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Model X-ray : Detecting Backdoored Models via Decision
Boundary

Anonymous Authors

ABSTRACT
Backdoor attacks pose a significant security vulnerability for deep
neural networks (DNNs), enabling them to operate normally on
clean inputs but manipulate predictions when specific trigger pat-
terns occur. In this paper, we consider a practical post-training
scenario backdoor defense, where the defender aims to evaluate
whether a trained model has been compromised by backdoor at-
tacks. Currently, post-training backdoor detection approaches often
operate under the assumption that the defender has knowledge of
the attack information, logit output from the model, and knowledge
of the model parameters, limiting their implementation in practi-
cal scenarios. In contrast, our approach functions as a lightweight
diagnostic scanning tool that operates in conjunction with other
defense methods, assisting in defense pipelines.

We begin by presenting an intriguing observation: the decision
boundary of the backdoored model exhibits a greater degree of
closeness than that of the clean model. Simultaneously, if only one
single label is infected, a larger portion of the regions will be domi-
nated by the attacked label. Leveraging this observation, drawing
an analogy to X-rays in disease diagnosis, we propose Model X-ray
. This novel backdoor detection approach is based on the analysis
of illustrated two-dimensional (2D) decision boundaries, offering
interpretability and visualization.Model X-ray can not only identify
whether the target model is infected but also determine the target
attacked label under the all-to-one attack strategy. Importantly, it
accomplishes this solely by the predicted hard labels of clean inputs,
regardless of any assumptions about attacks and prior knowledge
of the training details of the model. Extensive experiments demon-
strated thatModel X-ray can be effective and efficient across diverse
backdoor attacks, datasets, and architectures.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
Deep Learning, Backdoor Detection, Decision Boundary

1 INTRODUCTION
Despite the remarkable success of DNNs, recent studies [6, 13, 19,
29, 33, 45, 50] have unveiled a significant security vulnerability
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: frog                 : ship                             : dog

Clean                                    BadNets target: airplane

Figure 1: Comparison of the decision boundaries between
the clean model and the backdoored model (taking BadNets
[19] as an example, and the target label is “airplane") on the
CIFAR-10 dataset.

for DNNs against backdoor attacks, which can contaminate DNNs,
enabling them to operate normally on clean inputs but manipulate
predictions when specific patterns (i.e., “trigger") occur. Backdoor
attacks primarily fall into two categories: data-poisoning attacks
(such as BadNets [19], SSBA [29], Low Frequency [50], and BPP
[45]) and model-modification attacks (such as TrojanNN [33], LIRA
[13], and Blind [6]). These attacks pose a substantial threat to safety-
critical and security-sensitive applications of DNNs, including but
not limited to face recognition [35], biomedical diagnosis [16], and
autonomous driving [37]. Tomitigate the threat of backdoor attacks,
numerous defense methods are emerging to establish a comprehen-
sive pipeline for backdoor defense. This pipeline can be applied at
various stages, including the training, post-training, and deploy-
ment stages (refer to Fig. 2).

Backdoor defense during both the training and deployment
stages [8, 18, 31, 41, 50] typically necessitates access to training data
or inference data. In this paper, we consider the more practical post-
training scenario, where the defender aims to evaluate whether a
trained model (e.g., Model Zoo that provides pre-trained models [1])
has been compromised by backdoor attacks, when and many post-
training defenses assume the defender independently possesses
a small set of clean, legitimate samples. However, current post-
training detection methods hold too strong assumptions that the
defender has knowledge of the attack information, the logit output
from the model [9, 49], and knowledge of the model parameters
[17, 32, 42, 43], limiting their implement in practical scenarios.

Fortunately, recent work by [39] has demonstrated that we
can visualize the model’s decision boundary solely using prediction
labels. Leveraging this technique, we have identified a discernible
distinction between the decision boundaries of the clean model and
the backdoored model. As illustrated in Fig. 1, we use BadNets [19]
as an example of backdoor attacks. We observe that the decision
boundaries of backdoor models exhibit a noticeable reduction in
the regions dominated by three clean samples, and significant sur-
rounding area are dominated by the attack target label. Importantly,
this phenomenon is applicable across various backdoor attacks on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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different datasets (see Fig. 4). That is to say, we can leverage the
phenomenon of anomalous decision boundaries to distinguish back-
doored models. As claimed in previous work [42], backdoor attacks
build a shortcut leading to the target label, which we explain cause
the above encircling phonemona. Besdies, trigger samples are more
robust against distortions [36], causing the large regions than that
of clean samples. In a nutshell, the visualized 2D decision boundary
can be served as an illustration for these conjectures.

Based on the intriguing phenomenon, drawing an analogy to
X-rays in disease diagnosis, we propose Model X-ray as a novel
backdoor detection approach through the analysis of illustrated 2D
decision boundaries. Specifically, we designate two metrics to eval-
uate the degree of the closeness of the decision boundary: 1) Rényi
Entropy (RE) [38] calculated on the probability distribution of
each prediction area and 2) Areas Dominated by triple samples
(ATS), e.g., the total areas of “frog”, “ship”, and “dog” in the Fig. 1.
Furthermore, if only one label is infected, we can determine the
target label by the prediction of the largest area of the decision
boundary, e.g., the target label is “airplane" in the right of Fig. 1. In
other words, Model X-ray can not only identify backdoored models
but also determine the target attacked label under all-to-one attacks.
Importantly, Model X-ray accomplishes this only by the predicted
hard labels of clean inputs from the model, regardless of any as-
sumptions about attacks such as the trigger patterns and training
details. The visualized 2D decision boundary offers a novel per-
spective to understand the behavior of the model, providing both
visualization and interpretability. Through analysis of the decision
boundary, Model X-ray can function as a lightweight diagnostic
scanning tool, complementing other defense methods and aiding in
defense pipelines. Extensive experiments demonstrate that Model
X-ray performs better than current methods across various back-
door attacks, datasets, and model architectures. In addition, some
ablation studies and discussions are also provided.

Our contributions can be summarized as follows:
• We present a noteworthy observation: there exists a dis-
tinction between clean models and backdoored models by
visualized 2D decision boundaries [39].

• We propose Model X-ray which detects the backdoored
model solely by predicted hard labels of clean inputs from
the model, regardless of any assumptions about backdoor at-
tacks. Besides,Model X-ray can determine the target attacked
label if the attack is all-to-one attack.

• Extensive experiments demonstrate the effectiveness and
efficiency of Model X-ray across different backdoor attacks,
datasets, and model architectures.

2 RELATEDWORK
2.1 Backdoor Attacks
The target of backdoor attacks is training an infected model �̂� with
parameters 𝜃 by:

𝜃 = arg min𝜃 E(𝑥,𝑦)∼DL(�̂� (𝑥 ;𝜃 ), 𝑦)
+E(𝑥,𝑦𝑡 )∼D̂L(�̂� (𝑥 ;𝜃 ), 𝑦𝑡 ),

(1)

where D and D̂ denote the benign samples and trigger samples,
respectively. L denotes the loss function, e.g., cross-entropy loss.
The infectedmodel functions normally on benign samples but yields

a specific target prediction 𝑦𝑡 when presented with trigger samples
𝑥 . Backdoor attacks can be achieved by data poisoning and model
modification, and we briefly introduce some related methods below.

Data poisoning-based backdoor attacks primarily revolve around
crafting trigger samples. Notably, BadNets [19] was a pioneering
work that highlighted vulnerabilities of DNNs by employing visible
squares as triggers. Afterward, various other visible trigger tech-
niques have been explored: Blended [10] employs image blending to
create trigger patterns, SIG [7] utilizes sinusoidal strips as triggers,
and Low Frequency (LF) [50] explores triggers in the frequency do-
main. Simultaneously, other research endeavors focus on achieving
imperceptibility of the trigger patterns, including BPP [45] based
on image quantization and dithering, WaNet [34] founded on image
warping, and SSBA [29] achieved by image steganography. During
the training stage, the attacker can leverage different poisoning
ratios to balance the attack ability and performance degradation.

Apart from data poisoning-based attacks, there are some back-
door attacks that employ model modification techniques. TrojanNN
[33] first proposes to optimize the trigger to ensure that the crucial
neurons can attain their maximum values, LIRA [13] formulates ma-
licious function as a non-convex, constrained optimization problem
to learn invisible triggers through a two-stage stochastic optimiza-
tion procedure, and Blind [6] modifies the training loss function to
enable the model to learn the malicious function.

2.2 Backdoor Defenses

Training Post-training Deployment

Detect Poisoned Data
& Robust Training

Backdoor Detection 
& Model Repair 

Detect & Mitigate 
Trigger Samples

Figure 2: The pipeline of the backdoor defense.
As Fig. 2 illustrates, pipelines for backdoor defense mecha-

nisms can be categorized into three phases: during training, post-
training, and after deployment. Each phase implies distinct defender
roles and capabilities.

Backdoor defenses during model training aim to detect and
remove poisoned data from the training set [8, 40, 41] or to en-
hance training robustness against data poisoning [30]. Backdoor
defenses after deployment aim to detect trigger inputs during infer-
ence and attempt to mitigate the malicious prediction. For example,
STRIP[18] perturbs an input sample by overlapping with numerous
benign samples and uses the ensemble predictions for detection.
FreqDetector [50] leverages artifacts in the frequency domain to
distinguish trigger samples from clean samples. Besides, somemeth-
ods [21, 31, 36] conduct detection based on robustness against data
transformations between benign and trigger samples.

Comparably, post-training backdoor detection is model-level
detection. Neural Cleanse [42] is the first post-training detection
through anomaly analysis on the reversed trigger patterns. How-
ever, it requires access to the model’s inner information like param-
eters and gradients, which is also the limitation of other subsequent
methods [17, 32, 42–44]. Differently, detection work in black-box
scenarios is extremely challenging [9, 14, 20, 49], e.g. MNTD trains
a meta-classifier based on features extracted from a large set of
shadow models. However, its success heavily relies on the gener-
alization capability of the attack settings from the shadow models
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to the actual backdoored models. Besides, it requires the soft label
generated by the target model. MM-BD [43] leverags maximum
margin statistics of each class and unsupervised anomaly detection
on classifier output landscapes.

2.3 Decision Boundary of Deep Neural
Networks

Most previous works depict decision boundaries by adversarial sam-
ples [23, 27] or sensitive samples [24]. These methods are pivotal
in identifying and understanding the contours of decision bound-
aries, as adversarial and sensitive samples are typically positioned
along these critical junctures in the model’s decision-making pro-
cess. However, obtaining these special samples requires access to
the target model. Fortunately, Zhang et al. [51] find that decision
boundaries not only manifest near the data manifold but also within
the convex hull created by pairs of data points.

Leveraging this understanding, Somepalli et al. [39] introduce
an innovative approach that utilizes only clean samples to map out
the decision boundary to investigate reproducibility and double
descent. Their method, which results in a 2Dmap, offers an intuitive
and accessible means of visualizing decision boundaries. In this
paper, we utilize this technique to detect backdoored models.

3 PRELIMINARIES
3.1 Recap of the Decision Boundary in [39]
Here, we recap the methods for visualizing decision boundaries
discussed in [39]. As shown in Fig. 3 (left), we randomly choose
three clean samples (also called triple samples) from the dataset
D . For example, we select three images (𝑥1, 𝑥2, 𝑥3) of “frog", “ship",
and “dog" from the CIFAR-10 dataset. Then, we can calculate two
vectors −→𝑣1 = 𝑥2 − 𝑥1 and −→𝑣2 = 𝑥3 − 𝑥1, based on which we obtain
the spanned space V , i.e., V = 𝑠𝑝𝑎𝑛{−→𝑣1,

−→𝑣2}, whose orthogonal
basis and orthonormal basis are denoted as {−→𝛽1,

−→
𝛽2} and {−→𝑒1,

−→𝑒2},

respectively, where
−→
𝛽1 =

−→𝑣1 and −→𝑒1 =

−→
𝛽1

∥−→𝛽1 ∥
. Next, we can obtain the

projection of vector −→𝑣2 in the direction of vector −→𝑒1 , i.e., proj−→
𝑒1
−→𝑣2 =〈−→𝑣2,

−→𝑒1
〉
· −→𝑒1 and get

−→
𝛽2 by orthogonalizing −→𝑣2 via Schmidt orthog-

onalization, i.e.,
−→
𝛽2 =

−→𝑣2 − proj−→𝑒1
−→𝑣2 . Similarly, we can acquire the

projection of vector −→𝑣2 in the direction of vector −→𝑒2 , i.e., proj−→𝑒2
−→𝑣2 =〈−→𝑣2,

−→𝑒2
〉
· −→𝑒2 . Finally, we obtain an orthonormal basis for the space,

denoted as −→𝑒1 and −→𝑒2 , along with the coordinates of points 𝑥1, 𝑥2,
and 𝑥3 within the plane. Namely, we acquire coordinates corre-
sponding to the origin (0, 0) and the points specified by vectors −→𝑣1
and −→𝑣2 , originating from the origin, i.e., (0, 0), (∥−→𝑣1∥, 0), (proj−→

𝑒1
−→𝑣2 ,

proj−→
𝑒2
−→𝑣2).

After representing the space, we can calculate the bounds on
the X-axis and the Y-axis, extended by a factor of 𝜂 in both the
positive and negative directions along the corresponding axes, serv-
ing as a means to control the expansion range of the coordinate
system. In the previous work [39], 𝜂 is set as 1 to investigate repro-
ducibility, while we set 𝜂 as 5 to obtain a wider range of the decision
boundary (see Fig. 3). Moreover, we can also determine density 𝑆
by constructing the set of points with a quantity of 𝑆2 within the
bounded range of the coordinate system using a grid generation

𝑥ଵ (0, 0)

(𝑝𝑟𝑜𝑗భ𝑣ଶ , 𝑝𝑟𝑜𝑗మ𝑣ଵ)

𝑒ଵ

𝑥ଷ

𝑥ଶ ( 𝑣ଵ , 0)
𝑣ଵ

𝑣ଶ

𝑒ଶ

𝛽ଶ

( 𝛽ଵ)

η ൌ 1

𝑥ଵ 𝑥ଶ

𝑥ଷ

η ൌ 5

Figure 3: Visual examples of the decision boundary used in
[39] (left) and in this paper (right).

method. Larger 𝑆 means higher resolution. With 𝑆2 points, we can
conduct the reverse process to get their tensor presentation, which
can be fed to the model to fetch the corresponding prediction. We
adopt different colors for different predictions to get the final 2D
decision boundary.

In the subsequent parts, all decision boundaries are visualized
by the modified version (i.e., 𝜂 = 5 in the right of Fig. 3).

3.2 Threat Model
In practice, acccess to training or inference sets is unavailable due
to data privacy, ownership, and availability constraints. Therefore,
in this paper, we only consider the post-training scenario detection.

While many post-training detection defenses typically have
access to either the model’s weights[17, 32, 42–44] or the model’s
logit output[49] for evaluation, our approach goes a step further by
restricting access to the model. We only assume that the defender
has the capability to independently gather a small set of clean data
samples that cover all classes within the domain, a prerequisite
upon which most post-training detectors depend. Moreover, we
only need the hard label predictions of the target model.

4 METHOD
In this section, we first provide an intriguing observation on the
decision boundary of clean models and backdoor models. Based
on this, we designate two strategies for backdoor detection via the
decision boundary. Finally, we showcase that we can determine the
target attacked label, if only one single label is infected.

4.1 An Intriguing Observation
As shown in Fig. 4, we provide the decision boundary of the clean
model and different backdoored models (infected by BadNets [19],
SSBA [29], LF [50], BPP [45], TrojanNN [33], LIRA [13], and Blind
[6]) on CIFAR-10 and ImageNet-10 dataset. We observe that the
decision boundaries of backdoor models exhibit a noticeable re-
duction in the area of decision regions dominated by three clean
samples, and significant surrounding area are dominated by the
attack target label, i.e., the phenomenon of anomalous decision
boundaries. Therefore, the label distribution within the decision
boundaries of the backdoor model becomes highly concentrated,
exhibiting the attack target label with an abnormally high prob-
ability. More visualized decision boundaries can be found in the
supplementary material.

We explain this phenomenonmay be the shortcut effect caused
by backdoor attacks. In essence, clean models can still preserve the
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Figure 4: Visual examples of decision boundaries of the clean model and different backdoored models on CIFAR-10 and
ImageNet-10.

① ②

③

① ②

③

For the left plot, we calculate ATS of regions ①, ②, and ③. However, for the right 
plot, since ① exceeds our constrains t, We believe this region may be dominated by 
attack target label, so we discard ① and only calculate ATS of ② and ③.

④

⑤

⑥ ⑧

④

⑦

⑤

③

Figure 5: Illustration on calculation of RE and ATS.

robustness of predicted labels when applying a linear transforma-
tion to samples in a considerably large magnitude. On the contrary,
the presence of shortcuts to the target label in backdoor models
results in changes in the predicted label when applying a minor
linear transformation to samples, typically leading to the target
attacked label. The shortcuts leading to the target attacked label
in the backdoor model has been confirmed in previous research,
that is, through optimization methods, smaller perturbations can be
found to cause other labels to be misclassified as target labels [42].
Afterward, Rajabi et al. [36] quantifies this effect by introducing
the concept of a certified radius [11], which estimates the distance
to a decision boundary by perturbing samples with Gaussian noise
with a predetermined mean and variance. Notably, trigger samples
are observed to be relatively farther from a decision boundary com-
pared to clean samples, which can support why the large region is
dominated by injected prediction.

4.2 Two Strategies for Backdoor Detection via
the Decision Boundary

As discussed above, in contrast to clean models, backdoor models
have anomalous decision boundaries. Therefore, backdoor detec-
tion can be transformed into anomaly detection on the decision
boundary. To achieve this, we propose two strategies for backdoor
detection via the decision boundary, namely, based on Rényi En-
tropy (RE) and Areas dominated by Triple Samples (ATS),
respectively. In the following part, we will introduce the two strate-
gies in detail, whichwe hope sheds some light on anomaly detection.
Notably, other strategies are also applicable.

4.2.1 Backdoor Detection based on Rényi Entropy. With the tech-
nique mentioned above, we can plot 𝑁 decision boundaries B =

{B1, ...,B𝑘 , ...,B𝑁 }, whereB𝑘 is plotted along the plane spanned by
triple samples 𝑇𝑘 = (𝑥1, 𝑥2, 𝑥3)𝑘 . Specifically, let 𝑆𝑘 = {𝑥𝑖 𝑗 | (𝑖, 𝑗) ∈

B𝑘 } be the set of points in the B𝑖 , where (𝑖, 𝑗) is the coordinations
of 𝑥 in B𝑘 . Then, we feed 𝑆𝑘 = {𝑥𝑖 𝑗 | (𝑖, 𝑗) ∈ B𝑘 } to the target model
𝑀 to obtain the corresponding hard labels 𝐿𝑘 = {𝑙𝑖 𝑗 | (𝑖, 𝑗) ∈ B𝑘 },
which are further used to obtain the final colorful decision boundary
B𝑘 for evaluation.

Within a specific decision boundary B𝑘 , we calculate label
probability distribution P𝑘 = {𝑝1, ..., 𝑝𝑚, ..., 𝑝𝑛} for n-category clas-
sification:

𝑝𝑚 =
𝐴(𝑙𝑚 )
𝐴(B𝑘 )

, (2)

where 𝑙𝑚 denotes the 𝑚-th class label in the dataset. 𝐴(𝑙𝑚) and
𝐴(B𝑘 ) denote the areas of𝑚-th class and the areas of entire decision
regions, respectively. In Fig. 5 (left), 𝑝3 = (𝐴( 3○) +𝐴( 3○))/𝐴(B𝑘 ).
To indirectly evaluate the gathering degree of the decision boundary,
we calculate Rényi Entropy (RE) of label probability distribution
P𝑘 :

𝑅𝐸 (P𝑘 ) = 𝐻𝛼 (P𝑘 ) =
1

1 − 𝛼
log

(
𝑛∑︁

𝑚=1
𝑝𝛼𝑚

)
, (3)

where𝛼 ⩾ 1, and we set it as 10 by default. Based onRE, we propose
a detection strategy called Ours-RE. Briefly, a large variance of
{𝑝1, ..., 𝑝𝑚, ..., 𝑝𝑛} will lead a low RE, meaning more gathered. As
shown in Fig. 4, we find backdoored models hold much lower RE,
which can be distinguished from the clean model in most cases.

4.2.2 Backdoor Detection based on Areas dominated by Triple Sam-
ples. In addition to RE, we define Areas dominated by Triple
Samples (ATS) as the ratio of decision regions controlled by benign
triple samples 𝑇𝑘 to entire decision regions:

𝐴𝑇𝑆 (B𝑘 ) =
𝐴(𝑇𝑘 )
𝐴(B𝑘 )

=

∑
𝑥 ∈ (𝑥1,𝑥2,𝑥3 ) 𝐴(𝑥 )

𝐴(B𝑘 )
, (4)

where 𝐴(𝑇𝑘 ) denotes the total areas dominated by triple samples.
As shown in the left of Fig. 5, 𝐴𝑇𝑆 (B𝑘 ) = (𝐴( 1○) + 𝐴( 2○) +
𝐴( 3○))/𝐴(B𝑘 ). However, we find there are some special cases.
As shown in Fig. 5 (right), one of the triple samples belongs to
the target attacked label, causing an abnormally large 𝐴( 1○). In
practice, we cannot determine whether the labels of triple samples
are injected. For this, we append an additional constraint for ATS,
namely, 𝐴(𝑥) < 𝐴(B𝑘 ) · 𝑡 , where 𝑡 = 0.5 by default. Based on ATS,
we propose a detection strategy called Ours-ATS. Intuitively, the
large ATSmeans robust classification on the clean images, and vice
versa.
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Figure 6: The label probability distribution within decision
boundaries of clean and backdoor models on CIFAR-10 and
ImageNet-10, both of whose infected labels are 0.

4.3 Determine the Target Label
After detecting, if the attack is conducted by all-to-one strategy, de-
fenders can further determine the target attacked label by identify-
ing the label with an abnormally high probability in label probability
distribution P𝑘 = {𝑝1, ..., 𝑝𝑚, ..., 𝑝𝑛}. For example, we plot decision
boundaries of clean models and backdoor models infected by dif-
ferent backdoor attacks on CIFAR-10 and ImageNet-10 datasets.
For each model, we plot 20 decision boundaries and calculate the
average label probability. As shown in Fig. 6, the attacked target
label (label “0" of both CIFAR-10 and ImageNet-10) exhibits an ex-
ceptionally high probability, even reaching 80% to 90% of the entire
label probability distribution.

5 EXPERIMENT
5.1 Experimental Settings
Datasets and Architectures. The datasets include CIFAR-10 [28],
CIFAR-100 [28], GTSRB [25], and ImageNet-10 [2], a subset of
ten classes from ImageNet [12]. Besides, we employ four differ-
ent architectures: PreActResNet-18 [22], MobileNet-V3-Large [26],
PreActResNet-34 [22], and ViT-B-16 [15]. These architectures en-
compass both Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs) and span across various network sizes, includ-
ing small, medium, and large networks.
Implementation Details. For the model to be evaluated, we plot
decision boundaries by random samples triplet with expansion fac-
tor𝜂 = 5 and density 𝑆 = 100, number of plots𝑁 = 20. For the attack
baselines, we evaluate our method against seven backdoor attacks,
including BadNets [19], SSBA [29], LF [50], BPP [45], TrojanNN
[33], LIRA [13], and Blind [6]. We follow an open-sourced backdoor
benchmark BackdoorBench [46] for the training settings of these at-
tacks and conduct all-to-one attacks by default. As shown in Table 1,
the attacks in our experiments include both data poisoning-based at-
tacks and model modification-based attacks, which contain diverse
and complex trigger pattern types. In this paper, our focus is on
post-training backdoor detection. We compare our approach with
three post-training detection methods: Neural Cleanse [42], MNTD
[49], and MM-BD [43]. We utilize their official implementations
[3, 5] or implementations available in open-source benchmarks[4].
Evaluation Metrics. For clean models and models infected by 7
backdoor attacks, we trained 20 models using different initialization
and random seeds. For the backdoored models, we select different
attack target labels and conduct the single-label attack by default.
Considering the computational cost, we adopted different data

Table 1: The backdoor attacks involved in our evaluations
have covered diverse trigger patterns.

Trigger
Data Poisoning Model Modification

BadNets SSBA LF BPP TrojanNN LIRA Blind

Static
Invisible
Dynamic

sets and corresponding common model architectures. Thus, we
have 20 + 20 × 7 = 160 models for each combination of dataset
and architecture. In subsequent experiments, for each model to
be evaluated, we calculate its average RE (see Eq. (3)) and ATS
(see Eq. (4)) over 𝑁 = 20 decision boundary plots as indicators.
We assume that defense mechanisms return a positive label if they
identify a model as a backdoored model and then compute the Area
Under Receiver Operating Curve (AUROC) to measure the trade-
off between the false positive rate (FPR) for clean models and true
positive rate (TPR) for backdoor models for a detection method.

5.2 The Effectiveness ofModel X-ray
As shown in Table 2, in most cases, Model X-ray outperforms the
baseline methods across different backdoor attacks, datasets, and ar-
chitectures. MNTD is difficult to generalize attack settings from the
shadow models to the actual backdoored models. Neural Cleanse
performs well in the majority of scenarios. However, occasional
failures may arise when it incorrectly identifies a trigger for a clean
model, leading to convergence in local optima. MM-BD demon-
strates promising performance on small-scale architectures, but its
performance drops significantly on larger architectures. In Fig. 7
and Fig. 8, we present visual illustrations of the average RE and
ATS values for both clean and backdoored models. In most cases, a
clear distinction is evident between clean and backdoored models.
The ROC curves of Ours-RE and Ours-ATS can be found in the
supplementary material.

Besides the default all-to-one attack strategy, we consider
attack strategies [48] with arbitrary numbers of source classes each
assigned with an arbitrary attack target class, including X-to-X
attack, X-to-one attack, and one-to-one attack. We adopt different
attack strategies to conduct BadNets on CIFAR-10. For each strategy,
we train 10 models for evaluation. Table 3 shows that Model X-ray
remains effective under different attack strategies, especially based
on ATS (i.e., Ours-ATS). Although multi-target attacks lower the
performance of the proposed method, we outperform the baseline
methods by a large margin in most cases. Furthermore, we provide
some visual examples of the corresponding decision boundary in
Fig. 11. In X-to-one and one-to-one attacks, where the attack target
is a single class, both Ours-RE and Ours-ATS achieve precise
detection and identification of the target class. In X-to-X attack,
where there are multiple classes for both source and attack targets,
the performance of Ours-RE declines with an increasing number of
attack target classes, which is acceptable. The computation of Ours-
RE relies on the entropy of class labels, where it can still detect the
presence of multiple attack target classes in the decision boundary,
despite the performance drop. Furthermore, areas dominated by
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Table 2: The performance of Model X-ray across different attacks, datasets, and architectures. The last two columns show the
worst and the average performance among different attacks. The best results are in bold.

Dataset Attack→
BadNets SSBA LF BPP TrojanNN LIRA Blind Worst AverageArchitecture Mothod↓

CIFAR-10
Neural Cleanse 0.881 0.755 0.874 0.881 0.566 0.884 0.535 0.535 0.768

MNTD 0.525 0.665 0.568 0.565 0.568 0.623 0.705 0.525 0.603
MM-BD 1.000 0.847 0.882 0.805 0.860 0.953 0.697 0.697 0.863

PreActResNet-18 Ours-RE 0.995 1.000 0.812 0.762 0.740 1.000 0.919 0.740 0.890
Ours-ATS 1.000 1.000 0.763 0.747 0.848 1.000 0.885 0.747 0.892

GTSRB
Neural Cleanse 0.997 0.968 0.937 0.965 0.661 0.715 0.990 0.661 0.890

MNTD 0.603 0.495 0.578 0.617 0.535 0.715 0.460 0.460 0.572
MM-BD 1.000 0.477 0.494 0.445 0.792 0.994 0.997 0.445 0.743

MobileNet-V3 Ours-RE 0.997 0.981 0.942 1.000 0.976 1.000 1.000 0.942 0.985
-Large Ours-ATS 0.998 0.997 0.972 0.982 0.902 0.996 1.000 0.902 0.978

CIFAR-100
Neural Cleanse 0.975 0.882 0.811 0.807 0.970 0.970 0.700 0.700 0.874

MNTD 0.625 0.490 0.540 0.528 0.540 0.813 0.538 0.490 0.582
MM-BD 0.626 0.552 0.977 0.557 0.618 0.957 0.633 0.552 0.703

PreActResNet-34 Ours-RE 1.000 1.000 1.000 0.832 0.746 0.979 0.819 0.746 0.911
Ours-ATS 1.000 1.000 1.000 0.900 0.997 0.988 0.977 0.900 0.980

ImageNet-10
Neural Cleanse 0.955 0.808 0.683 0.927 0.847 0.969 0.913 0.683 0.872

MNTD 0.588 0.428 0.620 0.323 0.620 0.632 0.478 0.323 0.527
MM-BD 0.107 0.205 0.135 0.120 0.215 0.518 0.149 0.107 0.207

ViT-B-16 Ours-RE 0.956 0.860 0.835 0.913 0.725 1.000 0.863 0.725 0.879
Ours-ATS 1.000 0.861 0.956 0.976 0.878 1.000 0.935 0.878 0.944
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Figure 7: The average RE (𝛼 = 10) for clean and backdoor models injected by seven backdoor attacks in CIFAR-10, CIFAR-100,
GTSRB, and ImageNet-10 datasets. We observe that backdoor models have significantly smaller RE than clean models.
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Figure 8: The average ATS (𝑡 = 0.5) for clean and backdoor models injected by seven backdoor attacks in CIFAR-10, CIFAR-100,
GTSRB, and ImageNet-10 datasets. We observe that backdoor models have significantly smaller ATS than clean models.

Table 3: The performance under different attack strategies.

Strategy 10to1 5to1 2to1 1to1 3to3 5to5 10to10

Neural Cleanse 0.881 0.845 0.784 0.826 0.423 0.284 0.439
MNTD 0.525 0.419 0.503 0.487 0.535 0.518 0.466
MM-BD 1.000 0.571 0.006 0.081 0.007 0.448 0.671
Ours-RE 1.000 0.995 0.824 0.829 0.839 0.638 0.423
Ours-ATS 1.000 0.995 0.967 0.862 0.821 0.862 0.746

triple clean samples shrink, which explains whyOurs-ATS achieves
good performance in such scenarios.

5.3 Evaluations on Open-source Benchmarks
To mitigate the impact of incidental factors in our training, we also
evaluated our method on the backdoored models pre-trained on
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Figure 9: The average RE (𝛼 = 10) for clean and backdoor models injected by seven backdoor attacks in CIFAR-10 on different
architectures.
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Figure 10: The average ATS (𝑡 = 0.5) for clean and backdoor models injected by seven backdoor attacks in CIFAR-10 on different
architectures.
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Figure 11: Decision boundaries under different attack strate-
gies.

an open-source benchmark [46]. Speifically, we perform detection
on pre-trained backdoored models injected with seven backdoor
attacks across CIFAR-10, GTSRB, and CIFAR-100 datasets using
the PreActResNet-18 architecture, which can be downloaded from
Open-source benchmarks [4].

Given a target model 𝐶𝜃 , Model X-ray map the model 𝐶𝜃 to a
linearly separable space, defenders can make judgments through
average RE and ATS based on a threshold 𝛾 :

Γ (Model X-ray(𝐶𝜃 ) ) =
{

1,Model X-ray(𝐶𝜃 ) ≤ 𝛾

0,Model X-ray(𝐶𝜃 ) > 𝛾 .
(5)

As shown in Fig. 9 and Fig. 10, for the same dataset (taking CIFAR-
10 as an example), we find that the realtionship of RE and ATS
between clean and backdoor models exhibits consistency. This
allows us to determine an estimated threshold 𝛾 based on a small
set of models:

𝛾 =
1
𝑁

𝑁∑︁
𝑚=1

arg max
𝛾 ∈Γ

2 ×
(
precision 𝛾 × recall 𝛾

)(
precision 𝛾 + recall𝛾

) . (6)

Based on thresholds 𝛾 (e.g., for Ours-RE CIFAR-10: 0.873, GTSRB:
2.040, CIFAR-100: 1.194; for Ours-ATS, CIFAR-10: 0.184, GTSRB:
0.134, CIFAR-100: 0.040), the detection accuracy on CIFAR-10 is
87.5%, on GTSRB is 93.75% and on CIFAR-100 is 100%. Model X-
ray consistently identifies anomalies in the decision boundaries
that three samples are encircled by a large area of the target label,
demonstrating precise detection of backdoored models and deter-
mine the attack target labels. The visualized decision boundaries
can be found in the supplementary material.

5.4 The Efficiency of Model X-ray
Neural Cleanse and MM-BD necessitate access to the model’s pa-
rameters, and MNTD relies on logit outputs from the target model.
Model X-ray detects the backdoored model solely by predicted hard
labels of clean inputs from the model. In Table 4, we show the num-
ber of benign samples that the defender needs. Both Neural Cleanse
and MNTD necessitate a certain proportion of benign data (e.g., 5%
of the benign dataset) to complement their defense mechanisms,
MM-BD does not require any clean data. Our method necessitates
only three benign samples to plot a decision boundary, and with
𝑁 set to 20, only 60 clean samples are required, which is already
sufficient to ensure the effectiveness of our detection.

In addition, we compare the average inference time of each
method in Table 5. The experiment is conducted on one NVIDIA
RTX A6000. Specifically, Neural Cleanse requires a trigger reverse
engineering optimization process for each class, MM-BD also re-
quires a margin statistical process to obtain a maximum margin
statistic for each class, and MNTD requires preparation that gen-
erates a large set of shadow models (1024 clean models and 1024
attack models) to train a meta-classifier. In contrast, our method
eliminates the need for any optimization or training processes,
making it a versatile plug-and-play solution that functions as a
lightweight diagnostic scanning tool.
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Table 4: Benign samples required for different methods.

Method CIFAR-10 GTSRB CIFAR-100 ImageNet-10

Neural Cleanse 2500 1332 2500 473
MNTD 2500 1332 2500 473
MM-BD 0 0 0 0
Ours 60 60 60 60

Table 5: The average inference time(sec) for different meth-
ods. †means the training time(sec).

Method Neural Cleanse MNTD † MNTD MM-BD Ours

CIFAR-10 243.4 44268.6 0.06 75.2 36.5
GTSRB 628.5 53409.0 0.05 334.8 34.6

CIFAR-100 2431.7 46680.9 0.06 829.5 36.0
ImageNet-10 1471.0 73632.2 1.5 414.4 112.3
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Figure 12: The influence of the number of plots 𝑁 and point
density 𝑆 .

2 5 8 10 12
0.82

0.84

0.86

0.88

0.90

0.92

Av
er

ag
e 

AU
RO

C

0.890 0.892 0.892 0.890 0.892

Ours-RE

0.1 0.3 0.5 0.6 0.8
t

0.82

0.84

0.86

0.88

0.90

0.92

Av
er

ag
e 

AU
RO

C

0.834 0.832

0.892

0.912 0.916
Ours-ATS

Figure 13: The influence of the parameters 𝛼 and 𝑡 .

5.5 Ablation Study
The Influence of the Hyper-parameters. 𝑁 is the number of
decision boundary plots and 𝑆 is the density of decision boundaries,
which are critical to the evaluation efficiency. Here, we investigate
Model X-ray’s performance under fixed 𝑁 = 20 with 𝑆 ranging
from 60 to 140 and under fixed 𝑆 = 100 with 𝑁 ranging from 5
to 40. Fig. 12 shows that lower 𝑁 and 𝑆 will slightly degrade the
performance of Model X-ray on CIFAR-10, which is still acceptable.

Besides, we investigate the impact of parameters in two in-
dicators, i.e., 𝛼 in RE and 𝑡 in ATS. As shown in Fig. 13, different
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Figure 14: The influence of the poisoning ratio.

Clean WaNetBlended

Figure 15: Decision boundaries of Blended [10] and WaNet
[34].

𝛼 has a neglectable effect on Ours-RE, while 𝑡 larger than 0.5 is
better for Ours-ATS.
The Influence of the Poisoning Ratio. In the above experiment,
we set the poisoning ratio as 10% by default. Here, we further eval-
uate our method against data-poisoning attacks under different
poisoning ratios (1%, 5%, 10%, and 20%) on CIFAR-10 dataset. As
shown in Fig. 14, as the poisoning ratio increases, our approach
becomes more effective, indicating that the phenomenon of anoma-
lous decision boundaries in the backdoor models becomes more
pronounced. For low ratios like 1%, the attack ability for some
attacks degrades, wherein the poorer performance is understood.

6 DISCUSSION
Special Cases.We find that Ours-AST can distinguish the back-
doored model by WaNet [34] from the clean model. Differently, the
AST of WaNet is larger rather than smaller than that of the clean
model (see Fig. 15). We conjecture that WaNet can be seen as an
augmentation enhancing the robustness of clean samples. Blended
[10] can bypass our detection. We explain that blending the trigger
pattern with clean samples may not establish the shortcuts because
of the redundancy of the model, which can be easily purified by
pruning like ANP [47]. Nonetheless, we need more sophisticated
strategies to achieve better detection.

7 CONCLUSION
In this paper, we present a noteworthy observation: there exists
a distinction between clean models and backdoored models by
visualized 2D decision boundaries. Based on this, we proposeModel
X-ray , a novel post-training backdoor detection approach through
the analysis of illustrated 2D decision boundaries, which solely
relies on the hard prediction of clean inputs, regardless of any
assumptions about backdoor attacks and can determine the target
label under the all-to-one attack strategy.

Extensive experiments support thatModel X-ray has outstand-
ing effectiveness and efficiency against diverse backdoor attacks
on different datasets and different architectures.
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