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Neural Stochastic Differential Equations530

Supplementary Material531

A Implementation and Modeling Details532

All numerical experiments were implemented using the python library JAX [58], in order to take533

advantage of its automatic differentiation and just-in-time compilation features. We use Python534

3.8.5 for the experiments and train all our models on a laptop computer with an Intel i9-9900 3.1535

GHz CPU with 32 GB of RAM and a GeForce RTX 2060, TU106. We provide the code for all536

experiments in the supplementary material with instruction on how to reproduce the results.537

Training optimizer hyperparameters. We use the Adam optimizer [63] for all optimization prob-538

lems. This includes when training the neural ODE model, the probabilistic ensemble model, and the539

system identification-based model. We use the default hyperparameters for the optimizer, except for540

the learning rate, which we linearly decay from 0.01 to 0.001 over the first 10000 gradient steps. We541

use early stopping criteria for all our experiments. We use a batch size of 512 for the neural ODE,542

SDE models, and the system identification-based model. Instead, we use a batch size of 32 for the543

ensembles of probabilistic models.544

Model design. As specified in Section 4, across experiments, we use the same batch size and545

learning rate scheduler for the optimizer, the same neural network architecture for ηψ, hφ, and µζ ,546

and the same parameters np, λdata, λgrad, λsc. Specifically, we parametrize ηψ as a feedforward neural547

network with swish activation functions and 2 hidden layers of size 32 each while the parameters548

W, b of hφ are matrices of size corresponding to the dimension of σmax. We parametrize µζ as549

a feedforward neural network with tanh activation functions and 2 hidden layers of size 8 each.550

For the loss function penalty terms, we use λdata = 1.0 for the data loss, λgrad = 0.01 for the551

zero-gradient loss, and λsc = 0.01 for the strong convexity loss. We use np = 1 for training552

the neural SDE model. For the ensembles of probabilistic models, we always use 5 models in the553

ensemble, where each model is a Gaussian with mean and variance parametrized by feedforward554

neural networks with 2 hidden layers of size 64 each and silu activation functions.555
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B Supplementary Mass-Spring-Damper Details and Results556

The equations of motion are given by the state x := [x1, x2] = [q, q̇] with ẋ1 = x2 and mẋ2 =557

−bx2 − kx1, where q is the position of the mass, m is the mass, b is the damping coefficient, and k558

is the spring constant. We consider the case where m = 1, b = 0.5, and k = 1; all the quantities559

being in the international system of units.560

Data collection: Noisy and extremely scarce amount of data. We collect two dataset D1 and561

D2 of 5 trajectories each. The trajectories are obtained from the known dynamics with the initial562

positions randomly sampled in the top right quadrant [0.1, 0.1]× [0.05, 0.15] forD1 and in the more563

broad region [−0.1, 0.1] × [−0.1, 0.1] for D2. Each trajectory has a length of 5 seconds and are564

integrated through the Euler method with a discrete step size of 0.01 second. Besides, we add a565

zero-mean Gaussian noise with standard deviation of [0.005, 0.01] to each state measurement.566

Specifically, the first dataset will be used to show that our neural SDE framework provides inter-567

pretable uncertainty estimate and better prediction accuracy than Gaussian ensemble in the extreme568

low and non-diverse data regime. The second dataset will be used to show that our neural SDE569

model improves prediction accuracy over neural ODE when the dataset is sufficiently diverse even570

in the low data regime.571

Benchmark models. We assume that the dynamics of the mass-spring-system are unknown and572

we use the proposed neural SDE framework to train predictive models from the training dataset D1573

and D2. Our neural SDE model has the following structure:574

dx = [x2, fθ(x)]dt+ σmax � hφ(ηψ(x)) ? dW,

where fθ is a feedforward neural network with tanh activation functions and 2 hidden layers of575

size 4 and 16, respectively. The vector σmax := [σmax
1 , σmax

2 ] = [0.001, 0.02] provides the desired576

diffusion values outside of the training dataset.577

We compare our neural SDE model with a learned neural ODE and an ensemble of probabilistic578

(Gaussian) models. The neural ODE model is trained with the same architecture as the neural SDE579

model without the diffusion term. For training the neural SDE and neural ODE models, we use580

Euler-Maruyama and Euler methods as the SDESolve algorithms, respectively, with a step size of581

0.01 second and a time horizon of 0.5 seconds. Further, we use λµ = 1 for encouraging large strong582

convexity coefficients and a vector of ball radius r = 0.05 to locally enforce the strong convexity583

property.584

Neural SDE generalizes beyond the training dataset.. Figure 5 shows the state evolution of the585

neural SDE and neural ODE models trained on the more diverse dataset D2 and evaluated for some586

initial condition outside the training dataset. We can observe that the SDE generalizes well beyond587

the training dataset and is suitable for long-term prediction. On the plot representing the evolution588

of q̇ as a function of time, we observe that the noise at the beginning is high as we start from a point589

outside of the training dataset. However, as we move closer to the training dataset with q and 1̇590

close to zero, the model becomes more confident and the noise decreases. We emphasize that we591

do not show the trained Gaussian ensemble model on this plot as it just diverge over 0.3 seconds of592

integration time.593
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Figure 9: Prediction of the neural SDE and neural ODE models over a time horizon of 8 seconds for
an initial condition xinit = [0.15,−0.15] outside the training dataset. The neural SDE generalizes
well beyond the training dataset while providing accurate coverage of the groundtruth trajectory and
improving accuracy over the neural ODE model.

15



C Supplementary Experimental Results for the Cartpole Swingup Task594
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Figure 10: Model uncertainty estimates when trained on the on-policy dataset.
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Figure 11: Model uncertainty estimates when trained on the random dataset.
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Figure 12: State evolution predicted by the neural SDE, in comparison with the predictions of the
probabilistic ensemble.
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Figure 13: Mean episodic reward achieved by policies trained using PPO, while using the learned
dynamics models as environment simulators. Training a policy using our proposed neural SDE
model achieves identical reward to as when using the ground truth dynamics, but requires 30×
fewer environment interactions. Left: Policy trained through interactions with the ground truth
environment dynamics. Middle: Policy trained through interactions with the neural SDE (ours).
Right: Policy trained through interactions with a probabilistic ensemble. The horizontal dotted
line illustrates the reward achieved by a model-free approach that interacts directly with the ground
truth dynamics, but whose number of environment interactions is restricted to that used to train the
dynamics models.
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D Supplementary Hexacopter Details and Results595

This numerical experiment shows that with basic knowledge of rigid-body dynamics as prior physics596

knowledge for our neural SDE, we can learn accurate and uncertainty-aware predictive models for597

an hexacopter from only 3 minutes of manual flight. Then, using our learned model in a model598

predictive control (MPC) framework, we show incredible tracking performance on aggressive tra-599

jectories, despite how the reference trajectories push the hexacopter to operate far beyond what was600

seen during training.601

The custom-built hexacopter has a CubePilot Cube Orange as flight controller running PX4602

firmware [61]. The hexacopter is equipped with 920KV brushless motors, 10 inch and two-bladed603

propellers, and it features the DJI F550 frame, which has a 550mm diagonal motor to motor dis-604

tance.605

The full state of the hexacopter is given by x = [px, py, pz, vx, vy, vz, qw, qx, qy, qz, ωx, ωy, ωz],606

where pW = [px, py, pz] is the position in the world frame, vW = [vx, vy, vz] is the velocity in607

the world frame, qWB = [qw, qx, qy, qz] is the unit quaternion representing the body orientation,608

ωB = [ωx, ωy, ωz] is the angular rate in the body frame, and the world and body frames follow609

respectively the traditional East-North-Up and Forward-Left-Up shown in Figure ??. The state is610

estimated at a frequency of 100 Hz using the PX4 implementation of an Extended Kalman Filter611

that fuses the measurements from the onboard IMU and our Vicon motion capture system. Besides612

the CubePilot that handles the state estimation and motor control, the main computational unit is613

a Beelink MINIS 12. Its primary task is to compile our neural SDE models implemented in JAX,614

receive each new state estimate from the CubePilot, solve the stochastic NMPC, and send back the615

resulting motor commands and desired angular rate to the CubePilot for low-level motor control. In616

software in the loop simulation, we could track desired trajectories via sending motor commands617

directly output from our NMPC. However, due to the latency during hardware experiments, we618

instead send desired angular rates from the NMPC to the CubePilot, which then uses a PI controller619

to track the desired angular rates.620
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Figure 15: The velocity magnitude and Euler angles attained by the hexacopter during data collec-
tion. The hexacopter mostly operates in the low speed and low Euler angles regime.

Data Collection: 3 Minutes worth of Data. We are interested in learning a predictive model for621

the hexacopter’s dynamics that can be used to autonomously track aggressive trajectories. To this622

end, we collect 3 system trajectories by manually flying the hexacopter via a radio-based remote623

controller. During data collection, we store the estimated state x at a frequency of 100 Hz, as well624

as the desired input commands u = [u1, u2, u3, u4, u5, u6] sent to the motors. Figure 15 shows the625

velocity magnitude and euler angles from the collected dataset. We obtain a total of 203 seconds626

worth of flight data, with the 3 trajectories being respectively 73, 66, and 64 seconds long. Besides,627

Figure 15 shows that 95% of the collected data corresponds to the hexacopter operating below the628

speed of 1.71m/s, absolute roll of 18◦, absolute pitch of 13◦, and absolute yaw of 24◦. Instead, the629

maximum absolute speed, roll, pitch, and yaw attained are respectively 2.7 m/s, 23◦, 23◦, and 80◦.630

Benchmark Models. We use the proposed neural SDE framework to train a model of the hexa-631

copter dynamics with the limited dataset described above. Our neural SDE model takes advantage632

of the general structure of 6-dof rigid body dynamics while having as unknown terms: The aerody-633

namics forces and moments, the motor command to thrust function, and (geometric) parameters of634
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the system such as the mass and the inertia matrix. Specifically, our physics-informed neural SDE635

model is given by:636

d

 pWvWqWB

ωB

 =


vW

1
mθ

(
qWB

(
Tθ(u) + f res

θ (xfeat)
)
q̄WB

)
+ gW

1
2qWBωB

J−1
θ

(
Mθ(u) +M res

θ (xfeat)
)
− ωB × JθωB

dt+ σmax � hφ(ηψ(xfeat)) ? dW,

(4)

where xfeat = [vW , ωB ], × denotes the cross product, q̄WB is the conjugate of qWB , the product qv637

between a quaternion q and a vector v is define as the quaternion product between q and the 4-D vec-638

tor [0; v], the vector σmax = [1, 1, 1, 10, 10, 10, 1, 1, 1, 1, 50, 50, 50] ·10−3 is the maximum diffusion639

term, the variables mθ and Jθ = diag(Jx
θ , J

y
θ , J

z
θ ) represent the system mass and inertia matrix, the640

neural network functions f res
θ and M res

θ represent the residual forces and moments due to unmod-641

elled and higher order aerodynamic effects, the parametrized functions Tθ and Mθ provide estimate642

of the motor command to thrust and moment values, and gW = [0, 0,−9.81]> is the gravity vector.643

Specifically, we parametrize f res
θ , M res

θ as feedforward neural networks with tanh activation func-644

tions and 2 hidden layers of size 8 and 16, respectively. The motor thrust forces and moments are645

learned via [T>θ ,M
>
θ ]> = [0, 0, T z

θ ,M
x
θ ,M

y
θ ,M

z
θ ]> = Amix

θ [Tmot
θ (u1), . . . , Tmot

θ (u6)]>, where646

Amix
θ is a 6 × 6 matrix of learnable parameters constrained by the geometry of the hexacopter, and647

Tmot
θ is a parametrized function that maps the motor commands to the thrust forces. We use poly-648

nomial functions for Tmot
θ and empirically found that a degree of 1 as Tmot

θ (z) = αθz + βθ works649

particularly well for control purpose compared to higher order polynomials. We emphasize the dif-650

fusion term on pW and qWB are low as their dynamics are known and the noise in the estimation651

will come from integrating the noisy velocity and angular rate components. For training the neural652

SDE model, we use the derivative-free Milstein method as the SDESolve algorithm with a step size653

of 0.05 second and a time horizon of 1 second. Further, we use λsc = 1 for encouraging large strong654

convexity coefficients and a vector of ball radius r = 0.1 to locally enforce the strong convexity655

property.656

To illustrate the prediction accuracy of our model, we compare it with a system identification-based657

approach that uses the same formulation as our SDE model (4) but without the diffusion term and658

the residual neural network terms f res
θ and M res

θ . Precisely, with system identification, we seek to659

identify all the parameters mθ, Jθ, Amix
θ , αθ, and βθ by estimating ẋ from the dataset using finite660

difference and then solving a least square problem to fit the system’s differential equation to the661

data.662

Neural SDE improves prediction accuracy over system identification while also providing un-663

certainty estimates.664

Nonlinear Model Predictive Control. We seek to use our learned SDE for autonomous control665

of the hexacopter. To this end, we employ a receding horizon model predictive control approach.666

Such approach uses the learned SDE model to predict future system trajectories over a fixed time667

horizon, and then optimize the control inputs to minimize a cost function that penalizes the control668

effort and deviation from a reference trajectory. For numerical optimization, we discretize the state669

and control inputs into nr = 20 equal time intervals over the horizon H = 1 second, yielding a670

constrained optimization problem of the following form at each state measurement xt = xinit:671

minimize
u1,...,unr

E
[ nr∑
k=1

(xk − xref
k )Q(xk − xref

k ) + ukRuk

]
(5)

subject to {xp1, . . . , xpnr
}np

p=1 = SDESolve(x0, u; (4)), (6)

x0 = xinit, u1, . . . , unr
∈ [0, 1], (7)

where xref
k is the reference state at time tk = t + kH/nr, we use q − qref to denote the term672

(q(qref)−1)xyz , the positive definite matrices Q and R penalize the deviation from the reference673

trajectory and the control effort, respectively, and np is the number of particles used for the SDE674

solver. For all our experiments, we used np = 1,Q = diag(100, 100, 200, 5, 5, 10, 1, 1, 100, 1, 1, 1),675

and R = diag(1, 1, 1, 1, 1, 1). Besides, we solve the above optimization problem using an adaptive676

learning rate, Nesterov acceleration-based projected gradient descent; all implemented in JAX.677
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Figure 16: Time evolution of the hexacopter state predicted by the learned SDE model and the
vanilla system identification-based model. The quantity R,P, Y denote the roll, pitch, and yaw
angles, respectively, with unit in degrees.

Figure 17 and Figure 18 show the results of our experiments on a circle trajectory and lemniscate678

trajectory, respectively. These reference trajectories are obtained by minimum snap trajectory gen-679

eration ] without any prior knowledge of the hexacopter dynamics. For both trajectories, we show680

the time evolution of the velocity, roll, pitch, yaw, and the tracking accuracy during autonomous681

control. These plots demonstrate the ability of our learned SDE to generalize far beyond what it has682

been trained on. In fact, we can observe that the hexacopter must reach velocity up to 3.6 m/s, roll683

and pitch angles up to 32◦, and yaw angle up to 120◦, in order to track the reference trajectories. We684

emphasize how these values are outside of the training data regime as shown and detailed in the data685

collection section. Despite this, our learned SDE is able to generalize to these extreme conditions686

and achieves a high tracking accuracy of 20 cm and 15 cm for the circle and lemniscate trajectories,687

respectively. We also note that the tracking accuracy is not uniform across the trajectory, and it is688

lower when the hexacopter is moving faster. This is expected as the hexacopter is more difficult to689

control when it is moving faster. Besides, the performance of our control approach is further dis-690

played on the plot showing the evolution of the altitude, where an altitude error of less than 5 cm is691

achieved.692
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Figure 17: Tracking performance achieved on the circle trajectory. The NMPC based on our learned
SDE achieves an RMSE of 20 cm for a 35 seconds trajectory while the hexacopter reaches speed up
to 3.6 m/s, roll and pitch angles up to 32◦, and yaw angle up to 120◦.
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Figure 18: Tracking performance achieved on the lemniscate trajectory. The NMPC based on our
learned SDE achieves an RMSE of 15 cm for a 40 seconds trajectory while the hexacopter reaches
speed up to 3.4 m/s, roll angle up to 32◦, pitch angle up to 19◦, and yaw angle up to 13◦.
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