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In this supplementary material, we provide the detailed approaches to obtain the spatially aligned
nighttime image and event data in Sec. 1. We further provide the details of common space adaptation
on improving optical flow during the training process in Sec. 2.1, and the details of common space that
plays as the intermediate bridge on domain adaption in Sec. 2.2. Then, we present the generalization
of the proposed framework for unseen nighttime scenes in Sec. 3.1 and the robustness of the proposed
framework for different illumination conditions in Sec. 3.2, and validate that the proposed method
could handle the low light scenes in Sec. 3.3 and high speed scenes in Table 3.4. We also provide the
knowledge transfer ability of common space adaptation in Sec. 3.5, and the inference efficiency of
the final nighttime optical flow model in Sec. 3.6. We provide the training details of the proposed
framework in Sec. 3.7. Besides, we describe the limitation of the proposed nighttime optical flow
method in Sec. 3.8. Finally, we provide the qualitative comparison visualization of frame-based
optical flow and event-based optical flow models in Sec. 4.

1 SPATIAL ALIGNMENT BETWEEN NIGHTTIME IMAGE AND EVENT

The prerequisite for boundary adaptation is to obtain the paired nighttime image and event data. The
spatially aligned nighttime image and event can be obtained in two ways. First, we have set up a
physically coaxial optical system with a beam splitter for the event and image sensor, in which the
two modalities are inherently spatial aligned by the shared light path in Fig. 1 (a). Second, we start
from the spatial alignment algorithm perspective by performing a standard stereo rectification, and
then fine-tune the registration error by pixel offset (Tulyakov et al., 2022) which can ensure a reliable
paired nighttime image and event in Fig. 1 (b). It is worth mentioning that, the boundary adaptation
is very robust to slight spatial misalignment, since we have introduced the valid mask V generated by
the attention map that can distinguish the abnormal regions.

2 ABLATION STUDY

2.1 HOW DOES COMMON SPACE ADAPTATION AFFECT TRAINING PROCESS?

In Fig. 2, we visualize the training process of different space adaptations. Without any domain
adaptation in Fig. 2 (a), we train the nighttime optical flow model in an unsupervised manner, where
the training curve fluctuates wildly and optical flow result suffers from degradation. This is because
nighttime degradation breaks the optical flow basic assumption (Yu et al., 2016), thus nighttime optical
flow network cannot effectively learn motion features. In Fig. 2 (b), motion adaptation bypasses the
difficulty of directly estimating optical flow from nighttime images, and transfers knowledge from
daytime to nighttime domain via domain adaptation in motion space, significantly improving the
performance. However, there exist some outliers in the optical flow result due to the large domain
gap. In contrast, common appearance adaptation (seeing Fig. 2 (c)) makes the training process more
robust and improves results, especially smoothing global motion. Common boundary adaptation
(seeing Fig. 2 (d)) further increases the upper limits of optical flow network, and refines the local
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Figure 1: Different registration methods for images and events.
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Figure 2: Visualization of training process during different space adaptations. Motion adaptation
can speed up the convergence of the training curve, and remove most of degradation while there
exist obvious outliers. Appearance-boundary adaptation further optimizes the optimal values of the
training process, smooths global motion and sharpen local boundary.

motion boundary. Overall, common space adaptation benefits to directionally transfer knowledge to
nighttime domain, thus stably training optical flow network and rapidly converging the training curve.

2.2 HOW DOES COMMON SPACE SERVE AS THE INTERMEDIATE BRIDGE?

In Fig. 3, we illustrate four strategies that common reflectance and boundary spaces play as the
intermediate bridges on domain adaptation. In Fig. 3 (a), we directly map visual features to motion
space of daytime, nighttime, and event domains, and then transfer motion knowledge to nighttime
domain via domain adaptation. However, as shown in Fig. 3 (e), the corresponding optical flow suffers
from some outliers due to the large domain gap caused by the intrinsic heterogeneous nature of feature
representation (feature distribution misalignment caused by degradation) between daytime/event
and nighttime domains. In Fig. 3 (b), we introduce common reflectance space as the intermediate
bridge to associate daytime domain and nighttime domain, where we map the visual features of
both domains to the common reflectance space and then align their common features. This method
could transfer motion appearance knowledge from daytime to nighttime domain, thus smoothing the
global motion while suffering from outliers in the boundary regions. Similarly, in Fig. 3 (c), we take
common boundary space as an intermediate bridge to associate nighttime domain and event domain,
and transfer local boundary knowledge from event to nighttime image domain. The corresponding
optical flow is boundary-sharp, but there exist obvious invalid motion regions (seeing the upper-
left-corner region of optical flow). Lastly, we choose common reflectance and boundary space as
two intermediate bridges in Fig. 3 (d), thus transferring global motion appearance knowledge from
daytime to nighttime domain, and local motion boundary knowledge from event to nighttime image
domain. The estimated optical flow is global-smooth and boundary-sharp in Fig. 3 (e).
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Figure 3: Different strategies of common space playing as the intermediate bridge. There are obvious
outliers in the optical flow estimated by (a) motion adaptation. (b) Appearance-motion adaptation with
common reflectance space can smooth global motion while the motion boundary suffers from artifacts.
(c) Motion-boundary adaptation with common boundary space sharpens motion boundary while there
exist patch-level abnormal regions. (d) Appearance-boundary adaptation with common reflectance
and boundary spaces can not only smooth global motion, but also sharpen local boundaries.

3 DISCUSSION

3.1 GENERALIZATION FOR UNSEEN NIGHTTIME SCENES

In Fig. 4, in order to compare the generalization of our method with the competing methods for
unseen nighttime images, we construct the proposed low light frame-event (LLFE) dataset for
generalization experiments, where we have set up a coaxial optical system with a beam splitter for the
event and image sensor (seeing Fig. 1 (a)) to simultaneously collect the paired image and event. We
can conclude that, the proposed method generalizes well for unseen nighttime scenes with various
illumination and consistently outperforms the competing methods.

3.2 ROBUSTNESS FOR VARIOUS ILLUMINATION CONDITIONS

In our framework, common reflectance space is opposite to illumination via retinex model (Fu et al.,
2017; Zhu et al., 2017), thus is robust for various illumination conditions. To demonstrate this, we
conduct the comparison experiments about optical flow performance of state-of-the-art methods
and our method under daytime, dusk and dark conditions in Fig. 5. As for the daytime scenes, all
the optical flow methods work well. When applied in dust scenes, the SOTA method GMA (Jiang
et al., 2021) suffers from artifacts since degradation from dust scenes weakens visual features, thus
matching the inaccurate motion features. The direct visual adaptation method DarkFlow (Zheng et al.,
2020) also loses some motion details, while our method still performs well. As for dark conditions,
there exist obvious outliers in the optical flows estimated by GMA and DarkFlow. On the contrary, the
proposed common space adaptation still works well. Therefore, common space adaptation not only
inherits daytime motion knowledge, but also is robust for nighttime scenes with various illumination.
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Figure 4: Visualization of comparison on unseen nighttime images with various illuminations.

3.3 SEEING MOTION UNDER EXTREMELY LOW LIGHT SCENES

In this work, we exploit event camera (Gallego et al., 2019) with the advantage of high dynamic
range to make up for conventional camera under nighttime scenes, and propose a common boundary
adaptation to transfer boundary knowledge from event domain to nighttime image domain. In Fig.
6, we show the effectiveness of common boundary adaptation for extremely low light conditions.
The state-of-the-art optical method GMA and the direct visual adaptation method DarkFlow cannot
almost estimate the optical flow, while the proposed common boundary adaptation still performs well
under extremely low light conditions. The main reason is, event camera could see motion boundaries
that conventional camera cannot see in extremely low-light regions. Hence, the common boundary
adaptation transfers local boundary knowledge from event domain to nighttime image domain.

3.4 APPLICATION FOR LOW LIGHT AND HIGH SPEED SCENARIOS

Low light and high speed are two of the more challenging scenarios for nighttime scenes. In terms of
imaging mechanism, conventional frame camera records the absolute luminance with a fixed exposure
time via global scan. In nighttime scenes, conventional frame camera would inevitably face a dilemma
between the long exposure time of low-light scenarios and motion blur of high-speed scenarios. In
contrast, the event camera reacts to changes in light intensity, rather than integrating photons during
the exposure time of each frame (Cabriel et al., 2023). Each pixel works independently and returns a
signal only when an intensity change is detected. Compared with the conventional frame camera,
the event camera can sense the dynamic changes with higher temporal resolution (microsecond) and
higher dynamic range, thus compensating for frame camera in nighttime scenes, such as, nighttime
image enhancement (Liang et al., 2023) and nighttime deblurring (Qi et al., 2023).

Similarly, the event camera can also assist the frame camera to learn the motion patterns in nighttime
low-light and high-speed scenarios. To discuss the impact of the event on the optical flow in nighttime
low-light and high-speed scenes, as shown in Table 1, we use the coaxial optical system in Fig. 1 to
collect the spatiotemporally-aligned image sequences and events stream with various illumination
(e.g., 3.5 lux, 9.2 lux and 12.7 lux) and various driving speed (e.g., 50 km/h, 70 km/h and 80 km/h) to
quantitatively compare the optical flow performance. As for the optical flow label, since it is difficult
to directly obtain the dense optical flow labels, we manually mark 100 pairs of corresponding corner
points for each two adjacent images, and calculate the relative displacement between the corner points
as the sparse optical flow labels. In addition, we choose EPE as the evaluation metric. We have two
observations. First, the event camera can greatly improve optical flow performance in both nighttime
low-light and nighttime high-speed scenes. In high-speed scenes, the proposed method is robust to
various speeds, and the optical flow performance remains unchanged, demonstrating the advantage of
high temporal resolution of the event camera. In low-light scenes, as the illumination becomes lower,
the optical flow metric (EPE) trend becomes larger obviously. This shows that, although the event
camera has the advantage of high dynamic range, too low illumination would also interfere with the
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Figure 5: Visualization of optical flow under various illumination conditions.

(a) Nighttime images (b) GMA (c) DarkFlow (d) ABDA-Flow

Figure 6: Visualization of optical flows under extremely low light conditions.
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Table 1: Quantitative results of the proposed method in low light and high speed scenarios.

Method Low light High speed
3.5 lux9.2 lux12.7 lux50 km/h70 km/h80 km/h

Our flow baseline 4.26 3.98 3.67 3.65 4.53 5.74
Our flow baseline, w/ only event 2.05 2.01 1.63 1.75 1.75 1.80

Our flow baseline, w/ only event, w/ common space 1.52 1.44 1.10 1.14 1.15 1.19

Table 2: Discussion on transfer ability of the proposed method from daytime to nighttime domain.

Test Dataset Daytime images of DSEC Nighttime images of DSEC
w/o adaptation 10.71% 25.42%

w/ direct motion adaptation 10.71% 18.82%
w/ common reflectance space adaptation 10.71% 14.51%

optical flow performance. The main reason is that, under low light conditions, the event noise is
intensified. The event noise and the valid signal event are both 0-1 pulses, and their difference is
very small, which affects the optical flow. Second, the proposed common space can further improve
the upper limit of optical flow, indicating that common space can serve as a bridge to reinforce the
feature alignment between event and nighttime image domains.

3.5 ABILITY OF DAYTIME→NIGHTTIME MOTION KNOWLEDGE TRANSFER

In the proposed framework, the performance of the daytime optical flow is the upper limit of the
nighttime optical flow. Thus, the key to estimating nighttime optical flow lies in the ability of motion
knowledge transfer from daytime domain to nighttime domain. As shown in Table 2, we conduct an
ablation study to analyze the knowledge transfer ability of the common reflectance adaptation. Three
strategies use the same pre-trained daytime optical flow model to estimate daytime optical flow, and
they have the same performance. When tested on the nighttime images, w/o adaptation performs badly,
and w/ direct motion adaptation (namely only motion distribution alignment) performs relatively well,
while w/ common reflectance space adaptation (namely appearance adaptation) performs better. In
conclusion, the proposed common reflectance space adaptation has a better ability to transfer motion
knowledge from daytime domain to nighttime domain.

3.6 INFERENCE TIME

In Table 3, we choose inference time as the efficiency metric for optical flow estimation, and RTX
3090 as the inference platform. We can observe that, RAFT and GMA can satisfy the requirement
for real-time application, while their performances are bad under nighttime conditions. In contrast,
the proposed method can estimate accurate optical flow, while the inference time is not efficient
enough due to the complex transformer as the optical flow backbone. Moreover, under the common
adaptation framework, we replace the transformer with GMA as the optical flow backbone, namely
GMA w/ common adaptation, which performs well and efficiently on nighttime images. This shows
that our common adaptation framework has the advantages of universality and easy scalability without
increasing processing time. Therefore, our method can further choose an efficient and expressive
backbone to improve processing efficiency.

3.7 IMPLEMENTATION OF TRAINING DETAILS

Contrastive Learning Sample Number Setup. In Table 4, we study the influence of the contrastive
sample number on the final optical flow result. We select [100, 500, 1000, 2000] as the candidate
values of sample number N . We can observe that the larger the sample number N , the better the
optical flow result is. However, when the sample number N is increased to 2000, optical flow metric
is not improved much, but instead, the computation cost is increased. Hence, to make a trade-off
between performance and cost, we set 1000 as the feature sample number N of contrastive learning.
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Table 3: Discussion on inference time.

Method Inference time (ms) EPE Fl-all
RAFT 54 1.69 28.65%
GMA 79 1.48 24.10%

GMA w/ common adaptation 79 0.79 12.39%
Transformer w/ common adaptation (ours) 273 0.74 11.85%

Table 4: Discussion on contrastive sample number.

Sample number EPE Fl-all
100 0.81 13.60%
500 0.77 12.26%
1000 0.74 11.85%
2000 0.74 11.78%

Table 5: The choice of motion class number.

Motion classes EPE Fl-all
2 0.81 13.42%
5 0.76 12.10%
10 0.74 11.85%
15 0.79 12.54%

How to Choose Motion Class Number? Motion class number K is a parameter that measures
the degree of motion degradation. As shown in Table 5, the motion class number is not as more as
possible, but there is a balance, namely 10. The reason is that motion classification depends on the
probability threshold, the larger the motion class number value, the larger the probability threshold
corresponding to the normal motion feature, increasing the risk of misclassification of abnormal
motion features. Therefore, an appropriate motion class number is important to the final result.

Weight Sensitivity of Model Losses. To choose the optimal weight parameters for the total loss, we
conduct the study on the weight sensitivity of the typical adaptation losses in Fig. 7, such as, Lalign

intra,
Lalign
inter , Lcontra and Lself

flow. Lalign
intra aims to transfer knowledge between visual-based motion space

and reflectance-based motion space within the same domain. Lalign
inter is to transfer motion knowledge

between daytime and nighttime domains. The intention of Lcontra and Lself
flow is to transfer motion

knowledge from event to nighttime image domain along the motion feature dimension and motion
field dimension, respectively. In Fig. 7 (a), the larger the weight of Lalign

intra, the more rapidly the
optical flow network converges. In Fig. 7 (b), the K-L divergence loss Lalign

intra is sensitive to the
framework training. If the weight is too large, the gradient will disappear. In Fig. 7 (c), a larger
weight of the loss Lcontra instead contributes negatively to the final optical flow results. The main
reason is that a too large weight may make the network pay too much attention to contrastive learning
and ignore other discriminative features. In Fig. 7 (d), the weight of Lself

flow is robust for the framework
training. Therefore, we set the adaptation losses weights as [λ3, λ4, λ6, λ7] as [1.0, 0.01, 0.01, 1.0].

3.8 LIMITATION

The main limitation is that the proposed method cannot accurately estimate the radial motion. There
are two reasons. First, the optical flow network usually estimates the motion along the x, y-axis
direction of the camera plane, while there is no relative x, y-axis motion when the radial moving
object is projected onto the camera plane. Second, for the event camera, the radial moving objects
only trigger a small number of events, which affects the event optical flow estimation. For example,
when a vehicle is approaching us from far to near along the center of the camera, there is no relative
motion in the frame camera plane and no triggered events corresponding to this vehicle in the event
camera. In the future, we will integrate lidar into the proposed framework to estimate radial motion.

4 COMPARISON

4.1 COMPARISON ON SYNTHETIC IMAGES

The visual results of optical flow predicted by ABDA-flow and other state-of-the-art approaches on
the synthetic Noise Dark-KITTI2015 dataset are presented in Figure 8. The competing methods
include SMURF (Stone et al., 2021) and DarkFlow (Zheng et al., 2020). For the SMURF method, we
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Figure 7: The weight sensitivity of model adaptation losses.

(a) Nighttime images / GT (b) SMURF (c) (KinD++) + SMURF (d) DarkFlow (e) ABDA-Flow

Figure 8: Comparison of optical flows on synthetic Noise Dark-KITTI2015 dataset.

utilize the KinD++ (Zhang et al., 2019) image enhancement technique, applying it to the enhanced
results of Noise Dark-KITTI2015 and denoting it as (KinD++) + SMURF. Upon observation, it is
evident that the optical flows estimated by SMURF exhibit noticeable artifacts, primarily due to the
violation of the optical flow basic assumption in nighttime scenes. Although (KinD++)+SMURF
reduces the degradation to some extent, it does not function properly. This can be attributed to the
fact that the image enhancement method KinD++ is not specifically designed for nighttime optical
flow. As a result, any residual artifacts may smooth out the visual features, thereby compromising the
accuracy of motion feature matching. While DarkFlow significantly improves nighttime optical flow,
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(a) Nighttime images (b) SMURF (c) DarkFlow (d) GyroFlow (e) ABDA-Flow

Figure 9: Comparison of optical flows on real Dark-GOF dataset.

(a) Nighttime images (b) SMURF (c) GMA (d) DarkFlow (e) ABDA-Flow

Figure 10: Comparison of optical flows on real Dark-DSEC dataset.

slight outliers still exist due to the substantial domain gap between daytime and nighttime domains. In
contrast, the common space adaptation approach mitigates the misalignment between both domains,
enabling the estimation of accurate optical flow.

4.2 COMPARISON ON REAL IMAGES

Comparison on Dark-GOF dataset. In Fig. 9, we also provide the visualization of optical flows
estimated by the unsupervised method SMURF (Stone et al., 2021), visual adaptation DarkFlow
(Zheng et al., 2020), motion adaptation GyroFlow (Li et al., 2021) and our common space adaptation
ABDA-Flow on the Dark-GOF dataset. SMURF cannot work normally since nighttime degradation
breaks the optical flow basic assumption. Visual adaptation DarkFlow can remove some artifacts,
but there exist obvious outliers in the optical flow results. Motion adaptation GyroFlow smooths the
global motion, while failing for independent motion objects. This direct adaptation in visual space and
motion space is ineffective due to the large domain gap since there exists the intrinsic heterogeneous
nature (feature distribution misalignment caused by degradation) of feature representations. However,
the proposed ABDA-Flow performs well under real nighttime scenes since it takes the common-latent
space to reinforce the feature alignment.

Comparison on Dark-DSEC dataset. We also show the results of our proposed ABDA-Flow on
real Dark-DSEC images in Fig. 10, in which there are more complex motion patterns and nighttime
conditions. The unsupervised method SMURF hardly works since nighttime degradation breaks the
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(a) Nighttime images (b) Event frames (c) EV-FlowNet (d) E-RAFT (e) E-ABDA

Figure 11: Comparison of event-based optical flows on real event stream from DSEC dataset.

optical flow basic assumption which unsupervised methods rely on. The supervised method GMA
cannot work well due to the domain gap between synthetic and real images. There are some artifacts
in the optical flow estimated by the visual adaptation DarkFlow. The main reason is that there exists a
large gap between daytime and nighttime domains, in which the feature misalignment in visual space
causes inaccurate feature matching in motion space. Note that, since these three methods estimate
optical flow via frames, their performances are limited due to the low dynamic range of conventional
camera under extremely low light conditions (seeing the fourth row in Fig. 10). On the contrary,
ABDA-Flow still works better on complex nighttime images, even if extremely low light.

4.3 COMPARISON ON EVENT OPTICAL FLOW

In Fig. 11, we compare the state-of-the-art event optical flow models (EV-FlowNet (Zhu et al., 2018)
and E-RAFT (Gehrig et al., 2021b)) with our event model on the real event stream from DSEC
(Gehrig et al., 2021a) dataset. We can observe that the optical flow estimated by EV-FlowNet is
over-smooth, and E-RAFT losses slight motion details in the motion boundaries. Instead, our event
optical flow E-ABDA still works well, verifying its superiority.
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