
A Discussion397

Our benchmark brings a new perspective to classification, as we not only seek models that predict398

accurately, but also predict for the right reasons. Assessing model performance using accuracy alone399

can obscure key misconceptions held by models, which may only become apparent when models400

are deployed to new domains at test time. Moreover, design decisions such as training strategy and401

architecture may affect the degree to which spurious features are relied upon, as observed in [26];402

this dataset and accompanying benchmark can reveal these model differences. Finally, we emphasize403

the need to understand model behavior under “bad” data; that is, images where the object of interest404

is not centered or large, unlike most cases. With models becoming increasingly data hungry, it is405

inevitable that some portion of the data will not capture objects in ideal conditions. Further, certain406

objects simply are not well suited to be captured prominently (i.e. large and centered) in square407

photos. Figuring out how to learn to recognize objects from these suboptimal data conditions will408

be an important challenge to extend the impressive performance of deep classifiers from standard409

datasets to many more realistic settings.410

With Hard ImageNet, the community can evaluate the capacity of any ImageNet trained model to411

faithfully learn challenging objects, and also explore how going beyond single class label annotations412

can lead to improved image classifiers. While segmentation masks are expensive to collect, procedures413

that are much more automated already exist [35], and we envision newer ones are likely to emerge414

with time. Also, the procedure with which we ranked images was largely automated, indicating that415

these types of annotations are by no means prohibitively expensive. We hope Hard ImageNet can416

lead to new perspectives on both training and evaluation paradigms for image classification.417

B Distinguishing Hard ImageNet from Related Challenge Datasets418

Our work is inspired by other challenge datasets that focus on improving deep classifiers by aggre-419

gating edge cases where usually strong performance falters. We highlight two datasets in particular:420

ObjectNet [3] and ImageNet-A [16]. Both of these datasets include samples where spurious corre-421

lations are broken, leading to dramatically lower accuracy. Further, these datasets consist of clean422

images, as opposed to other challenge sets that make synthetic changes [40, 30].423

We now outline some key distinctions between Hard ImageNet and these datasets. First, ObjectNet424

and ImageNet-A only contain test sets. We include a training set in Hard ImageNet because the425

central goal of our work is for the community to develop new algorithms that can learn to recognize426

objects without relying on spurious cues, even when the spurious signals are very strong in the427

training data. To this end, we also introduce two new forms of annotation (object segmentation and428

image ranking), with hopes of challenging the community to explore training paradigms beyond429

single-label supervision. Lastly, model performance on ObjectNet and ImageNet-A is evaluated using430

accuracy. In contrast, we present three alternative evaluation metrics leveraging the richer annotations431

of Hard ImageNet. In spirit, our evaluation is orthogonal to the traditional metric of accuracy, as432

we shift the focus from what models predict to how they predict. We believe that the reliability and433

trustworthiness of deep models hinges on their use of appropriate reasoning structures. That is, if434

a model predicts correctly but for the wrong reasons, the model may act erratically when deployed.435

We greatly value the inspiring work of these earlier challenge datasets and recognize the similarities of436

their work to our contribution, though we believe that Hard ImageNet may open the door to understand-437

ing deep classifier performance, specifically with respect to spurious feature reliance, in a new light.438

C Improving Models with Hard ImageNet Annotations439

In this section, we begin the exploration of harnessing Hard ImageNet’s annotations for improved440

model classification. Namely, we leverage object segmentations and image rankings to reduce model441

reliance on spurious features while performing Hard ImageNet classification. We focus our study on442

finetuned models pretrained on ImageNet, using ResNet50 and DeiT (Small) as in Section 4. We443
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keep features fixed during finetuning, only optimizing the parameters of a new final layer for the444

15-way Hard ImageNet classification.445

We employ two approaches for mitigating spurious feature reliance. [35] propose Core Risk446

Minimization (CoRM) as an alternative to ERM when segmentations of core (i.e. not spurious)447

regions are available; Hard ImageNet’s object segmentations fulfill this prerequisite. Specifically,448

the objective of CoRM is to minimize classification error over the distribution of images with noise449

applied to non-core regions, so that the optimal classifier predicts correctly even when spurious450

features are corrupted. In that work, random noising, where small amounts of Gaussian noise are451

added to non-core regions with probability p = 0.5, and saliency regularization, where the `2 norm of452

the gradient on non-core pixels is added to the classification loss, were applied in tandem to improve453

relative core sensitivity (an analagous metric to RFS). [20] propose Deep Feature Reweighting454

(DFR), in which retraining a final linear layer using a balanced dataset reduces spurious feature455

reliance. The balanced dataset consists of a subset of the training data containing an equal portion of456

samples with and samples without spurious features, essentially breaking spurious correlations that457

impede generalization to minority groups. Using Hard ImageNet’s image rankings, we extract the458

top and bottom 100 images for each class to form the spurious-balanced subset.459

Method Ablation Accuracies (#) RFS (") Saliency (")

CoRM DFR None (") Gray Gray BBox Tile � = 0.25 � = 0.5 IoU

Finetuned DeiT (Small)

7 7 96.79 84.22 80.48 81.15 �0.19 �0.35 20.90

3 7 96.39 81.02 78.74 80.75 0.02 �0.19 21.57
7 3 96.66 81.28 77.01 77.94 �0.20 �0.33 21.63
3 3 96.52 82.35 77.01 77.81 �0.10 �0.29 21.99

Finetuned ResNet50

7 7 94.25 75.94 69.39 67.38 �0.18 �0.27 18.44

3 7 92.91 76.20 69.12 68.32 �0.08 �0.27 20.43
7 3 94.39 73.53 67.51 66.71 �0.27 �0.35 18.39
3 3 91.31 72.59 63.64 63.90 �0.23 �0.31 20.35

Table 1: Final layer retraining improves faithful learning on Hard ImageNet. Results shown for
entire benchmark under two different training approaches: i) Core Risk Minimization (CoRM) via
random background noising and saliency regularization, and ii) deep feature reweighting (DFR)
using a spurious-balanced training subset. We also report results for the combination of the two
approaches and ordinary finetuning (as a baseline) under two architectures. Relative Foreground
Sensitivity (RFS) is evaluated under two `1 noise levels, indicated by �. Saliency refers to saliency

alignment as measured by intersection over union (IoU).

Table 1 shows that these two methods can considerably reduce model reliance on spurious features,460

improving numbers across all metrics in our benchmark. Between the two approaches, CoRM appears461

to lead to more improvement in saliency alignment and RFS, while DFR yields beter results for462

ablation. Combining CoRM and DFR leads to even better performance with respect to accuracies463

under ablation. While improvements are at times small, we note that in these experiments, the vast464

majority of model parameters are left unchanged, as we only train a new final layer. We leave the465

door open to new approaches for improving the faithful learning of Hard ImageNet objects, including466

training models from scratch.467

D Evaluation of Additional Pretrained Models468

In addition to the transformer and convolutional neural networks (DeiT and ResNet50) explored in469

the main text, we evaluate four other deep classifiers. Namely, we investigate Swin Transformer[24],470

ConViT[6], DenseNet161[18], and VGG16 [33]. As seen in table 2, our results on new models471
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corroborate the findings of the main text. Specifically, we see that across models, classifying Hard472

ImageNet objects leads to higher accuracy under ablation, lower RFS scores, and lower saliency473

alignment, compared to classifying RIVAL20 objects. This implies that certain properties inherent to474

the data in Hard ImageNet makes it far more challenging to learn to classify without heavily relying475

on spurious cues.476

Model Ablation Accuracies (#) RFS (") Saliency (")

None (") Gray Gray BBox Tile � = 0.25 IoU

Hard ImageNet

Swin 80.59 61.19 59.97 59.30 �0.01 4.28
Convit 79.92 60.11 59.97 55.93 �0.12 22.37

Densenet161 57.68 37.06 30.05 29.65 �0.26 18.10
Vgg16 71.83 46.63 41.37 42.86 �0.53 16.80

RIVAL20

Swin 86.96 30.13 25.18 18.50 0.44 6.64
Convit 85.74 21.64 25.28 16.68 0.31 35.89

Densenet161 78.67 7.58 3.03 2.73 0.40 43.95
Vgg16 76.74 6.88 3.03 3.44 0.80 30.08

Hard ImageNet - RIVAL20

Swin �6.36 31.05 34.80 40.80 �0.45 �2.36
Convit �5.82 38.47 34.69 39.25 �0.43 �13.53

Densenet161 �20.98 29.48 27.02 26.92 �0.67 �25.85
Vgg16 �4.91 39.76 38.34 39.42 �1.32 �13.27

Table 2: Evaluation of additional pretrained models (no finetuning). All models have higher accuracies
under ablation, lower RFS scores, and lower saliency alignment on Hard ImageNet than RIVAL20.

E Overview of Salient ImageNet477

We refer readers to [35] for all details related to the Salient ImageNet-1M data and collection478

procedure. For completeness, we offer brief discussion of the methods relevant to this paper. Namely,479

we elaborate on the way in which class-feature pairs were annotated as core or spurious (i.e. a480

neural feature was annotated as detecting input regions that were spurious with respect to the given481

class label). Recall that the motivation for closer inspection of Hard ImageNet classes was that all482

class-feature pairs for Hard ImageNet were annotated as spurious.483

Salient ImageNet annotations first correspond to labeling 5 neural features as core or spurious for484

each of the 1000 ImageNet classes, resulting in 5000 class-feature pair binary annotations (core or485

spurious). Neural feature refers to the nodes in the penultimate layer of a deep classifier. Specifically,486

the neural features of an `2 adversarially trained ResNet50 were inspected because adversarially487

robust models have been observed to be more interpretable. For each class, the five neural features488

annotated were those that contribute the most to the logit of the given class. The average contribution489

of a neural feature to a class can easily be computed as the product of the average feature activation490

and the weight of the linear layer connecting the feature to the class logit.491

Of the 5000 class-feature pairs annotated, 4370 (87.4%) were deemed to be core, signifying that492

in most cases, the model effectively learned to use the appropriate features in classification. For493

342 classes, at least one feature was annotated as spurious. However, only a small minority (the494

15 classes comprising Hard ImageNet) had all five features annotated as spurious. This motivated495

our hypothesis that there were inherent properties of the data in Hard ImageNet that leads standard496

supervised classification training algorithms to result in models that rely on spurious cues. We do497

not claim that the classes in Hard ImageNet have the strongest spurious cues, nor do we claim that498

models do not rely on spurious cues for classes outside of Hard ImageNet; only that strong spurious499
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Figure 11: Example visualizations of the five most important neural features for the class Dog Sled
used in Salient ImageNet annotation. From left to right, the features may be described as focusing on
trees, dogs, dogs, dogs in snow, and trees.

cues exist in Hard ImageNet, and studying this data can yields insights related to causes and solutions500

for image classifier reliance on spurious features.501

There are three key visualization techniques applied in order to reveal the function a neural feature502

serves over images from some class: natural images that highly activate the feature, ii. neural503

activation maps which highlight the input region responsible for the neural feature activation, and iii.504

feature attacks that optimize the input image to amplify feature activation. These visualizations are505

shown for the top five activating images per class-feature pair to five human annotators, who each506

vote to describe the focus of the feature as either on the main object (core) or a separate object or the507

background (spurious). The final annotation of the class feature pair is determined by majority vote.508

We show the top activating image, its neural activation map, and a feature attack performed on it for509

each of the five features annotated for the Dog Sled and Patio classes in Figures 11 and 12 respectively.510

Visualizations for all Hard ImageNet classes (as well as the rest of ImageNet) can be viewed here:511

www.salient-imagenet.cs.umd.edu.512

Lastly, we note that Salient ImageNet-1M also consists of soft segmentations masks for the objects513

for all images, except for those belonging to Hard ImageNet classes. This discrepancy is because the514

soft segmentation masks are constructed from the neural activation maps of core features. Thus, since515

Hard ImageNet classes have no annotated core features, Salient ImageNet-1M lacks segmentations516

for those classes. Therefore, the segmentations collected for the Hard ImageNet dataset effectively517

complete Salient ImageNet-1M. These masks can be potentially leveraged to train more reliable518

models, though this is an open research problem with little existing work, since annotations of this519

kind (segmentations) have not been prevalent for classification at scale until these recent works.520

F Inspecting Prediction Confidence on Ablated Images521

One may argue that it is unreasonable to fault a model for classifying an ablated image to its original522

class, particularly when it is not an option to predict some other more suitable class. After all, the523

model simply returns probabilities that an image belongs to each class, and chooses the class that is524

most likely. A similar metric would be to inspect prediction confidence instead of accuracy. This525
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Figure 12: Example visualizations of the five most important neural features for the class Patio used
in Salient ImageNet annotation. From left to right, the features may be described as focusing on
windows, house, furniture, window jambs, and patio chairs.

way, we no longer directly fault a model for still predicting the original class, but still reward the526

calibration of a model. That is, it may be more reasonable to hope a model at least predicts an ablated527

image to the true class with far less confidence.528

We explore this related metric in this section so to validate our ablation analyses using the more529

canonical (though potentially slightly more problematic) accuracy measure. Quite simply, we530

aggregate prediction confidences of the true class (not the predicted class) for each ablated image, and531

view the average confidence. As figure 13 shows, we very closely corroborate the findings obtained532

when inspecting accuracy under ablation.533

While using accuracy under ablation directly may be imperfect, we find that it is an intuitive measure534

that may be more easily interpretable than our noise or saliency based metrics. Furthermore, accuracy535

is the standard evaluation metric for classification, and is highly correlated with true class prediction536

confidence, which as detailed above, reveals analogous findings and is less affected by the fact that537

desired classification behavior on ablated images is unclear. Thus, we present accuracy in the main538

text, though we argue that either accuracy or true class prediction confidence under ablation can be539

used in practice. We provide implementations for both metrics.540

G Datasheet541

We now share more detail on our dataset, following the Datasheets for Datasets protocol [10]. Access542

all code and data at the following link: mmoayeri.github.io/HardImageNet.543

G.1 Motivation544

Hard ImageNet was created to assess and improve image classifier capacity to learn to objects545

that commonly occur with strong spurious cues. We hypothesized that despite high classification546

accuracy, models were incorrectly learning the objects corresponding to Hard ImageNet classes.547

Going beyond single class-label annotations allowed for quantitative demonstration of this undesirable548

(and otherwise undetectable) behavior, as well as opening the door to new ways of improving models549

on these challenging objects. The dataset was created by academics (namely from the University of550
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Figure 13: Probability (confidence) of true class under ablation. Confidence drops much less when
Hard ImageNet objects are ablated than when RIVAL10 objects are ablated, exactly as observed for
accuracy under ablation.

Maryland) for academic purposes, leveraging crowd annotations through Amazon’s Mechanical Turk551

platform. Data collection was funded by an AWS Machine Learning Research Award.552

G.2 Composition553

Each instance consists of an image with a label and a binary segmentation mask corresponding to554

the class object. Instances either fall in the training or validation split, which is consistent with555

ImageNet’s split. Images in the training split additionally are ranked within their respective class by556

the strength of spurious cues present, as determined in an automated procedure leveraging the neural557

feature annotations of Salient ImageNet-1M [35]. Instances in the validation split are unlikely to be558

noisy, as they consolidate five separate repetitions of annotations, while training set segmentations559

may be noisier, though quality is generally ensured via qualification exams and attention checks.560

Generally, the dataset does not relate to people, though many images do contain people (in fact, they561

are a common spuriuos cue). It is unlikely that the data can be used to identify any individuals are562

subpopulations, and we note that these pitfalls are inherited from the standard benchmark dataset563

ImageNet, from where Hard ImageNet images are drawn. Nonetheless, we advise caution in using564

and sharing images containing faces or otherwise prominently displaying people; we attempted to565

avoid including such images in our figures to the best of our ability.566

G.3 Collection Process567

Images were drawn directly from ImageNet. Segmentations were collected via Amazon Mechanical568

Turk. Image rankings were computed by inspecting the activations of particular neural features569

in a `2 adversarially trained ResNet50 using an attack budget of ✏ = 3 (see [37] for more detail).570

Segmentations were validated in the sense that quality was monitored via attention checks, where571

annotators consistently achieved high IoUs with ground truth segmentations (average IoU of 0.76).572

Validation set segmentations were validated across one another, by having five separate annotation573

19



rounds and taking a pixel-wise majority to obtain final segmentations. The people involved in data574

collection were the first author and roughly 50 crowdworkers. The crowdworkers were paid 0.2 per575

segmentation, amounting to about $12 to $16 per hour. Workers were also eligible for bonuses of576

$1, $3 or $7 for submitting 100, 250, or 500 segmentations respectively. Workers could collect a577

maximum of two bonuses: one for training images and one for validation images. We did not obtain578

IRB approval as our data annotation does not constitute human subject research as defined in federal579

regulation 45 CFR 46.102. Specifically, because we do not ask the human annotators information580

about themselves, they are not technically human subjects. We consulted our institution’s IRB to581

confirm that our study is exempt from approval. Nonetheless, we closely followed principles learned582

from the history of human subject research, such as providing informed consent (see 15), ensuring the583

rights of the participants, anonymizing responses, keeping work entirely transparent, voluntary, and584

justly compensated. We strived to uphold the highest ethical standards in our procedures and actively585

mainatin a healthy environment for our workers. Annotations were collected in a two week span.586

G.4 Preprocessing/cleaning/labeling587

The only data cleaning performed was the consolidation of multiple rounds of annotations for588

validation set segmentations via pixel-wise majority vote.589

G.5 Uses590

The dataset has not been used yet. We have developed a suite of evaluation metrics and demonstrated591

the utility of the dataset to improve model performance. We hope new training methods can be devel-592

oped leveraging the richer annotations of our dataset (relative to standard single label classification593

datasets). The dataset is not intended to replace large scale diverse datasets (e.g. ImageNet), but594

instead focuses on the specific subproblem of faithful learning despite strong spurious cues. Data and595

evaluation code will be publicly available and accessible at mmoayeri.github.io/HardImageNet.596

G.6 Distribution597

The dataset will be publicly distributed immediately upon submission. There are no limitations on598

use of this data.599

G.7 Maintenance600

The authors will maintain the dataset website and answer any question regarding usage. We encourage601

questions to be asked via GitHub, though the authors can be contacted directly. The primary author602

can be emailed at mmoayeri@umd.edu. There are no current plans to release new versions to this603

dataset, though if that does occur, old versions will remain archived.604

H Mechanical Turk Forms605

We now provide screenshots for all Amazon Mechanical Turk Forms used to facilitate data collection606

in our study. For full transparency, we leave copies these forms up on the free analog of Mechanicla607

Turk so that any interested parties can view and familiarize themselves with the annotation platform.608

The forms are listed at the following link: https://workersandbox.mturk.com/requesters/609

ATCCTSC7WNN97/projects. Figures 14, 15, and 16 showw the forms for the qualification exam,610

information/consent phase, and full data collection respectively.611
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Figure 14: Qualification exam.
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Figure 15: Consent Form. Workers who passed the qualification exam then moved on to sign a
consent form, where the purpose of their work was explained, common mistakes were corrected, and
an extra payment was awarded. This phase is intended to create an active dialogue between data
annotators and collectors. We received many inquiries and enthusiastic bits of feedback.
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Figure 16: Example task for full data collection phase, only accessible to workers who passed the
qualification exam and signed the consent form.
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