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1 OVERVIEW OF SUPPLEMENTARY
MATERIALS

In this supplementary material, we delve deeper into the intricacies
of our proposed EUAR method, providing extensive details that
were not feasible to include within the confines of our primary
submission due to space limitations. This supplementary mainly
contains the following contents:

• Section 1: Here, we present additional experimental details,
encompassing comprehensive statistics of all utilized datasets
and an expanded array of hyperparameter settings employed
during both training and testing phases. Within this section,
we also offer a more intricate exposition of the training and
testing methodologies integral to our EUAR method.

• Section 2: A comprehensive understanding can be achieved
with access to the full set of experimental results and sup-
plementary ablative analysis.

• Section 3: Additional visualization results and qualitative
analysis, including a more extensive examination of classi-
fication outcomes under various noise conditions, are pro-
vided for a comprehensive understanding.

• Section 4: Limitation discussions, we analyze the shortcom-
ings of our work and highlight potential directions for future
research.

For more details, please refer to our anonymous implementation
code https://anonymous.4open.science/r/EUAR-7BF6.

2 MORE IMPLEMENTATION DETAILS
Datasets. As described in the formal paper, we adopt 5 multimodal
datasets to evaluate our method. Here we provide more details of
the datasets as follows:

• CMU-MOSI [6]: The CMU-MOSI dataset comprises 2,199
human-annotated speech video clips, with each clip associ-
ated with an emotional intensity score ranging from -3 to
3. Its training, validation, and test sets consist of 1,281, 229,
and 685 samples, respectively. Each sample includes visual,
audio, and text descriptions.This dataset is collected from
social media and has been annotated by people who invested
their time and effort. Due to its collection from social media,
it inevitably contains some unavoidable noise.

• CMU-MOSEI [1]: The CMU-MOSEI dataset is an extensive
collection comprising 22,856 movie review segments sourced
from YouTube. It’s a substantial dataset tailored for Multi-
modal Sentiment Analysis (MSA) tasks, featuring training,
validation, and test sets consisting of 16,265, 1,869, and 4,643
samples, respectively. This dataset includes labels for both
emotion and sentiment. Despite being a multi-label dataset,
for this particular task, we exclusively focus on the sentiment
labels.

• MVSA-Single [4]: TThe MVSA-Single dataset is a bimodal
dataset created for Multimodal Sentiment Analysis (MSA)
tasks. It consists of pairs of images and text gathered from
social media platforms. Both the image and text components
in this dataset contain different levels of noise. Sentiment is
categorized into three classes: positive, neutral, and negative.
Classification is performed using both the images and their
associated textual descriptions.

• NYU Depth v2 [5]: We utilize RGB images and depth images
sourced from the NYU Depth v2 dataset as input for predict-
ing scene categories. Following the standard protocol [7],
we divide the 1,449 samples into a training set and a test
set with a ratio of 795 to 654. We preserve the nine most
common scenarios and relabel the remaining categories as
"others."In this dataset, there are two modalities: RGB images
and depth images. We explored this experiment to delve into
more modalities. Additionally, this dataset contains some
data noise, which conveniently facilitates our experiment.

Moreover, following [7], we also use noisy datasets to evaluate
the robustness of multimodal fusion in our method, Noisy NYU
Depth v2, where Gaussian noise and Salt-Pepper noise are jointly
considered. For clarity, here we summarize the overall statistics of
the datasets above in Table 1.
Metrics. For CMU-MOSI and CMU-MOSEI, in line with previous
research [3], we employed the F1 score for binary classification,
seven-class accuracy, and Pearson correlation coefficient. For binary
classification, we grouped the predicted sentiment intensity scores
into positive and negative classes and reported the F1 score. For
the seven-class classification, we rounded the predicted continuous
sentiment intensity values to -3, -2, -1, 0, 1, 2, 3, and reported the
accuracy.

For the MVSA-Single and NYU Depth v2 classification datasets,
we reported their accuracy and F1 score.

To test the robustness of the EUAR method, following prior re-
search [7], we introduced Gaussian noise or Salt-Pepper noise to
the test data of NYU Depth v2. For Gaussian noise, we set the mean
to 0 and the variance to 𝜖 for the visual modality. To ensure a fair
comparison, we conducted our method on this dataset ten times us-
ing different random number seeds. We averaged the experimental
results and reported both the mean and standard deviation.

For a fair comparison, we conducted 10 experiments using dif-
ferent random number seeds and reported the average accuracy.
Experimental Settings. To ensure a fair comparison, we align the
backbone of our feature extraction with existing state-of-the-art
methods. For the trimodal dataset, we employ FACET, COVAREP,
and BERT as feature extractors for the visual, audio, and text modal-
ities, respectively. The extracted feature dimensions for visual, au-
dio, and text are 64, 64, and 768, respectively. For the MVSA-Single
dataset, we utilize ResNet-152 and BERT as feature extractors for
visual and text features, respectively. Regarding the NYU Depth v2

https://anonymous.4open.science/r/EUAR-7BF6
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Table 1: The statistics of the adopted multimodal datasets. Note that the CMU-MOSI and CMU-MOSEI datasets, which are used
for regression-based tasks, are labeled with sentiment strength from -3 to 3.

Datasets Noise Modality Train/Val/Test Class Task
CMU-MOSI - Video, Text, Audio 1281/229/685 7 Regression
CMU-MOSEI - Video, Text, Audio 16265/1869/4643 7 Regression
MVSA-Single - RGB, Text 1555/518/519 3 Classification
NYU Depth v2 - Depth, RGB 795/414/654 10 Classification
NYU Depth v2 Gaussian, Salt-Pepper Depth, RGB 795/414/654 10 Classification

dataset, which utilizes both depth and RGB images as two modali-
ties, we employ ResNet152 as the feature extractor for both modali-
ties. We set x, y, and z to be 1e-3, 1e-5, and 1e-3, respectively. This
enabled us to achieve the results reported in the paper. Addition-
ally, we conducted sensitivity analysis on the hyperparameters,
the results of which are shown in Fig. 5. We conducted a hyperpa-
rameter sensitivity analysis experiment on the CMU-MOSI dataset.
We fixed 𝜆 and 𝛽 respectively and varied the values of the other
two parameters, testing the model’s performance and reporting
the Acc2 metric. In the left figure, we fixed 𝜆, and when changing
the value of 𝛽 , the model’s performance fluctuated significantly,
indicating that our model is highly sensitive to the hyperparameter
𝛽 , and special attention should be paid to the setting of 𝛽 during
training. Meanwhile, in the right figure, we fixed the value of 𝛽
and changed the other two hyperparameters, and the fluctuation in
model performance was not significant. From these results, it can
be noted that during training, special attention should be paid to
the trade-off weight of auxiliary loss.

Figure 1: Hyperparameter sensitivity analysis.We conducted
tests on different hyperparameter settings to observe the
model’s Acc2 metric on the CMU-MOSI dataset.

Training and Testing Details We outlined our training proce-
dure in Algorithm 1. Meanwhile, in Algorithm 2, we elucidated
our testing procedure to provide a better understanding of our
algorithm.

3 ADDITIONAL FURTHER ANALYSIS
Additional Experimental Results with standard deviation
Due to space constraints in the main paper, we did not report the
standard deviation of the test results on the noisy dataset. Therefore,
in Table 2, we supplemented the standard deviation metric. We con-
ducted additional experiments on the noisy dataset NYU Depth V2
using different random seeds and reported the mean and standard
deviation of the model results. From the results, it can be observed

Algorithm 1: Training procedure of the EUAR
Data: Video clips or text-image pairs
Result: Updated model parameters

1 Extract features from each unimodal data to obtain 𝑋𝑚
𝑖

2 while Training do
3 For each unimodal input, obtain 𝑋𝑚

𝑖
through encoder

backbone;
4 Feed the input into the Gate in the MoE framework,

producing routing weights𝐺𝑚
𝑗
.;

5 Select the expert to be used based on the routing
weights and use two separate fully connected layers to
predict 𝜇𝑚

𝑖
and 𝜎𝑚

𝑖
, respectively.;

6 Calculate the unimodal representation ℎ𝑚
𝑖
:

ℎ𝑚
𝑖

=
∑𝑁

𝑗 𝐺𝑚
𝑗
(𝑥𝑚

𝑖
)𝐸𝑚

𝑗
(𝑥𝑚

𝑖
) .;

7 Calculate the auxiliary loss: 𝐿𝑚𝑎𝑢𝑥 = 1
𝑁

¤∑𝑁
𝑗 𝑅

𝑚
𝑗
𝑃𝑚
𝑗
;

8 Calculate the U-loss: 𝐿𝑚𝑢 = 1
𝑁

∑𝑁
𝑗 𝜎𝑚2

𝑗
𝐺 𝑗 (𝑥𝑚) ;

9 Calculate the KL-loss:
𝐿𝑚
𝑘𝑙

= − 1
2 (1 + 𝑙𝑜𝑔𝜎

𝑚2
𝑖

− 𝜇𝑚2
𝑖

− 𝜎𝑚2
𝑖

). ;
10 Concatenate the unimodal representations to obtain ℎ̂𝑖 ;
11 Pass ℎ̂𝑖 through the final fully connected layer to obtain

regression or classification results 𝑦𝑖 ;
12 Calculate 𝐿𝑡𝑎𝑠𝑘 ;
13 Calculate 𝐿𝑡𝑜𝑡𝑎𝑙 .;
14 Update model parameters with Adam optimizer;

that our model not only achieved superior performance in terms
of average accuracy but also outperformed other state-of-the-art
models in terms of standard deviation. It is noteworthy that as the
noise intensity increases, the superiority of our model in terms of
standard deviation becomes more pronounced, demonstrating the
robustness of our approach. This confirms the superiority of our
method in handling noisy data.
Additional Ablation Experiment on Loss To demonstrate the
effectiveness of the uncertainty loss we proposed, we conducted
additional experiments on the noisy dataset NYU Depth V2. We
tested the model without U-loss on the noisy dataset and compared
it with our full model. The experimental results are shown in Figure
X. From the figure, it can be seen that our complete EUAR method
performs significantly better under various noise conditions. It is
noteworthy that the greater the intensity of the noise, the greater
the advantage of our complete method. This fully demonstrates
the effectiveness of the proposed U-loss in handling noisy data.
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Specifically, when the intensity of Gaussian noise and salt-and-
pepper noise is 10, our complete method outperforms by nearly 2%
in accuracy, highlighting the superiority of our approach.

Algorithm 2: Testing procedure of the EUAR
Data: Video clips or text-image pairs
Result: Regression or classification results

1 For each unimodal input, obtain 𝑋𝑚
𝑖

through encoder
backbone;

2 Feed the input into the Gate in the MoE framework,
producing routing weights𝐺𝑚

𝑗
.;

3 Select the expert to be used based on the routing weights
and use two separate fully connected layers to predict 𝜇𝑚

𝑖

and 𝜎𝑚
𝑖
, respectively.;

4 Calculate the unimodal representation ℎ𝑚
𝑖
:

ℎ𝑚
𝑖

=
∑𝑁

𝑗 𝐺𝑚
𝑗
(𝑥𝑚

𝑖
)𝐸𝑚

𝑗
(𝑥𝑚

𝑖
) .;

5 Concatenate the unimodal representations to obtain ℎ̂𝑖 ;
6 Pass ℎ̂𝑖 through the final fully connected layer to obtain

regression or classification results 𝑦𝑖 ;
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Figure 2: More t-SNE results.We conducted ablation experi-
ments by removing U-loss under various types and degrees of
noise conditions and compared it with our complete method.

Additional Ablation Experiment on Expert Number Our ap-
proach introduces the Mixture of Experts framework for the first
time in the task of multimodal sentiment analysis. To demonstrate
the superiority of this dynamic network, we conducted tests on
modalities missing when the number of experts in MoE is decreased,
comparing it with our complete method.We conducted experiments
on both CMU-MOSI and CMU-MOSEI datasets to observe the im-
pact of varying the number of experts on model performance. The
results are shown in Figure 3. From the figure, it can be observed that
our method consistently outperforms in terms of the Acc2 metric
under various expert number scenarios. This clearly demonstrates
the correctness of introducing the MoE framework into multimodal
sentiment analysis. Our method achieves good performance across
different numbers of experts. However, as the number of experts
increases, our model’s performance also improves, demonstrating

the effectiveness of the proposed approach. It is noteworthy that
our method demonstrates a significant performance advantage as
the number of experts increases from 2 to 32. These results demon-
strate that our method not only achieves good performance in noisy
data scenarios but also performs well across different numbers of
experts. Furthermore, this performance advantage increases with
the increase in the number of experts.

Expert=2 Expert=4 Expert=8 Expert=16 Expert=32
Expert Number

0.835

0.840

0.845

0.850

0.855

0.860

0.865

Ac
cu

ra
cy

Box Plots for w/o Expert Number on CMU-MOSI
CMU-MOSI
CMU-MOSEI

Figure 3: Expert Number Ablation results.We tested the
model performance using different numbers of experts on
both the CMU-MOSI and CMU-MOSEI datasets.

4 ADDITIONAL VISUALIZATION
In order to visually demonstrate the effectiveness of our method, we
conducted additional visualizations on EUAR.We conducted feature
visualization under more noisy conditions, showcasing additional
t-SNE visualization results. Simultaneously, we conducted more
qualitative analysis, comparing our method with state-of-the-art
approaches.
Visualization of Joint Representations Similar to the same sec-
tion of our paper, to fully explicate the superiority of proposed
EUAR, we conduct more experiment of t-SNE visualization, which
project joint representations into 2D space. Followed our method
in the paper, we employ the t-SNE to visualize the learned joint
representations of simple concatenation, MLP, and complete EUAR
for a quantitative comparison. Moreover, in this supplementary
material, we visualize the rest of the missing modalities combina-
tions: text and audio, only text, only audio, only vision, audio and
vision. As shown in Figure, comparing to simple concatenation,
MLP model can distinguish joint representations of different senti-
mental labels to some degree, but it is still hardly tell the difference
between the three clusters, especially in the combinations of only
audio, only video, video and audio. It is worth noting that some
of the representations are confused by the MLP model, clustering
in the wrong labels. On the other hand, the complete EUAR has
more compact and distinguishing clusters. However, because of the
the inherent characteristic of CMU-MOSI, that the textual modal-
ity mainly contribute to provide more valid information than the
other two modalities, when the text modality is missing, the joint
representations of audio and vision contain more noise, making it
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Table 2: Noisy NYU v2 Depth. We conducted 10 experiments using different random seeds, reporting the average and
standard deviation of model accuracy.

Method Clean Salt-Pepper Noise Gaussian Noise
Acc@𝜖 = 0 Acc@𝜖 = 5 Acc@𝜖 = 10 Acc@𝜖 = 5 Acc@𝜖 = 10

Concat 70.44 ± 0.89 57.98 ± 2.08 44.51 ± 2.91 59.97 ± 2.14 53.20 ± 3.50
Late fusion 69.16 ± 0.68 56.27 ± 2.40 41.22 ± 2.78 59.63 ± 2.44 51.99 ± 3.11

Align 70.31 ± 1.28 57.54 ± 2.50 43.01 ± 2.66 59.47 ± 1.84 51.74 ± 3.41
MMTM 71.04 ± 0.41 59.45 ± 1.38 44.59 ± 2.49 60.37 ± 2.61 52.28 ± 3.77
TMC [2] 71.06 ± 0.76 59.34 ± 1.03 44.65 ± 2.30 61.04 ± 1.66 53.36 ± 2.76
QMF [7] 70.09 ± 0.97 58.50 ± 2.05 45.69 ± 2.79 61.62 ± 1.84 55.60 ± 2.09

RSMF (Ours) 71.71 ± 0.87 61.35 ± 1.32 61.35 ± 2.01 63.15 ± 1.67 57.79 ± 1.97
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Figure 4: More t-SNE results.We supplemented additional feature visualizations for cases of missing modality, comparing our
complete method with the ablated one.
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Figure 5: More Qualitative Analysis results.We gathered additional qualitative analysis results and visualized them for compari-
son with the current state-of-the-art methods.

hard to classify. This is the reason we suspect why the results of
clusters in the last three rows of the figure are not so distinctive as
the rest of the missing combinations. Nevertheless, our proposed
model manages to learn the joint representations from those two
modalities by excluding noise within these modalities, and can still
outperform the other ablated models. Consequently, the t-SNE vi-
sualization indicate that with the help of both MoE structure and

proposed U-loss, EUAR is more capable of learning a representative
joint representation.
Qualitative Analysis Due to the limited space of our paper, we
exhibit more qualitative analysis on missing modalities scenar-
ios on CMU-MOSI dataset. As shown in figure above, except for
the combinations whose textual modalities are available, we also
conduct following combinations whose texts are missing, namely
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only video, only audio and both video and audio. These three com-
binations, due to the unavailability of textual modality, contain
more noise and invalid information comparing to combinations we
present in the paper, resulting in more challenging classification.
Followed our method in the paper, we select several typical cases
from testing set of CMU-MOSI. Also, we use rectangles with red
dash lines to represent missing modalities. It is obvious to observe
that our proposed EUAR method consistently produce correct clas-
sification, while DiCMoR is still unable to conduct the MSA task
accurately.Ulteriorly, quantitative visualization of above combina-
tions show that the transcendent robustness and the ability of noise
resistance of our proposed EUAR.

5 LIMITATION DISCUSSION
While our method has achieved state-of-the-art results, there are
still some limitations worth noting. Firstly, our method primarily
relies on aleatoric uncertainty of the data , potentially overlook-
ing another form of uncertainty known as epistemic uncertainty.
Existing methods for quantifying epistemic uncertainty are often
computationally expensive and involve a large number of parame-
ters. Therefore, it is imperative for future research to explore more
cost-effective and lightweight methods for quantifying epistemic
uncertainty and integrating it into feature enhancement processes.

Secondly, we have observed that on datasets with high data
quality, such as CMU-MOSEI, our method, while achieving state-
of-the-art performance, shows limited improvement. When dealing

with high-quality data, our method struggles to effectively handle
the data. Hence, there is a need in the future to develop a more
comprehensive data processing method that can demonstrate su-
perior performance regardless of the dataset quality. At the same
time, we placed greater emphasis on individual data handling by
different experts without making significant efforts to coordinate
between them. In the future, we will explore more methods to fa-
cilitate collaboration among different experts to fully leverage the
power of the entire framework.
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