Under review as a conference paper at ICLR 2021

RETHINKING SAMPLING IN 3D POINT CLOUD
GENERATIVE ADVERSARIAL NETWORKS
SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

1 TRAINING DETAILS

For WGAN training, we set the gradient penalty coefficient Ay, = 1. In each iteration, the discrimina-
tor gets updated ten times while the generator gets updated one time (1,54, = 10). The latent vector
z € R512 is sampled from a standard normal distribution A/(0, I). We used the Adam optimizer for

updating all the generator and discriminator networks with a learning rate 10~* and other coefficients
of B = 0.5 and B = 0.999. We train all the GANs for 6000 epochs on chair dataset and 1500
epochs on multi-category dataset. We observe all GANs converge at the end of training.

Our networks are implemented using PyTorch. We use one NVIDIA Titan-Xp to train a GAN model.
We will release our code to facilitate research in this field.

2 NETWORK ARCHITECTURES

2.1 DISCRIMINATORS

PointNet Discriminator For all our experiments, we use a fixed PointNet architecture as below.
Note that mix pooling will double the feature dimension while max pooling and average pooling
keep it unchanged. For each FC layer in the MLPs except the last one before the final output, we use
LeakyRELU as the activation function. To constrain the range of the discriminator output, we use a
Sigmoid activation at the end, which we find helpful for stabilizing the training in our experiments.

MLP([3, 64, 128,1024]) — Max/Avg/Mix-Pooling() — C e R *x1024/1024/2048
— MLP([1024/1024/2048,512,1]) — Sigmoid()

Attention-Max/Mix The network structures are shown below.

MLP([3, 32, 64]) —F ¢ RV*64 —MLP([64,32]) — G € RV*32
—F ¢ RV*64 —MLP([64, 32]) — H € RV*32
—F ¢ RV*¢4 —MLP([64, 64]) — K ¢ RVx64
F + wSoftMax(GHT)K —MLP([64, 256, 1024]) —Max/Mix-Pooling()

—MLP([1024/2048,512,1]) —Sigmoid()

w € Ris a learnable weight to balance between the original feature F' and the feature GHT K from
self attention unit.

Original attention implementation in PU-GAN(Li et al.,[2019) PU-GAN(Li et al.,[2019) per-
forms an additional early fusion after the first MLP, basically it performs max pooling to obtain
T = Max(F) € R'*54 and per-point concatenates 7' to F' forming F’ = [F\tile(T)]. Other than
replacing F' by F”, it is almost same to our implementation. We modify the dimensionality of its final
feature after the second max pooling to be 1024 for a fair comparison to other discriminators. Since
this structure leverages two pooling layers, it is unfair to compare it with other discriminators and
hard to see the effect of its self-attention unit, which is why we introduce our PointNet-Attention.

Under review as a conference paper at ICLR 2021

PointNet++ To speed up the training, we use a slightly simplified version of PointNet++(Q1 et al.,
2017) with the architecture shown below. Same to the original implementation, we use LeakyReL U
and batch normalization for each FC layer in the set abstraction layers (SA), and only LeakyReLLU
for the FC layers in the final MLP.

SA(512,0.1, [3, 64, 64, 128)) — Max-Pooling()
SA(128,0.2,[128 + 3,128, 256,256]) — Max-Pooling()
GlobalSA([256 + 3,256,512,1024]) — Max-Pooling()
— MLP([1024,512, 1]) — Sigmoid()

Ll

DGCNN To speed up the training, we use a slightly simplified version of DGCNN(QIi et al.l 2017)
with the architecture shown below. Same to the original implementation, we use LeakyReLU and
batch normalization for each convolutional layer in the EdgeConv layers.

EdgeConv([6, 64]) — Max-Pooling()

EdgeConv([64 x 2,64]) — Max-Pooling()

EdgeConv([64 x 2,128]) — Max-Pooling()

EdgeConv([128 x 2, 256]) — 0

EdgeConv([512, 1024]) — O
N

MLP([1024 x 2,512,256, 1])

Max-Pooling
Max-Pooling
Sigmoid()

Ll Ll

2.2 GENERATORS

We used the officially released code of TreeGAN(Shu et al.,|2019) and GraphCNN-GAN(Valsesia
et al.| 2018)). We implement the FC generator and the deformation generator with the architectures
shown below. For each FC layer except the last one in the second MLP, we use LeakyReLU as the
activation function.

Note that our ground truth data are normalized point clouds with a zero center and a unit length
diagonal. We hence use a Sigmoid activation at the last layer. And we translate the Sigmoid output
by (—0.5, —0.5, —0.5) to produce the final point cloud.

FC Generator The structure of FC generator is shown below:
MLP([512, 512,512, 512,2048, 2048 x 3]) — Sigmoid() — (0.5,0.5,0.5)

Deformation Generator In our experiments, we use a unit sphere as our template surface, because
all of our real point clouds are sampled from closed surfaces. In addition to a latent code, we input
2048 uniformly sampled points on the unit sphere to our deformation generator. We randomly
generate the points for each point cloud simply by normalizing random variables drawn from 3-
dimension normal distribution into unit vectors(Muller, |1959). We add a batch normalization layer to
the last FC layer in the first MLP, which we find important for its generation quality.

MLP([3 + 512,512, 512, 512, 512]) — MLP([512, 64, 3]) — Sigmoid() — (0.5, 0.5, 0.5)

3 MORE RESULTS OF POINTNET-BASED DISCRIMINATOR VARIANTS
In Table[I] we provide more results of other variants of PointNet-based discriminators.

PointNet-Max-2048 Note that PointNet-Max discriminator generates a 1024-D feature after max-
pooling while PointNet-Mix discriminator doubles the size to 2048-D due to the concatenation of max
and average pooling features. This difference affects the weights of the following MLP layers. For a
completely fair comparison, we also experiment with a PointNet-Max-2048 discriminator which has
the following network structure:

MLP([3, 64, 128, 2048]) — Max-Pooling() — MLP([2048, 512, 1]) — Sigmoid().

To highlight the difference, in Table[I] we change the name of our previous PointNet-Max discrim-
inator in the Table 3 of the main paper from Max to Max-1024. When paired with FC generator,

Under review as a conference paper at ICLR 2021

comparing to PointNet-Max-1024, PointNet-Max-2048 shares a very similar performance. It gets
slightly worse on the chair dataset except for on COV-EMD metric while outperforming PointNet-
Max-1024 slightly on the multi-category dataset. Using both 2048-D feature, PointNet-Max-2048
is stil far behind PointNet-Mix, which again demonstrates the advantage of Mix-Pooling over Max-
Pooling.

PointNet-Attention-Mix and original PU-GAN Discriminator(Li et al., 2019) In the Table 3 of
the main paper, we show that PointNet-Attention can improve the performance on sampling-related
metrics comparing to PointNet-Max, which means self-attention module does capture the point
density distribution though its overall generation quality is worse than PointNet-Mix. Note that
PointNet-Attention also leverages a max pooling before outputting scores, it would be interesting
to know whether replacing the max pooling by mix pooling can further improve its performance.
In Table[T] we denote the two variants as Attention-Max and Attention-Mix, correspondingly. We
find that PointNet-Attention-Mix actually performs worse than PointNet-Attention-Max. We argue
that the mix-pooling’s density awareness comes from average pooling, which computes the center of
mass in the feature space and hence is aware to certain baised sampling, but self-attention module
degrades the density awareness in the average feature. In PointNet-Attention-Mix, the mix pooling
sees a weighted sum of the per-point feature F' and a blended feature GH” K from self-attention
unit. Different with averaging, the learned correlation coefficients between the points GH” no longer
maintains the information of point density distribution, and that’s why leveraging a mix-pooling in
this case doesn’t help enforcing a more uniform point density.

Our implementation of PointNet-Attention is different with the original implementation in PU-
GAN(Li et al., 2019), which leverages two max pooling layers with one at an early stage and one at a
later stage. We experiment with the original implementation in PU-GAN(Li et al.; 2019) and find that
it outperforms our Attention-Max/Mix however is still fall behind PointNet-Mix by a large margin.

Dataset | Generator Pooling FPD-Mix | FPD-Max| | FGDJ| MMD-E| MMD-C| | COV-Et COV-Ct

FC Max-1024 1.571 0.211 7.030 0.1017 0.00164 23.56 72.75

FC Max-2048 1.638 0.224 7.926 0.1697 0.00144 42.26 70.98

FC Mix 0.184 0.209 2.124 0.0674 0.00196 73.64 74.96

FC Attention-Max 0.635 0.672 4.971 0.1156 0.00160 68.92 70.54

Chair FC Attentior}-MiX 0.759 0.814 5.532 0.1167 0.00167 69.36 68.04
FC Attention 0.582 0.602 4.945 0.1178 0.00164 70.98 71.72

Deform Max-1024 0913 0.268 5.602 0.0908 0.00201 68.5 72.61

Deform Mix 0.534 0.373 2.836 0.0695 0.00200 76.29 75.11

Deform Attention-Max 0.696 0.755 2.987 0.1141 0.00160 68.77 69.36

Deform Attention-Mix 0.792 0.817 3.010 0.1141 0.00157 65.97 68.33

FC Max-1024 1.553 0.354 6.981 0.0842 0.00153 35.16 64.16

FC Max-2048 1.415 0.306 6.226 0.1253 0.00128 53.80 74.10

FC Mix 0.255 0.285 2.550 0.0656 0.00184 73.5 72.16

FC Attention-Max 0414 0.453 4.234 0.1188 0.00134 72.19 69.63

Multi FC Attention-Mix 0.531 0.581 4.555 0.1135 0.00139 69.95 68.93
-Cat FC Attention 0.442 0.486 4.202 0.1191 0.001527 734 74.08
Deform Max-1024 1.072 0.633 3.845 0.0799 0.00179 62.5 64.5

Deform Mix 0.614 0.349 2.451 0.0670 0.00191 70.83 68.83

Deform Attention-Max 0.616 0.720 2.531 0.1113 0.00141 72.04 69.60

Deform Attention-Mix 0.447 0.492 2.120 0.1085 0.00132 73.12 70.56

Table 1: Evaluating more variants of PointNet-based discriminators. Here the new discrimina-
tors, Max-2048, Attention-Mix, and Attention(L1 et al.,[2019), are in bold.

4 FPD IMPLEMENTATION

We choose not to use the checkpoint of FPD metric in the released code(Shul [2019) of TreeGAN(Shu
et al., [2019) but train our own FPD-Max/Mix. We found that, the released code (Shul 2019)
implements a PointNet-Max network containing a spatial transformer network for feature extraction.
We empirically found that the spatial transformer network, which learns to rotate the real point clouds
in ModelNet40(Wu et al.| 2015), can lead to a very large variance in the FPD scores of generated
point clouds. So, we remove the spatial transformer network from the PointNet feature extractor and
stick to a vanilla PointNet in our FPD-Mix/Max implementation.

Here we compare the original FPD and our FPD-Max, both of which use PointNet-Max features
of the generated point clouds from a deformation generator. This deformation generator is trained
using a PointNet-Mix discriminator. We always evaluate FPD using a set of 10K samples. To see
the variance between two closed checkpoints, we use one checkpoint at epoch 5990 and the other at

Under review as a conference paper at ICLR 2021

Mean@6000 Std@6000 | Relative Std@6000 | Mean@5990 Mean Diff | Relative Mean Diff
Original FPD Shul 2019 3814 0.2642 6.93% 1.910 1.9039 49.91%
FPD-Max 0.318 0.00655 2.06% 0.3082 0.0106 3.33%

Table 2: Comparison between our FPD-Max and original FPD: the first three columns show the
mean, the standard deviation, and the relative standard deviation of the FPDs of the 5 different sets of
generated samples using the checkpoint at epoch 6000. The fourth column shows the mean FPD of
the generated samples using the checkpoint at epoch 5990. The firth and the sixth columns show the
absolute and relative differences between the mean FPDs for checkpoint 6000 and 5990.

Iteration 0 : 0.6k 2k 8k : 32k 64k 80k

PointNet-Max

PointNet-Mix

PointNet-Avg

PointNet-
Attention

PointNet++

DGCNN

Figure 1: Visualization of the evolution of one learnable point cloud for each discriminator
during no generation trainings. We color-code the local point density that ranges from sparse (dark
blue) to dense (light yellow).

epoch 6000 in this experiment. To obtain the variance of different sets of samples, we generate 5 sets
of 10K samples for the checkpoint at epoch 6000 using different random seeds.

The comparison is shown in Table[2] Our FPD-Max has a lower relative standard deviation, which is
defined as the ratio of the standard deviation to the absolute value of the mean. Also, given that our
GAN is almost converged at epoch 6000, our FPD-Max only relatively changes 3.33% from epoch
5990 to epoch 6000 while the original FPD changes 49.91%. The larger variance and the significant
change indicate that the original FPD is not a stable metric for evaluating generated point clouds.

5 VISUALIZATION OF LEARNABLE POINT CLOUDS DURING NO GENERATOR
TRAINING

In Figure [T} we show the evolution of one learnable point cloud during its training process for
each discriminator. The result indicates that only PointNet-Max/Mix/Attention are qualified as
good teachers for point cloud generation. Compared to PointNet-Max, PointNet-Mix/Attention give

Under review as a conference paper at ICLR 2021

gradients to every point, resulting in a faster convergence. Also, PointNet-Mix/Attention generates a
more uniform shape comparing to PointNet-Max.

For point cloud density visualization used in Figure [I|and Figure 2 of the main paper , point densities
are estimated using a linear kernel density estimation method with a bandwidth 0.1. Basically, the
local density of a point is proportional to the number of points within its ball neighbourhood with a
radius of 0.1.

Under review as a conference paper at ICLR 2021

REFERENCES

Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-gan: a point
cloud upsampling adversarial network. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 7203-7212, 2019.

Mervin E Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM, 2(4):19-20, 1959.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pp.
5099-5108, 2017.

Dong Wook Shu. Treegan. https://github.com/seowok/TreeGAN, 2019. [Online; ac-
cessed 22-November-2019].

Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d point cloud generative adversarial network
based on tree structured graph convolutions. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 3859-3868, 2019.

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d
point clouds via graph convolution. 2018.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912-1920, 2015.

https://github.com/seowok/TreeGAN

	Training Details
	Network Architectures
	Discriminators
	Generators

	More Results of PointNet-based Discriminator Variants
	FPD Implementation
	Visualization of Learnable Point Clouds during No Generator Training

