemma 3. Therefore, V;(CD) ~ V,(DC) since agents immediately move from both states
to DD. Intuitively, agents lose the opportunity to exploit the other agent. In equation 9, with
Vz(CD) ~ V,(DC), Q(C|CC) > Qr(D|CC) and the standard loss pushes the policy so that
m(C|CC) > w(D|CC). This depends on the value of k. For very low values, the standard loss
overcomes S@)Loss and agents defect. For very high values, SQLoss overcomes standard loss,
and agents oscillate between cooperation and defection. For moderate values of « (as shown in our
experiments), the two loss terms work together so that 7(C|CC) > «(D|CC).

14

Under review as a conference paper at ICLR 2021

D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

D.1 INFRASTRUCTURE FOR EXPERIMENTS

We performed all our experiments on an AWS instance with the following specifications. We use
a 64-bit machine with Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz installed with Ubuntu
16.04LTS operating system. It had a RAM of 189GB and 96 CPU cores with two threads per core.
We use the TensorFlow framework for our implementation.

D.2 SQLOSS

For our experiments with the Selfish and Status-Quo Aware Learner (SQ Learner), we use policy
gradient-based learning to train an agent with the Actor-Critic method (Sutton & Barto, 2011)). Each
agent is parameterized with a policy actor and critic for variance reduction in policy updates. During
training, we use o = 1.0 for the REINFORCE and = 0.5 for the imaginative game-play. We use
gradient descent with step size, § = 0.005 for the actor and § = 1 for the critic. We use a batch
size of 4000 for Lola-PG (Foerster et al.} [2018)) and use the results from the original paper. We use
a batch size of 200 for SQ Learner for roll-outs and an episode length of 200 for all iterated matrix
games. We use a discount rate () of 0.96 for the Iterated Prisoners’ Dilemma, Iterated Stag Hunt,
and Coin Game. For the Iterated Matching Pennies, we use v = 0.9 to be consistent with earlier
works. The high value of vy allows for long time horizons, thereby incentivizing long-term rewards.
Each agent randomly samples « from U € (1, z) (z = 10, discussed in Appendix at each step.

D.3 GameDistill CLUSTERING

Figures[6|and [7]show the clusters obtained for the state sequence embedding for the Coin Game and
the dynamic variant of Stag Hunt respectively. In the figures, each point is a t-SNE projection of the

1

. 5 . B . p o
° ’ . 0 .‘),.-“ﬁ}' 0 ’h“ﬁ, -
g
\\ o4 i LU F
e N -40 -40
N v — v o
- - -50 =25 o 25 50 75 =50 =25 0 25 50 75

(a) 3-dimensional (b) 4-dimensional

.
11
38

%&. =
o AW e T
Y

% ‘“ :40 -40

(c) 10-dimensional (d) 100-dimensional

Figure 6: Representation of the clusters learned by GameDistill for Coin Game. Each point is a
t-SNE projection of the feature vector (in different dimensions) output by the Game Distill network
for an input sequence of states. For each of the sub-figures, the figure on the left is colored based on
actual rewards obtained by each agent (r1|r2). The figure on the right is colored based on clusters
as learned by GameDistill. GameDistill correctly identifies two types of trajectories, one for
cooperation and the other for defection.

feature vector (in different dimensions) output by the GameDistill network for an input sequence

15

Under review as a conference paper at ICLR 2021

1

-50 =25 0 25 50 75 -50 =25 0 25 50 75

Figure 7: t-SNE plot for the trajectory embeddings obtained from the Stag Hunt game along with
the identified cooperation and defection clusters.

of states. For each of the sub-figures, the figure on the left is colored based on actual rewards
obtained by each agent (r1|r2). The figure on the right is colored based on clusters, as learned by
GameDistill. GameDistill correctly identifies two types of trajectories, one for cooperation and
the other for defection for both the games Coin Game and Stag-Hunt.

Figure[6 also shows the clustering results for different dimensions of the state sequence embedding
for the Coin Game. We observe that changing the size of the embedding does not have any effect on
the results.

D.4 ILLUSTRATIONS OF TRAINED ORACLE NETWORKS FOR THE COIN GAME

Figure [8|shows the predictions of the oracle networks learned by the Red agent using GameDistill
in the Coin Game. We see that the cooperation oracle suggests an action that avoids picking the coin
of the other agent (the Blue coin). Analogously, the defection oracle suggests a selfish action that
picks the coin of the other agent.

Action predicted by
the Cooperation
Oracle

0/0

the Defection
Oracle

‘ I Action predicted by
-

“’“ +1/-2

Figure 8: Illustrative predictions of the oracle networks learned by the Red agent using
GameDistill in the Coin Game. The numbers in red/blue show the rewards obtained by the Red
and the Blue agent respectively. The cooperation oracle suggests an action that avoids picking the
coin of the other agent while the defection oracle suggests an action that picks the coin of the other
agent

16

Under review as a conference paper at ICLR 2021

D.5 RESULTS FOR THE ITERATED STAG HUNT (ISH) USING SQLOSS

We provide the results of training two SQ Learner agents on the Iterated Stag Hunt game in Fig-
ure[9] In this game also, SQ Learner agents coordinate successfully to obtain a near-optimal NDR
value (0) for this game.

— ndr agento 1[' | R "' ' T

= ndr_agent1

0 50 100 150 200 250 300 350 400

Figure 9: NDR values for SQ) Learner agents in the ISH game. SQ Learner agents coordinate
successfully to obtain a near optimal NDR value (0) for this game.

D.6 S@QLoss: EFFECT OF z ON CONVERGENCE TO COOPERATION

We explore the effect of the hyper-parameter z (Section [2)) on convergence to cooperation, we also
experiment with varying values of z. In the experiment, to imagine the consequences of maintaining
the status quo, each agent samples r; from the Discrete Uniform distribution U{1, z}. A larger
value of z thus implies a larger value of x; and longer imaginary episodes. We find that larger z
(and hence k) leads to faster cooperation between agents in the IPD and Coin Game. This effect
plateaus for z > 10. However varying and changing . across time also increases the variance in
the gradients and thus affects the learning. We thus use x = 10 for all our experiments.

D.7 SQLEARNER: EXPLOITABILITY AND ADAPTABILITY

Given that an agent does not have any prior information about the other agent, it must evolve its
strategy based on its opponent’s strategy. To evaluate an S Learner agent’s ability to avoid ex-
ploitation by a selfish agent, we train one SQ) Learner agent against an agent that always defects
in the Coin Game. We find that the SQ Learner agent also learns to always defect. This persistent
defection is important since given that the other agent is selfish, the SQ Learner agent can do no
better than also be selfish. To evaluate an SQ) Learner agent’s ability to exploit a cooperative agent,
we train one SQ Learner agent with an agent that always cooperates in the Coin Game. In this case,
we find that the SQ Learner agent learns to always defect. This persistent defection is important
since given that the other agent is cooperative, the SQ) Learner agent obtains maximum reward by
behaving selfishly. Hence, the SQ Learner agent is both resistant to exploitation and able to exploit,
depending on the other agent’s strategy.

E REPRODUCIBILITY CHECKLIST

We follow the reproducibility checklist from| (Pineaul [2019) and include further details here. For all
the models and algorithms we have included details that we think would be useful for reproducing
the results of this work.

e For all models and algorithms presented, check if you include:

1. A clear description of the mathematical setting, algorithm, and/or model: Yes. The
algorithm is described in detail in Section 2] with all the loss functions used for train-
ing being clearly defined. The details of the architecture, hyperparameters used and
other algorithm details are given in Section[3] Environment details are explained in
the sections that they are introduced in.

17

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf~

Under review as a conference paper at ICLR 2021

An analysis of the complexity (time, space, sample size) of any algorithm: No. We do
not include a formal complexity analysis of our algorithm. However, we do highlight
the additional computational steps (in terms of losses and parameter updates) in Sec-
tion 2] over standard multi-agent independently learning RL algorithms that would be
needed in our approach.

. A link to a downloadable source code, with specification of all dependencies, including

external libraries.: Yes. We have made the source code available at|Code|(2019).

e For any theoretical claim, check if you include:

1.

2.
3.

A statement of the result: NA. Our paper is primarily empirical and we do not have
any major theoretical claims. Hence this is Not Applicable.

A clear explanation of any assumptions: NA.
A complete proof of the claim: NA.

e For all figures and tables that present empirical results, check if you include:

1.

2.

10.

11.

A complete description of the data collection process, including sample size: NA. We
did not collect any data for our work.

A link to a downloadable version of the dataset or simulation environment: Yes. We
have made the source code available at/Code|(2019)).

. An explanation of any data that were excluded, description of any pre-processing step:

NA. We did not perform any pre-processing step.

. An explanation of how samples were allocated for training / validation / testing: Yes.

For GameDistill the details regarding data used for training is given in Section [2.4]
The number of iterations used for learning (training) by SQ Learner is given in Fig-
ures [3a} 3b] and Fal The details of the number of runs and the batch sizes used for
various experiments are given in Section 3]

. The range of hyper-parameters considered, method to select the best hyper-parameter

configuration, and specification of all hyper-parameters used to generate results:
Yes. We did not do any hyper-parameter tuning as part of this work. All the hyper-
parameters that we used are specified in Section

. The exact number of evaluation runs: Yes. For all our environments, we repeat the

experiment 20 times. For evaluation of performance, we use an average of 200 Monte
Carlo estimates. We state this in Section [3] We do not need to fix any seed. In order
to test reproducibility use the seed in the code. The details of the number of runs and
the batch sizes used for various experiments are also given here.

. A description of how experiments were run: Yes. The README with instructions on

how to run the experiments along with the source code is provided at/Code{(2019).

. A clear definition of the specific measure or statistics used to report results: Yes.

We plot the mean and the one standard deviation region over the mean for all our
numerical experiments. This is stated in Section 3]

Clearly defined error bars: Yes. We plot the mean and the one standard deviation
region over the mean for all our numerical experiments. This is stated in Section 3}

A description of results with central tendency (e.g. mean) & variation (e.g. stddev):
Yes. We plot the mean and the one standard deviation region over the mean for all our
numerical experiments. This is stated in Section 3]

A description of the computing infrastructure used: Yes. We have provided this detail
in the Supplementary material in Section [D.1]

18

	Introduction
	Approach
	Social Dilemmas modeled as Iterated Matrix Games
	Learning Policies in Iterated Matrix Games: The Selfish Learner
	Learning Policies in Iterated Matrix Games: The Status-Quo Aware Learner (SQLoss)
	SQLoss: Intuition
	SQLoss: Formulation

	Learning policies in Dynamic Non-Matrix Games using SQLoss and GameDistill

	Experimental Setup
	Iterated Matrix Game Social Dilemmas
	Iterated dynamic game Social Dilemmas

	Results
	Learning optimal policies in Iterated Matrix Dilemmas
	Learning Optimal Policies in Iterated Dynamic Dilemmas

	Conclusion
	Description of Environments Used for Dynamic Social Dilemmas
	Coin Game
	Stag-Hunt

	GameDistill: Architecture and pseudo-code
	GameDistill: Architecture Details
	GameDistill: Pseudo-Code

	SQLoss: Evolution of Cooperation
	Experimental Details and Additional Results
	Infrastructure for Experiments
	SQLoss
	GameDistill Clustering
	Illustrations of Trained Oracle Networks for the Coin Game
	Results for the Iterated Stag Hunt (ISH) using SQLoss
	SQLoss: Effect of z on convergence to cooperation
	SQLearner: Exploitability and Adaptability

	Reproducibility Checklist

