
A Experimental Details

A.1 Implementation

We utilize https://github.com/kekmodel/FixMatch-pytorch to implement Labeled Only,
OpenMatch and FixMatch. The implementation reproduces the result of FixMatch well. For MTC,
we employ the author’s official implementation with Pytorch.

Hyper-parameters. Unless otherwise noted, the same value is used for all experiments.

• The batch-size B = 64.
• The relative size of batch-size for unlabeled data µ = 2.
• Trade-off parameters λem = 0.1, λfm = 1.
• Trade-off parameter λoc = 0.5 for CIFAR10 and ImageNet, λoc = 1.0 for CIFAR100.
• Epochs to begin FixMatch training, Efix = 10.
• Iterations per epoch Imax = 1024.
• Total number of epochs Emax = 512.
• Optimizer: SGD with nesterov momentum = 0.9.
• Learning rate η = 0.03.

Hyper-parameters shared with FixMatch are borrowed from the implementation except for that µ and
Emax are set smaller to reduce computation time. To make a fair comparison with FixMatch, we
utilize hyper-parameters defined above to train a FixMatch model.

Validation. In CIFAR10 and CIFAR100, 50 samples per each known class are used. For ImageNet-30,
10% of the training split is used for the purpose.

MTC. Since the author provides implementation optimized for CIFAR10, we first employ the same
hyper-parameters. Although we attempted to tune the hyper-parameter such as a trade-off weight
for out-lier detection loss, the results did not improve with the tuning. Therefore, we use the same
hyper-parameters for all experiments.

A.2 Dataset

ImageNet-30. We utilize the training split of ImageNet-30 for training and test one for evaluation. To
be specific, 2,600 samples are employed for labeled training data and validation respectively, 33,800
samples are employed for unlabeled data. Testing was done for 3,000 test samples.

Novelty Detection Datasets We follow CSI [1] to set up the datasets. See their implementation
https://github.com/alinlab/CSI for more details.

B Additional Results

We provide results of the ablation study and hyper-parameter sensitivity analysis.

SOCR CIFAR10-50 CIFAR10-400

14.6±2.1 / 49.5±15.2 9.9±1.3 / 86.3±5.2
X 10.4±0.9 / 99.3±0.3 5.9 ±0.5 / 99.3±0.2

Table A: Ablation study (Error rate / AUROC). Adding SOCR clearly boosts the performance in both
metrics.

Additional ablation study. In the ablation study of the main paper, we also ablate FixMatch loss for
clarity of ablation. Here, we show the ablation of SOCR for a model training with FixMatch loss. In
Table A, SOCR improves the performance with a large margin.

Ablation study for entropy minimization.

1

https://github.com/kekmodel/FixMatch-pytorch
https://github.com/alinlab/CSI


Ent SOCR CIFAR10-50 CIFAR100-50

X 60.5 ± 2.8 70.4 ± 0.1
X 78.1 ±1.9 78.7 ±0.1

X X 81.3±2.9 78.9 ±0.1

Table B: Ablation study with entropy minimization (AUROC). Adding entropy minimization slightly
improves AUROC.

(a) AUROC without FixMatch (b) Error rate with FixMatch (c) AUROC with FixMatch
Figure A: Sensitivity analysis with respect to the weight for SOCR loss. (a): AUROC of models trained without
FixMatch. (b): Error rate of models trained with FixMatch. (c): AUROC of models trained with FixMatch.

In Table B, we provide the ablation study including entropy minimization by the outlier detector. We
can see that combining entropy minimization slightly improves performance, but most of the gain is
from SOCR.

Sensitivity to hyper-parameters.

Fig. A illustrates the sensitivity to the weight parameter for SOCR. Fig. A(a) describes the case
where FixMatch loss is not employed. Although there is a small variation in AUROC by the value of
weight parameters, superiority over a model without SOCR (weight equal to 0) is clear in all cases.
In Fig. A(b) and (c), error rate and corresponding AUROC by varying weight parameter while fixing
other hyper-parameters are shown. We observe that increasing the weight decreases the number of
pseudo-inliers. Since we do not change the threshold in this experiment, the number of unlabeled
inliers used for FixMatch decreased, which results in a larger error rate. On the other hand, AUROC
remains high in every weight value, which indicates the effectiveness of SOCR to separate inliers
and outliers. Also, when SOCR is not employed for training (weight is 0), AUROC significantly
degrades.

References
[1] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive

learning on distributionally shifted instances. arXiv preprint arXiv:2007.08176, 2020.

2


	Experimental Details
	Implementation
	Dataset

	Additional Results

