A Proof of the Theorem

A.1 Proof of Theorem 3.1

The proof can be found in (Hardt et al., 2016). We provide the proof in Appendix for reference.

Denote by S = (21,...,2,)and S’ = (2},. .., 2,) two independent random samples and let S(*) =

rn

(#1y .-+ Zim1, 2y Zit1, - - -, Zn) be the sample that is identical to S except in the ¢’th example where
we replace z; with z]. With this notation, we get that

EsEa [Rs[A(S)]] = Es E li i h(A(S); zi)]

—EsEg E4 l

where we can express § as
1 & , 1 —
_ - @)y, 1y .~ )
0=EgEg E4 ln ;:1 h(A(SY); %) n E h(A(S); Zz)] .

Furthermore, taking the supremum over any two data sets .S, S’ differing in only one sample, we can
bound the difference as

61 < sup Ba [A(A(S):2) — H(A(S"):2)] < e,

by our assumption on the uniform stability of A. The claim follows. ]

A.2 Proof of Lemma 4.1

Let the adversarial examples for parameter ¢, and 65 be

2z € arg max g(6q,2")
lz—2"]Ip<e

!
29 €arg max ¢(0y,2),
lz—2"|lp<e

then we have

[h(01, 2) — h(02, 2) |
=[g(01,21) — g(02, 22)|
<max{|g(01,21) — g(02, 21)], |9(01, 22) — g(02, 22)[}
<L||6, — 62|,

where the first inequality is based on the fact that g(01,21) > ¢(61, 22) and g(02, z2) > g(02, z1),
the second inequality is based on Assumption 4.1. This proves Lemma 4.1.1.

For all subgradient d(6, z) € dgh(, z), we have
”d(917 Z) - d(92’ Z) H
=[IVog(b1,21) — Vog(b2, z2)||
<[[Vog(01,21) — Vog(b2, 21)|| + [[Veg(02, 21) — Vg (b2, 22) ||
<Lol61 — b2 + L:[lz1 — 22[lp
<Lol|01 — b2l + La[l|21 — 2[lp + [z — 22l|,]
<Lg||61 — 02| + 2L €

where the first and the third inequality is due to triangle inequality, the second inequality is based on
Assumption 4.1. This proves the second inequality (non-gradient Lipschitz) in Lemma 4.1. |
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A.3 Proof of Lemma 4.2

Proof of Lemma 4.2.1 (n-approximate descent Lemma).
Let 0 be a point in the line segment of 6; and s, 6(u) = 02 + u(61 — 02), then

h(61) — h(62)
:/01<91 0y, Veh(0(w)))du
= /01<91 — 09, Vh(02) + Voh(0(u)) — Veh(02))du
—(Voh(62), 0, — 62) + /01«)1 0y, Veh(B(u)) — Veh(8))du
<(Voh(02),61 — 02) + /01 161 = Oa][|Voh(B(w)) — Voh(62)||du
<(oh(62).01 ~02) + | 161 — BalB16C0) — 61 +
=(Voh(02),61 — 02) + /01 161 — 02| [Bul|61 — b2 + n]du
~(Toh(62).01 02} + Bl0r 6al* [ udu+ 6, — 6ol
=(Voh(b2),61 — 02) + *H91 — 0> + 7|01 — 6.

Proof of Lemma 4.2.2 (n-approximate co-coercive).
By Lemma 4.2.1 (n-approximate descent Lemma), we have

h(61) < h(62) + (Voh(62), 01 — b2) + *Hol — 05]* + (|61 — 6.

Let 8* be a minimizer of h, then
h(0%) = iglf h(6y) < iélf (h(92) +(Voh(02),01 — 02) + éHol — O] + |61 — 92||)

e 5 £
= H11;ﬂ1£1 ;gg (h(@g) + tVQh(QQ) v+ —+nt
where t = ||6; — 02| and v = (61 — 02)/]|01 — 62]|. Then
2
Hlﬂlfl %nf (h(02) +tVoh(02) v + % + nt)

. t2
:%gg (h(@z) —t||Voh(62)] + 5 + nt)

2
If ||Voh(62)]| —n < 0, the quaduatic function is optimized when ¢ = 0. Then

2
(o) + inf (= e(I9on(0a)] - )+ )
—h(0).
If ||Voh(62)]| —n > 0, then

hla) + gl (— ([ Voh(6)]| =) + 5;)

—(02) + jut ( — t(19oh(0a)] ) + 5 ).

—h(0y) - %[Hvoh(%)n 2.
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Therefore, we obtain that

(0% = 0) < ~ 55 1198 1| A

1
26
Define

hi(w) = h(w) — Vh(0;)Tw
and

ha(w) = h(w) — Vh(62)Tw

Firstly, it is easy to see that hi(w) and ho(w) are both n-approximate 3-gradient Lipschitz, which
satisfies inequatily in Eq. (A.1). Secondly, w = #; minimizes h;(w). Then

(2) h(61) — Vh(61)" (02 — 01)

1 6 h1(01)

Huvm IR (A2)
1

55|

IVh(6:) — Vh(B:)] = - } .

Similarly, we have

h(0:) — h(62) — Vh(02)T(6: — 0) > [nwmen—wegn—m} N

1
26
Take the summation of Eq. (A.2) and Eq. (A.3), we have

2
(Vh(B) ~ Vh(Bs). 01 03) > 5 [mweo ~ Vh()] - m] .

A.4 Proof of Lemma 4.3

Proof of Lemma 4.3.1 (an-approximately (1 4+ «3)-expansive).

HGa,z(el) - Ga,z(92>”
=61 — 02 — a(Vh(61) — Vh(62))]
<01 — b2 + [|a(VR(61) — VR(62))]]
<||61 — 62 + a(B|01 — 02| + 1)
<(1+4 ap)||61 — 02| + an.

Proof of Lemma 4.3.2 (an-approximately non-expansive.) Let t = ||Vh(61) — Vh(62)].
Ift <n, we have

1Ga,z(01) = Ga,z(62)]]
=01 — 02 — a(Vh(01) — Vh(62))||
<[|1 = b2 + [ VA(61) — VA(62)]
§Ht91 — 92” +Oé77.
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Ift > n, we have

||Ga,Z(91) - Ga72(02)”2
=[161 — 62 — a(Vh(61) — Vh(62))|?
=[|6; — 62> — 2a(Vh(61) — Vh(02)T (01 — 05) + *t?

2
<[|61 — 02* - F(t —n)* + o?t?

2

2a 2a
=0 = 0al* = (0= m)* = (e =) + @+ (e =)
2at 2a
=63 = 6alf* = (¢ =) + 026> = (0~ ).

Let o < 1/p, then

2ot 2«

161 — 022 — S5 (t — ) + @22 + 20 (¢ — )
B B

<||6; — 6o]]? — 20°%¢t(t — 1) + o> + 2am (t—mn)

2a
<N = 6ol = (b +m) (e = )+ 0P+ e )
2a
<[61 = 62> + o®n + 7"@ — 7).
By the definition of n-approximate smoothness,
1
B(t —n) < |61 — 62|

Then

2am
01 — 62> + a*n* + 7@ —n)

<[y — 62]* + a®n + 2an||61 — 6
=([161 — b2 + am)?.

Therefore, we obtain that
[Ga,z(01) — Ga,:(02)]| < [[6h — 62| + an.

O
Proof of Lemma 4.3.3 (an-approximately (1 — a-y)-contraction.).
Firstly, if h(f) is a v-strongly convex, n-approximately (-gradient Lipschitz function, ¢(0) =
h(#)—%|10]|* is a convex, n-approximate (3—)-gradient Lipschitz function. The proof of convexity
follows the definition. To see the second claim, since

¢(01) — ¢(02)
=h(61) = h(62) = (5101 = 3 116]1)

<(Voh(02), 00— 02) + 2 160 — 021 +nll0n — 0a]| — (L1021 — L 0a])
<(Va6(02), 0 — 02) + 5101 — 031 + oy — o)l — (L10uI — L1621) +16 (01 — 02)
<(V00(02) 00— 02) + 2101 — 0o s — 02l — L 0s —

B—

<(Voo(62),01 — 02) + 5

161 — 62| + 7]l61 — Oa]].
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Therefore, ¢(0) satisfies the n-approximate (8 — v)-descent Lemma. Let t = ||V (61) — Vo (02)]l.

Ift <n, we have
||Ga,z(91) - G(x,z(QZ)H
=61 — 02 — a(Vh(61) — VA(62))]
=[|6h — b2 — a(Vp(01) + 701 — Vp(02) — v02)||
<N = ay) (01 = 62)[| + al[Ve(61) — Vo (ba)]
<(1 = a)||01 — O2f| + an.
Ift > n, we have
[|Gaz(01) — G2 (62) ||
=[|61 — 62 — a(Vh(6:1) — VA(62))|?
=[161 — 2 — (V(61) + ¥01 — Vp(62) — ~62)|?
<(1—ay)?[|61 — 62]|* — 2a(1 — a7)(V(61) — V(02)" (61 — 02) + ot

<= - 6l = 220 =g 4o
R A e e R e )

Since a < 1/, we have (1 — ay)/(8 — ) > «, then
20(1 — ay) 2 2a(l —av)n 2,2 2a(l —ay)n
R e S e e e S U AL
(1 —a)7[|6r — 62| Gk 5, (¢t-mta S (=)
2a(1 — ay)n
bt Sl VA AT
=~ (
<(1—a)?[l6r — 02]1* + &®n* + 2a(1 — av)nl|6r — 62|

2
s(u )01 — 6] + an) .

<(1— a)*[[61 — ol — a®t(t — ) + o*¢% +

Therefore, we obtain that

[Ga,2(01) = Gaz(02) ]| < (1 = a)[|62 — b2 + an.

A.5 Proof of Theorem 5.1

The proof follows the standard techniques for uniform stability. We need to replace the non-
expansive property used in standard analysis by the approximately non-expansive property. Let
S and S’ be two samples of size n differing in only a single example. Consider two trajecto-

ries 01,...,07 and 0],...,61 induced by running SGD on sample S and S’, respectively. Let
0 = ||9§ - GEH
Fixing an example z € Z and apply the Lipschitz condition on h(-; z), we have

E[n(6];2) — h(8552)] < LE[o7] . (A4)

Observe that at step ¢, with probability 1 — 1/n, the example selected by SGD is the same in both
S and S’. With probability 1/n the selected example is different. Therefore, by the an-approximate
non-expansive property, we have

2L

n

n

E[0¢41] < (1 - 1> (E [0¢] + aﬂ?) + %]E[fst] +

Unraveling the recursion gives
T
2L
t=1
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Plugging this back into Eq. (A.4), we obtain

T
2L
b1 2) S

t=1
Since this bounds holds for all S, S’ and z, we obtain the desired bound on the uniform stability. [

A.6 Proof of Theorem 5.2

Proof: The construction of function h is adopted from the construction in the work of (Bassily et al.,
2020).
Let T < d, and v, K > 0. Considering Z = {0, 1}, and the objective function

nmax{0,zy — v, - ,xr —v}ifz2 =0
h(8,z) = A.6
(6,2) {(r,x>/K ifz=1, (A.6)
where r = (=1,---,—1,0,---,0) (i.e., equals to -1 for the first " components). Function h is

n-approximately smooth since the first case is a piece-wise linear function. For the dataset S and S’
differ in at most one sample, the empirical objective functions are

Rs(0) = %(r, x) + nTln max{0,z1 — v, -+ ,zp — v},
and

Rg/(0) = nmax{0,zy — v, - , 27 — v}.
Let 67 and 62 be the trajectories running algorithm on dataset S and 5, initialized on 6y =09 =0.

Clearly, 65 = 0 for all ¢. It is easy to obtain 0] = —% — ap2=1 ZS 1 €5 recursively. By the
orthogonality of the subgradients, we have
T
5(5.8) = 7 0511 = 1071 = 0 (e Y- e | ) = 2D (A7)
s=1

On the other hand, the work of (Hardt et al., 2016) provided a lower bound for general non-smooth

function
5(S,8") > Q (LZT) (A.8)
Combining Eq. (A.7) and Eq. (A.8), we have
5(S,8") > Q(an\f n LO‘T) (A.9)
]

A.7 Proof of Theorem 5.3

We consider a general form of Theorem 5.3.

Theorem A.1 (Non-convex). Assume that h(6, z) is L-Lipschitz, and n-approximately 3-gradient
Lipschitz in 0 for all given z € Z. Assume in addition that 0 < g(0, z) < B for all 0 and z. Suppose
that we run SGD on the adversarial surrogate loss with step sizes oy < ¢/t for T steps, where ¢ > 0.

Then, for all ty € {1,2,--- ,n}, adversarial training satisfies uniform stability with
Be
Bt 1 T
Egen = E[Rp(07) — Rs(07)] < 2L+ L -~ . A.10
o = Bl (07) = Ra(67)] < 20 4 oL (202 ) (£ (A.10)

Let g = Bc. For small T (s.t. tog < n when we set the first term equals to the second term). we select
to to optimize the right hand side, then

Epon < —2— Bt (M)WT&. (A.11)
n—1 153
For arbitrary T, the optimal ty > n. We simply let ty = 1, then
£ < BLg + (2L? + Lyn)T?
gem = B(n—1) ’

(A.12)
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Proof: Let S and S’ be two samples of size n differing in only a single example. Consider two
trajectories 01,...,07 and 63, ...,67 induced by running SGD on sample S and S’, respectively.
Let§, = ||0% —6%]|. Letty € {0,1,...,n}, be the iteration that §;, = 0, but SGD picks two different
samples form S and S in iteration tg + 1, then

t
Egen < EOB + LE[6r | 6, =0] . (A.13)
Let A; = E [0, | 0, = 0]. Observe that at step ¢, with probability 1 — 1/n, the example selected by
SGD is the same in both S and S’. With probability 1/n the selected example is different. Therefore,
by the an-approximate (1 4+ a/3)-expansive property, for every ¢ > tq,

Apir < (1 = i) (1 + aB)A; + %At + (n + QnL)at
< (Lra-imare)ac (n+ )
= (1va-1m L) sk (44 2)
<ew (1= F) At (n+2)

Here we used the fact that 1 + < exp(«) for all z.

Using the fact that A;; = 0, we can unwind this recurrence relation from 7" down to ¢y + 1. This

gives
S { 0 exp(a;)i%)}(wif)‘;

t=to+1 \k=t+1
T T
2L\ ¢
= Z exp ((1}))[30 Z i) (77+n>t
t=to+1 k=t+1
L 2L\ ¢
1 T
< Y e (- Hcton(h) (n+2E)
t=to+1
2L d
_ (77+>CT/30(1—1/7L) S ey
n
t=tp+1

_ oL 1 7\ Pt/
= (“ - n) (A= 1/n)pc" <t>

o mT 2L (T)BC
- ﬂ(n — 1) to ’
Plugging this bound into (A.13), we get

Bt Lon +2L2% (T\"¢
ggen S 0 + " T
n—1 Bn—1) \to

Let g = Be. For small T' (s.t. ty < n when we set the first term equals to the second term). we select
to to optimize the right hand side, then

Egen < LBﬁ 2L7+ Lyn T,
n—1 B8
For arbitrary 7', the optimal £y > n. We simply let ¢y = 1, then
BLg + (2L2 + Lnyn)T?
Egen < .
B(n—1)

Since the bound we just derived holds for all S, S’ and z, we immediately get the claimed upper
bound on the uniform stability. Let ¢ = 1, we obtain the result of Theorem 5.3.
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A.8 Proof of Theorem 5.4

The proof follows the idea in convex case. By the an-approximately (1 — a-y)-contraction, for every
t,

1 1 2L
E§t+1 < <]. — n) (]. — Oé’)/)E(st + E(l — O[’Y)E(St + (77+ n)a (A.14)

2L
=1-ay)Ed + <n+n>a.

Unraveling the recursion gives

T
2L 2L
Edér < <n+>a2(1av)t <1z
" t=0 voon
Plugging the above inequality into Eq. (A.4), we obtain
L 2L2
ggen S l + —.
Y m
Since this bounds holds for all S, .S’ and z, the Theorem follows. O

A.9 Proof of Theorem 6.2

Let§ = % Zthl 6 denote the average of the stochastic gradient iterates. Since

¢
0" = Z arVh(0%; z)
k=1

we have
T
- T—-t+1 &
0= ———Vh(07;
Using the an-approximate non-expansive, we have
1 T—-t+1
5t S (1 - 1/7’L)6t_1 + ﬁ <6t_1 + (nn + 2L)O[tT) .

which implies

T T

2L T—-t+1 n L

or < _ _— = = —_ .
T_(T]+n>t§_lat T <2+n>§ ay
Since f is L-Lipschitz, we have

. L L?
Egen(0) < <77 + n) Z Q. (A.15)

Here the expectation is taken over the algorithm and hence the claim follows by our definition of
uniform stability. &+ follows (Nemirovski et al., 2009). ([l

B Discussion on Non-convex and Strongly Convex Case

B.1 Discussion on Non-convex Case

To discuss the generalization-optimization trade-off in the non-convex case. We first give the opti-
mization error bound.

Theorem B.1. Assume that h is n-approximate 3-gradient Lipschitz and given 0 < T < 1. Without
loss of generality, assume the stochastic gradient V;L(@) be unbiased and have a bounded variance
o2. Let the stochastic gradient descent (SGD) update be 0,1 = 0; — OzViL(Qt) with a constant step
size o = 1//T for number of iterations T > (£/2(1 — 7))%. 3t < T, s.t.

2 9 1
E[VA@:)? <L + 2 1 o(—=
T T

+O0(—=). (B.1)

3
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Proof:
Assume that the stochastic gradient VA () be unbiased and have a bounded variance 0.
E[Vh(#)] = Vh(6),
E[VA(®)|2 < [VA®)|? + o>

Notice that when 6 is a random vector, the above expectation is condition on 6. Let the stochastic

gradient descent (SGD) update be 6, , = 6, — ah(6;) with a constant step size « = 1/v/T. By
n-approximately Descent Lemma, we have

h(0141) — h(6:)
= (R0, Orr — 00) + 20usr — 01 s — 6]

ﬂ

~ 2
— a(Vh(0:), VR(0,)) + == VR O[> + nal| Vh(6:)].

Given 6;, take the conditional expectation over the noised introduced by SGD, we have
E[h(0e41)] — h(6r)
2
~ o ~ ~
— a(Vh(0,), E[Vh(6:)]) + TEHW(@)II2 + naE[[VA(0,)|

Bﬁ

< — ol VRO)I? + - [IVAO)|* + 0%] + nay/ [E[VA6,)]])°

< alVh) + 5 © [IVR@)I + %] + no/[VEEIP + o2
2
<~ [ Vh(B)? + 5 (IVA©)I? +0%] +na [ VA(@,)| + o]
2 2
=~ ol PRI + 5“ 2 TR + nall Voh(0)] + 27 4 na

ﬁa2 2

< = 7a|[Vh(0:)[|* + nal VA(0,)|| + +nao,

where the first inequality is the assumption of SGD, the second inequality is the Jensen’s inequality,
the third one is the assumption of SGD, the fourth one is the Cauchy-Schwartz inequality, and the
last one is because of the size of step size . Take the expectation over the trajectory 6g, 01, - - - , 07,
and take the average aver t = 0, 1,--- ,T, we have

[TaE|Vh(0:)|]* — na|Vh(6,)]]

Nl

M= 10

[E[h(@t)] — Eh(9t+1)] + ﬂazo—z + noo

E[h(60)] — h(6,)] + ”‘i"Q + nac.

IN
H\H Nl =

t

Il
o

<

—

Let E[h(6y)] — h(0.) = D and divide « on both side. It < T, s.t.

Bao?
2

D
T V() ~ nEIVA@)] < - + 25 4o

Since o = 1/+/T, we have

D Bo?
E||VA(0:)|? = nE||VA(0,)| < —= + —— +
TE[ VG ~ nEIVAO)] < =+ S+ o

SEVA@)IP — LE[VA@)] + (55)* < % [D L Po } no

2
[EIVA(G,)| \/f R
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Then we remove the absolute value, and obtain

BV, - o < ¢f 2|+
SE|Vh(6)] < ok + \/ﬁ [D 4 52“} + 24 Ly
SE|| VA6, < \/ f D ﬂﬂ 5;’+<2Z>2]2.
By Cauchy-Schwartz inequality, we have
E|[VA(®,)|” < \/ f D 5"2} +”f+<2”7>2]2
{ NENCRE e

n?  2no 2 [D Bo?
] el

T2 T VT | T 2T

n 2no 1

-+ — +0(—).

s+ 2+ 0(—)

O
In words, running SGD on an approximately smooth non-convex function, the algorithm cannot
converge to a stationary point but with an additional constant term. Notice that this is an error bound
for gradient norm. If we need an error bound for the optimality gap, we need an additional PL
condition. Combining the optimization error and generalization error, we have

T 1
Eopt + Egen <O (nT + —+ ) + constant,
n

VT
where the first term is an additional term for adversarial training, which induces robust overfitting.
Therefore, we can see that the analysis of the convex and non-convex cases do not have a major
difference. To simplify the argument, we only discuss the convex case in the main paper.

B.2 Discussion on Strongly Convex Case

By (Nemirovski et al., 2009),
LD? 1
= o=
T (T )
in the strongly convex case. Whether the function is smooth does not affect the convergence rate.
Therefore,

5.opt S

1 1
gopt+ggen S O<U+n+T>

This result shows that robust overfitting will disappear if the loss function is strongly convex. But
the performance of adversarial training is still worse than the performance of standard training in
O(n) in this strong assumption.

B.3 Discussion on Strongly Concave Assumption on the Inner Problem

In this subsection, we discuss the case that g(0, z) is p-strongly concave in z.
Assumption B.1. The function g satisfies the following Lipschitzian smoothness conditions:
19(61,2) = g(02, 2)|| < L|61 — b2,
IVog(01,2) — Vog(ba, 2)|| < Lol|1 — b2],
IVog(6, 21) — Vog(0, 22)[| < L:||lz1 — 22,
IV2g9(01,2) = Vog(b2, 2)|| < Lzg||01 — 02|
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Assumption B.1 assumes that the loss function is smooth (in zeroth-order and first-order), which are
also used in the stability literature (Farnia and Ozdaglar, 2021; Xing et al., 2021a), as well as the
convergence analysis literature (Wang et al., 2019; Liu et al., 2020). Comparing with Assumption
4.1, Assumption B.1 requires one more gradient Lipschitz |V .g(61, 2) — Vgg(02, 2)|| < L.ol||61 —
sl

Lemma B.1. Under Assumption B.1, assume in addition that g(0, z) is p-strongly concave in z.
V01,02 and Nz € Z, the following properties hold.

1. (Lipschitz function.) ||h(01, z) — h(02,z)|| < L||61 — 62]|.

2. (gradient Lipschitz.) ||Voh(61,z) — Vgh(62, 2)|| < B2||61 — 02]|, where
L.L,
By = =22 1 L.
W

The proof can be found in (Sinha et al., 2017; Wang et al., 2019). Therefore, the adversarial surrogate
loss is Ba-gradient Lipschitz. The stability generalization bounds follows (Hardt et al., 2016) by
replacing 5 by B2 (for the choice of step size ).

C Additional Experiments
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Figure 5: Accuracy of adversarial training with fixed learning rate = 0.01. The first row is the exper-
iments on SVHN. The second row is the experiments on CIFAR-10. The last row is the experiments
on CIFAR-100. The first column to the last column are the experiments of ¢ equal to 2, 4, 6, 8, and
10, respectively.

In this section, we provide additional experiments on SVHN, CIFAR-10, and CIFAR-100. In Fig.
5, we show the experiments of adversarial training using a fixed learning rate. In Fig. 6, we show
the experiments of adversarial training using a standard piece-wise linear learning rate. In Fig. 7,
we show the experiments of adversarial training using cyclic learning rate.
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Figure 6: Accuracy of adversarial training with piece-wise linear learning rate. The first row is
the experiments on SVHN. The second row is the experiments on CIFAR-10. The last row is the
experiments on CIFAR-100. The first column to the last column are the experiments of € equal to 2,
4, 6, 8, and 10, respectively.

Cyclic Learning Rate. We illustrate the experiments of adversarial training using cyclic learning
rate. The learning rate increases linearly in the first 80 epochs and decreases to zero in the last
120 epochs. This learning rate mainly contributes to optimization. In terms of generalization, as
discussed in theoretical settings, the generalization bound is no larger than that of the previous
cases.
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Figure 7: Accuracy of adversarial training with super-converge learning rate.

8, and 10, respectively.
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The first row is the
experiments on SVHN. The second row is the experiments on CIFAR-10. The last row is the exper-
iments on CIFAR-100. The first column to the last column are the experiments of € equal to 2, 4, 6,
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