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Abstract001

Model routing allocates queries to the suitable002
model, improving system performance while003
reducing costs. However, existing routing meth-004
ods face practical limitations that hinder scal-005
ability in large-scale applications and struggle006
to keep up with the rapid growth of the large007
language model (LLM) ecosystem. To tackle008
these challenges, we propose TAGROUTER, a009
training-free model routing method designed010
to optimize the synergy among multiple LLMs011
for open-domain text generation tasks. Experi-012
mental results demonstrate that TAGROUTER013
outperforms 13 baseline methods, increasing014
the accept rate of system by 6.15% and reduc-015
ing costs by 17.20%, achieving optimal cost-016
efficiency. Our findings provides the LLM com-017
munity with an efficient and scalable solution018
for model ensembling, offering users an evolv-019
able "super model."020

1 Introduction021

Large Language Models (LLMs) have revolution-022

ized the landscape of Natural Language Processing023

(NLP) by transforming a wide array of NLP tasks024

into text generation task, outperforming specialized025

models in various domains (Liang et al., 2024). The026

remarkable capabilities of LLMs have attracted sig-027

nificant investments from both academia and indus-028

try, accelerating their advancement and widespread029

application. In 2024, significant advancements030

were marked by the release of GPT-4 (OpenAI,031

2024) of OpenAI, ERNIE 4.0 (Baidu, 2024) of032

Baidu, and Qwen2.5 (Qwen et al., 2025) of Al-033

ibaba. Presently, the Hugging Face platform hosts034

over 170,000 models employed in text generation,035

each varying in architecture, size, training data, and036

method, leading to a diverse range of capabilities037

(Raiaan et al., 2024).038

The selection of LLMs for specific tasks and sce-039

narios often is often guided their performance in040

relevant evaluation benchmarks. Generally, models041

Dataset Win (%) Tie (%) Loss (%)
Alpaca 12.08 16.21 71.71
Dolly 17.20 20.42 62.38
BCUQ 21.39 39.19 39.42

Table 1: Win, Tie, and Loss rates of a smaller LLM
(ERNIE-Speed-8K) compared to a larger LLM (ERNIE-
3.5-8K) on the three datasets. Datasets and evaluation
details are introduced in Sec. 2.3 and Sec. 3.3. We can
see the smaller LLM demonstrates comparable (Tie (%))
or even superior (Win (%)) performance to the larger
model on specific samples across three datasets.

with larger parameter sizes tend to achieve higher 042

scores on these benchmarks (Kaplan et al., 2020). 043

However, these top scores typically represent the 044

average performance across the benchmarks. Given 045

the diverse capabilities of models, which allow 046

them to demonstrate varying strengths across dif- 047

ferent queries (Tab. 1), it is crucial to evaluate their 048

performance at the sample level (Jiang et al., 2023). 049

As the LLM community advances, the inte- 050

gration of diverse models through model routing 051

promises to enhance capabilities of model system 052

and reduce the reliance on larger LLMs (Patil et al., 053

2024; Srivatsa et al., 2024). The model routing 054

system automates the selection of the optimal can- 055

didate model in model system for each query by 056

capturing its semantic features and generating re- 057

sponses (Sakota et al., 2024). The routing system 058

streamlines user interaction by automatically select- 059

ing the suitable model, minimizing the complexity 060

and effort involved in searching and testing multi- 061

ple different models (Ding et al., 2024). 062

Most studies conceptualize model routing as a 063

multi-label classification problem (Lu et al., 2024a), 064

yet there remains substantial room for improve- 065

ment. Methods requiring the multiple call of can- 066

didate models can lead to increased latency and 067

higher system costs (Jiang et al., 2023; Yue et al., 068

2024; Chen et al., 2023). Other methods fail to 069
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manage usage costs effectively, limiting their feasi-070

bility for large-scale deployment (Lu et al., 2024d;071

Tekin et al., 2024; Lu et al., 2024b). Methods like072

Leviathan et al. (2023); Sun et al. (2024); Ramírez073

et al. (2024) require access to logits during infer-074

ence, complicating the routing control for propri-075

etary models. Furthermore, task-specific meth-076

ods and those requiring specially designed loss077

functions present scalability challenges for open-078

domain tasks (Aggarwal et al., 2023; Mohammad-079

shahi et al., 2024; Nguyen et al., 2024). Although080

some methods address certain shortcomings, they081

require retraining whenever there are changes in082

the candidate models, which reduces their adapt-083

ability in the fast-evolving LLM ecosystem (Hari084

and Thomson, 2023; Sakota et al., 2024; Liu et al.,085

2024). Moreover, some methods only support rout-086

ing between two models with different parameter087

scales, which limits their scalability for tasks in-088

volving multiple models or models with minimal089

differences in capabilities (Lee et al., 2024; Ong090

et al., 2024; Ding et al., 2024).091

This work introduces TAGROUTER, a practical092

routing method for LLMs that leverages self-aware093

tags. TAGROUTER captures key semantic features094

of user queries and controls the behavior of multi-095

ple models. It seamlessly ensembles models in a096

training-free manner, while controlling costs and097

meeting the requirements of open-domain text gen-098

eration tasks. By leveraging these capabilities,099

TAGROUTER improves the efficiency of the increas-100

ingly complex model ecosystem, offering users a101

evolvable "super model." The contributions of this102

work are as follows:103

• We developed TAGROUTER, a novel model104

routing method that enhances model system105

performance by ensembling multiple LLMs.106

TAGROUTER outperforms 13 baseline meth-107

ods in open-domain text generation tasks, pro-108

viding a more cost-efficient and scalable solu-109

tion for model routing.110

• TAGROUTER is the first routing method with111

six features: training-free, support for open-112

domain text generation tasks, multi-candidate113

model routing, proprietary models, cost con-114

trol, and no repeated model calls. These fea-115

tures improve routing system practicality and116

offer new perspectives for future research.117

• In addition to TAGROUTER, we proposed118

three tag-based routing methods that sur-119

passed existing routing methods. These tag- 120

based methods introduced a novel framework 121

for model routing, contributing to the advance- 122

ment of research in this area. 123

2 Preliminaries 124

2.1 Model Routing 125

Model routing can be classified into three types 126

based on the sequence in which the routing sys- 127

tem assigns the query and the candidate model 128

performs inference. 129

Routing after inference involves selecting a 130

suitable model based on the quality of generated re- 131

sponses (Aggarwal et al., 2023; Tekin et al., 2024; 132

Ramírez et al., 2024). FrugalGPT (Chen et al., 133

2023) sorts model parameters by size and perform 134

inference iteratively until the response meets a pre- 135

defined quality threshold. LLM-Blender (Jiang 136

et al., 2023) ranks responses via PairRanker and 137

integrates the top three using GenFuser. Yue et al. 138

(2024) argue against using larger LLMs when 139

smaller ones yield consistently high-quality re- 140

sponses. These methods ensure precise routing 141

but increases latency and system costs. 142

Routing during inference involves routing de- 143

cisions made during the decoding process of model 144

inference (Leviathan et al., 2023; Sun et al., 2024). 145

BiLD (Kim et al., 2024) primarily uses a smaller 146

model and resorts to a larger one when necessary. 147

Li et al. (2024) combine outputs from various mod- 148

els to address data poisoning and privacy issues. 149

These methods boost efficiency but struggles with 150

heterogeneous architectures and scalability. 151

Routing before inference refers to the routing 152

occurring before any model response generation. 153

FORC (Sakota et al., 2024) embeds a model iden- 154

tifier into the input, predicting performance via 155

DistilBERT. RouteLLM (Ong et al., 2024) sorts 156

models into tiers and simplifies selection to a bi- 157

nary classification task. RouterBench (Hu et al., 158

2024) uses KNN and MLP for routing decisions. 159

While these methods help reduce latency and costs, 160

they may compromise routing system performance 161

and require frequent updates as the models evolve. 162

2.2 Problem Setup 163

This work aims to address the challenge of assign- 164

ing different queries to the most suitable LLMs 165

within a model system, thereby enabling the per- 166

formance of system to exceed that of any individ- 167

ual model. Let M = {M1, . . . ,Mi} denote the 168
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model system, and Q = {q1, . . . , qn} denote the169

set of queries. The objective is to assign each query170

q ∈ Q to a model M ∈ M in order to maximize171

the collective performance of the model system.172

We propose a tag-based routing method for173

model routing. We believe that using a tag gen-174

eration model T to generate a set of tags T (q) for175

each query q can improve the routing performance.176

The routing decision is then determined by the fol-177

lowing function:178

M∗(q) = argmaxM∈M f(T (q),M),179

where f quantifies the alignment between the gen-180

erated tags T (q) and the capabilities of each model181

M , producing a utility score that predicts the ef-182

ficacy of the model M in handling the query q.183

The model M∗(q) with the highest utility score is184

selected to response the query.185

2.3 BCUQ: A Real-World Benchmark186

This work employs the Baidu AI Cloud User187

Queries (BCUQ) dataset as a benchmark for eval-188

uating open-domain text generation tasks. The189

BCUQ dataset contains 95,559 user query logs190

from the ERNIE Bot platform on Baidu AI Cloud,191

representing user needs and behavioral patterns in192

real-world. It encompasses eight types of tasks,193

including classification and brainstorming (Fig. 4).194

To ensure user privacy, all experiments involving195

user data were conducted in a secure cloud envi-196

ronment on Baidu AI Cloud.197

3 TAGROUTER198

3.1 Overview199

TAGROUTER consists of three modules: TAGGEN-200

ERATOR, TAGSCORER, and TAGDECIDER. These201

modules are designed for practical applicability.202

The TAGGENERATOR is query-agnostic and does203

not require retraining. The TAGSCORER stores a204

key-value mapping derived from the performance205

of each candidate model in handling different tags,206

evaluated on the dataset. The TAGDECIDER pro-207

vides default threshold values for cost-efficient rout-208

ing and an optimization method tailored to spe-209

cific scenarios, eliminating the need for manual210

threshold tuning. This design enables a lightweight,211

training-free routing process and facilitates the212

seamless extension of candidate models.213

3.2 TAGGENERATOR214

We train the TAGGENERATOR to generate a set of215

tags T (q) = {t1, t2, . . . , tj} for a given query q,216

where tj represents a specific semantic feature or 217

attribute of the query, and j is the index of the tags 218

associated with the query. These tags are crucial for 219

routing queries to the most suitable model based 220

on their respective capabilities. 221

Tagging. Unlike fixed tag sets, we utilize 222

an open-tagging approach. For each query q, 223

we prompting ERNIE-4.0-Turbo-8K (denoted as 224

EB4.0) to generate tags T (q) (Appx. H). This ap- 225

proach ensures that the generated tags are flexible 226

and diverse, helping to capture the varied user in- 227

tents that may not be covered by predefined tag 228

sets. As a result, we generate a raw set of 14,352 229

unique tags over the BCUQ dataset. 230

Normalization. To improve robustness and re- 231

duce noise in the generated tags, we apply the fol- 232

lowing normalization techniques: (i) Frequency 233

Filtering: Discard rare tags appearing fewer than 234

five times and focus on more frequent and reliable 235

tags. (ii) Rule Aggregation: Replace special char- 236

acters with spaces and capitalize the first letter of 237

each word to standardize the tag format. (iii) Se- 238

mantic Aggregation: We use PhraseBERT (Wang 239

et al., 2021a) embeddings to represent each tag and 240

apply DBSCAN clustering to group similar tags. 241

Through an iterative merging process (Alg. 1), tags 242

are consolidated into broader categories, ensuring 243

each cluster contains at least two tags. This ap- 244

proach improves the model ability to distinguish re- 245

lated but distinct tags, simplifying the tag structure 246

while preserving essential semantic information. 247

After the tag normalization, we obtain a refined tag 248

set containing 1,601 unique tags. 249

Training the TAGGENERATOR. We train 250

the TAGGENERATOR using knowledge distillation. 251

The training dataset is defined as: 252

D = {(q, T (q)) | q ∈ Q}, 253

where each sample (q, T (q)) consists of a query q 254

and its corresponding set of tags T (q). 255

Firstly, we apply the Hybrid Weight-Based Data 256

Sampling algorithm (Alg. 2) to sample the training 257

datasetD, prioritizing rare but significant tags. The 258

sampled data is then used to train TAGGENERATOR 259

through instruction tuning on a smaller LLM like 260

Qwen2.5-0.5B. 261

3.3 TAGSCORER 262

TAGSCORER evaluates the performance of each 263

candidate model in model systemM in handling 264

queries. For a given query q and its corresponding 265
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Figure 1: Overview of TAGROUTER. The training phase is represented in blue, and the inference phase in green.
TAGROUTER consists of three modules: TAGGENERATOR, TAGSCORER, and TAGDECIDER, which are invoked
sequentially. First, TAGGENERATOR generates fine-grained tags for each query. Next, TAGSCORER evaluates the
performance of different models on the query by computing scores based on these tags. Finally, TAGDECIDER
selects the appropriate model for inference, considering both the computed scores and a cost-awareness threshold.

tags T (q), TAGSCORER computes a score for each266

model Mi ∈ M, reflecting the model ability to267

interpret the semantic of the query.268

Tag Alignment. To address mismatches be-269

tween generated tags and the tag set, we introduce270

an embedding-based tag mapping method. We use271

PhraseBERT embeddings (Wang et al., 2021a) to272

represent each tag t ∈ T (q) and calculate the co-273

sine similarity between a generated tag and each274

tag in the tag set. The most similar tag is then275

selected to map generated tags into a unified tag276

space, enhancing consistency.277

Tag-Score Mapping. We define the reference278

model MLLM as the model with the largest param-279

eter size in the model systemM, which serves as280

the baseline for pairwise comparisons and perfor-281

mance evaluation. For each model Mi and tag t,282

we calculate the performance score score(Mi, t),283

which is defined as:284

score(Mi, t) = wt ·
∑

r∈{win,tie,loss}

countt,Mi(r) · sr,285

where countt,Mi(r) denotes the frequency of re-286

sult r ∈ {win, tie, loss} for tag t and model Mi,287

and sr represents the score associated with result288

r. Specifically, swin, stie, and sloss are the score289

weights for wins, ties, and losses, respectively. The290

result r is determined through pairwise compar-291

isons, prompted by EB4.0. The weight wt reflects292

the confidence in tag t, which is defined as: 293

wt =
1− exp (−countt)∑

t′∈T countt′
, 294

where countt is the frequency of tag t in the training 295

dataset D. 296

Thus, score(Mi, t) quantifies the relative perfor- 297

mance of model Mi on tag t, normalized by the 298

tag frequency. This adjustment ensures that both 299

commonly occurring tags and those with low fre- 300

quency but high consistency in comparison results 301

have a more significant impact on the selection of 302

the optimal model M∗(q). 303

3.4 TAGDECIDER 304

The TAGDECIDER module selects the optimal 305

model M∗(q) for each query q ∈ Q based on 306

the scores generated by the TAGSCORER. The 307

set of optimal models for all queries is denoted as 308

M∗ = {M∗(q) | q ∈ Q}. For each query q, the 309

optimal model M∗(q) is selected as: 310

M∗(q) = argmaxM∈M
∑

t∈T (q)

score(M, t), 311

where score(M, t) represents the performance 312

score of model M with respect to tag t. This func- 313

tion ensures that query q is routed to the model 314

M∗(q) that maximizes the cumulative alignment 315

between the model and the tags that best character- 316

ize the semantic features of query. 317
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In real-world applications, model selection often318

involves considering cost. This cost is managed319

by defining a cost-awareness threshold θ. When a320

query q is routed to MLLM, the score difference ∆q321

between the smaller model MSLM(q) and MLLM(q)322

is computed as follows:323

∆q =
∑

t∈T (q)

score(MSLM(q), t)−score(MLLM(q), t)324

where T (q) denotes the set of tags associated with325

query q, and score(M, t) is the performance score326

of model M on tag t.327

If ∆q < θ, the query is routed to Mmax(q)328

(M∗(q) → MLLM(q)); otherwise, it is routed to329

MSLM(q) (M∗(q)→MSLM(q)).330

The routing method is expected to perform op-331

timally when θ = 0. Using θ = 0 as a base-332

line, lowering θ shifts the focus of system toward333

cost, increasing the likelihood of routing queries to334

lower-cost models. By dynamically adjusting θ, the335

cost of system can be controlled while maintaining336

performance that surpasses individual models.337

4 Evaluation Metrics338

Accept Rate (AR) quantifies the proportion of339

queries q ∈ Q for which the responses generated340

by the optimal model M∗(q) meet the expected341

outcomes (surpassing those generated by MLLM),342

including both "win" and "tie" responses. AR is343

defined as:344

AR =

∑
q∈Q countM∗(q)({win, tie})

|Q|
345

where countM∗(q)({win, tie}) represents the num-346

ber of responses generated by model M∗(q) that347

are classified as either "win" or "tie".348

GPT-Rank (Rank) denotes the average ranking349

of modelM∗ on dataset Q. A value of 1 indicates350

thatM∗ achieves the highest performance on Q.351

Area Under Curve (AUC) evaluates the perfor-352

mance of the model system by computing the area353

under the curve defined by the routing ratio ρ to354

Mmax along the x-axis and the corresponding AR355

values along the y-axis. The AUC is defined as:356

AUC =

∫ 1

0
AR(ρ) dρ.357

Partial Area Under Curve (PAUC) measures358

the performance of model system in regions where359

the AR surpasses that of MLLM. Specifically,360

PAUC represents the area under the AUC curve 361

where AR(ρ) > ARMLLM , with ARMLLM denoting 362

the AR achieved by always routing to MLLM. The 363

PAUC is defined as: 364

PAUC =

∫
AR(ρ)>ARMLLM

AR(ρ) dρ. 365

A higher PAUC score indicates that the routing 366

system more effectively selects models M∗(q) that 367

outperform MLLM(q). Therefore, PAUC serves as 368

a key metric for evaluating the ability of the routing 369

system f(T (q),M) to enable the performance of 370

the model systemM to surpass that of MLLM. 371

5 Experiments 372

5.1 Experimental Settings 373

Training and Inference. We trained TAGGEN- 374

ERATOR using eight A100 80GB GPUs on a sam- 375

pled version of BCUQ dataset (sampling proce- 376

dure described in Alg. 2). To identify the optimal 377

base model, we explored several model series with 378

different parameter scales, as detailed in Tab. 8. 379

Qwen2.5-0.5B was chosen as the base model for 380

training TAGGENERATOR, owing to its superior 381

balance between performance and computational 382

efficiency. All validation experiments were con- 383

ducted on two A100 80GB GPUs. 384

Candidate Models. The candidate models 385

include ERNIE-3.5-8K (denoted as EB3.5) and 386

ERNIE-Speed-8K (denoted as EBspeed), both de- 387

veloped by Baidu. To assess the training-free adapt- 388

ability of TAGROUTER, we incorporated three ad- 389

ditional models: EBspeedX (a variant of EBspeed), 390

GLM4-9B, and Qwen2.5-7B. Among these five 391

models, EB3.5 has the largest parameter size, high- 392

est performance, and cost. Therefore, we designate 393

EB3.5 as MLLM, and the others as MSLM. The goal 394

of TAGROUTER is to optimize the model system to 395

outperform EB3.5 while reducing costs. 396

Baselines. We established the following mod- 397

els and baseline methods for comparison: (i) In- 398

dividual Model: Evaluation of individual mod- 399

els on the benchmark dataset. (ii) Existing Rout- 400

ing Methods: Implementation and reproduction 401

of ten routing methods, with hyperparameter tun- 402

ing to select the best-performing configurations 403

(Appx. B.2). (iii) Tag-based Methods: By con- 404

verting the input from query q to the tags T (q), 405

we retrain the top three existing routing methods. 406

Specifically, the training process is represented by 407

f : T (q)→M∗(q). 408
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Category Method Performance at Max AR AUC(%)↑ PAUC(%)↑
AR(%)↑ Uplift(%)↑ Cost↓ Rank↓

Individual LLM
EBspeed 59.78 -24.1 2.01 1.400 - 0
EB3.5 78.76 0 13.49 1.212 - 0

Existing
Routing Methods

FrugalGPT (Chen et al., 2023) 78.88 0.15 13.24 1.211 70.11 0.01
PairRanker (Jiang et al., 2023) 78.76 0 13.49 1.212 72.17 0
Blending (Lu et al., 2024d) 78.76 0 13.49 1.212 69.22 0
RouteLLMSWR (Ong et al., 2024) 78.76 0 13.49 1.212 70.88 0
RouteLLMBERT (Ong et al., 2024) 78.76 0 13.43 1.212 71.35 0
RouteLLMLLM (Ong et al., 2024) 78.76 0 13.49 1.212 73.02 0
RouteLLMMF (Ong et al., 2024) 80.34 2.01 11.82 1.197 73.94 0.12
RouterBenchMLP (Hu et al., 2024) 78.88 0.15 13.40 1.211 73.58 0.01
RouterBenchKNN (Hu et al., 2024) 80.45 2.15 11.77 1.196 75.15 0.40
FORC (Sakota et al., 2024) 81.80 3.86 11.81 1.182 75.73 0.76

Tag-based
Methods (ours)

RouteLLMMF w/TAGGENERATOR 82.02 4.14 11.66 1.180 76.08 0.76
RouterBenchKNN w/TAGGENERATOR 81.57 3.57 11.76 1.184 74.48 0.98
FORC w/TAGGENERATOR 81.91 4.00 11.79 1.181 75.97 0.59
TAGROUTER 83.60 6.15 11.17 1.164 76.10 1.46

Table 2: Performance of TAGROUTER and baselines on BCUQ dataset. Bold numbers indicate the best results
among all routing methods, and the second-best results are underlined. TAGROUTER outperforms all baselines.

5.2 Experimental Results409

5.2.1 Performance on BCUQ410

Tab. 2 presents the performance comparison of411

TAGROUTER and baselines on the BCUQ dataset,412

with EBspeed and EB3.5 as candidate models.413

Model routing enhances performance of414

model system. Most of routing methods outper-415

form EB3.5 in both AR and rank metrics, under-416

scoring the efficacy of model routing in dynam-417

ically selecting a suitable model based on query418

characteristics. By ensembling multiple models419

and leveraging their complementary strengths, it420

enhances system efficiency and performance.421

TAGGENERATOR improves routing perfor-422

mance by encoding query semantics into infor-423

mative tags. Compared to existing routing meth-424

ods that rely on raw queries, tag-based methods425

demonstrate significant improvements in both AR426

and rank metrics. For example, RouteLLMMF427

with TAGGENERATOR outperforms the standard428

RouteLLMMF. These results suggest that tags cap-429

ture key semantic features effectively while filter-430

ing irrelevant information, thereby enhancing both431

the generalization capability and decision-making432

efficiency of routing systems.433

TAGROUTER achieves SOTA performance.434

(i) TAGROUTER consistently outperforms individ-435

ual LLMs, exising routing methods, and other436

tag-based methods across both AR and rank met-437

rics, demonstrating its superior ability to allocate438

queries to appropriate models. It boosts the AR439

by 6.15% while reducing costs by 17.20%, show-440

casing optimal cost-efficiency. (ii) TAGROUTER 441

attains the highest AUC score, indicating its ro- 442

bustness in selecting optimal candidate models un- 443

der varying cost constraints. (iii) TAGROUTER 444

achieves the highest PAUC score, indicating its 445

superior competitive edge in ensuring the perfor- 446

mance of model system surpasses that of any indi- 447

vidual candidate model like MLLM. 448

5.2.2 Performance Across Different Tasks 449

Fig. 2 presents the comparison of TAGROUTER 450

and the top three ranking exiting routing methods 451

across eight task categories in the BCUQ, with 452

EBspeed and EB3.5 as candidate models. 453

LLMs exhibit distinct strengths and limita- 454

tions across different task categories. In seven 455

task categories, EB3.5 achieves a higher AR score 456

than EBspeed. However, in the summarization task, 457

EBspeed surpasses EB3.5 in AR metric. This sug- 458

gests despite its larger parameter size, EB3.5 does 459

not consistently outperform the smaller EBspeed 460

across all task categories. Therefore, the model 461

routing, which assigns queries to suitable candi- 462

date model rather than defaulting to the largest 463

LLM MLLM, emerges as a cost-efficient method. 464

The effectiveness of routing methods varies 465

between task categories. In tasks such as brain- 466

stroming and content creation, the four routing 467

methods significantly outperform random routing. 468

However, in close QA and open QA tasks, their per- 469

formance remains comparable to that of random 470

routing. This could be attributed to the structured 471

nature of QA queries, which often follow similar 472
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Figure 2: Comparison of TAGROUTER and the top three ranking existing routing methods across eight task
categories in BCUQ dataset. The ratio to EB3.5 represents the proportion of queries routed to EB3.5, where a higher
ratio implies increased cost within the system. TAGROUTER outperforms baselines across most tasks.

patterns, making it difficult for the routing system473

to distinguish fine-grained variations within QA474

tasks based solely on semantic cues.475

TAGROUTER outperforms baselines across476

most tasks. Except for the close QA task,477

TAGROUTER achieves the highest AUC score in the478

remaining seven tasks. Notably, when its AR score479

exceeds that of EB3.5, TAGROUTER shows a clear480

advantage over baselines. Moreover, the threshold481

θ = 0 selects a satisfactory value for the ratio to482

EB3.5, ensuring the system is cost-effective.483

5.2.3 Scaling TAGROUTER484

The ability to ensemble additional LLMs into the485

routing system is critical to exploit the rapidly486

evolving model landscape effectively. Fig. 3 illus-487

trates the performance of the TAGROUTER on the488

BCUQ dataset as the number of candidate models489

progressively increases from two to five.490

Expanding the model system leads to consis-491

tent performance improvements. Specifically, as492

the number of candidate models increases from two493

to three and subsequently to five, the AUC score494

of the model system rises from 0.7610 to 0.7933,495

and further to 0.8043. This demonstrates that en-496

sembling more models enhances the performance497

of the system. Moreover, the model system main-498

tains a comparable AR score when operating with499

the threshold setting θ = 0, while simultaneously500

reducing costs. These findings suggest that increas-501

ing the number of candidate models not only boosts502
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Figure 3: Scalability of TAGROUTER. Performance
improves with more candidate models (from two to
three to five), with enhanced AUC and cost-efficiency.

performance but also improves cost-efficiency. 503

5.2.4 Ablation Study 504

We conduct an ablation study on each component 505

within every module of TAGROUTER to evaluate 506

the performance of the routing system comprehen- 507

sively. By systematically removing or modifying 508

individual components, we analyze their respective 509

contributions to the routing system. 510

TAGGENERATOR. (i) The proposed Hybrid 511

Weight-Based Data Sampling algorithm (Alg. 2) 512

enhances the performance of TAGGENERATOR. 513

Experimental results (Tab. 7) show that a sampling 514

ratio of 0.3 yields optimal performance. Moreover, 515

the tag normalization component improves the per- 516

formance of the routing system (Fig. 11). (ii) We 517
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evaluate Qwen2.5 and Llama3.2 series with vary-518

ing parameter scales to balance performance and519

cost of the routing system (Tab. 8). Experimen-520

tal results show that the Qwen2.5-0.5B is the best521

base model. (iii) We compare TAGGENERATOR522

against INSTAGGER, a model with 7 billion param-523

eters to assess the complexity and diversity of the524

instruction data. Experimental results confirm the525

superior performance of TAGGENERATOR in the526

model routing field.527

TAGSCORER. (i) The tag alignment component528

enhances the performance of the routing system529

(Fig. 11). (ii) In Ong et al. (2024), the values of530

swin, stie, and sloss were set to 1, 1, and -1, respec-531

tively. However, we argue that the contribution532

of stie to the candidate model should differ from533

that of swin. Experimental results suggest that the534

optimal value for stie is 0.15, as shown in Fig. 12.535

TAGDECIDER. Fig. 13 illustrates the impact536

of different θ values on the model routing system.537

Experimental results show that the default setting538

of θ = 0 yields satisfactory performance.539

6 Discussions540

How does TAGROUTER perform among mod-541

els with similar capabilities? Fig. 6 presents the542

performance of TAGROUTER when GLM-9B and543

Qwen2.5-7B are selected as candidate models. Ex-544

perimental results demonstrate that TAGROUTER545

effectively assigns different queries to GLM-9B546

and Qwen2.5-7B, validating its routing capability547

among models with high similarity.548

Can TAGGENERATOR generalize to other549

dataset? Fig. 7 illustrates the performance of550

TAGROUTER, trained on the BCUQ dataset, when551

applied to the Alpaca and Dolly datasets. Results552

indicate that TAGROUTER identifies query charac-553

teristics effectively across diverse datasets. More-554

over, it requires only a small number of labeled555

samples from the target dataset to further enhance556

its performance. Interestingly, even without dataset-557

specific optimization, TAGROUTER consistently558

outperforms existing routing methods that have559

been fine-tuned on the specific datasets, underscor-560

ing its strong generalization capability (Fig. 8).561

How should the threshold of TAGDECIDER be562

selected? Extensive experiments indicate that the563

default setting of θ = 0 is generally effective. For564

further optimization, Appx. G.2 presents a method565

for adapting θ to different datasets.566

How practical is TAGROUTER? TAGROUTER567

is applicable to model routing across text genera- 568

tion tasks and benefits from a training-free man- 569

ner. When new candidate models are added to the 570

model system, only a small number of samples 571

need to be annotated using the LLM-as-a-judge 572

approach (Tab. 6 presents the performance under 573

varying sample sizes). The capability features of 574

new candidate models are then stored and quanti- 575

fied in a key-value format. This mechanism enables 576

efficient expansion of the routing system without 577

requiring retraining, ensuring adaptability to the 578

rapidly evolving LLM ecosystem. 579

How efficient is TAGROUTER? In 580

TAGROUTER, we utilize a 500MB TAGGEN- 581

ERATOR and a 33MB embedding model, with 582

routing performed via simple key-value lookups. 583

Compared to existing routing methods, this design 584

offers a competitive advantage in computational 585

efficiency and latency. 586

Why does TAGROUTER exhibit superior per- 587

formance? As shown in Tab. 2 and Fig. 5, the 588

four tag-based routing methods outperform 10 ex- 589

isting methods. We hypothesize that this superior 590

performance stems from the ability of TAGGEN- 591

ERATOR to extract the core semantic features of 592

potentially redundant, high-dimensional textual in- 593

formation and encode them into a structured set 594

of tags (Appx. E.5 and Appx. E.6). This process 595

can be seen as a form of automatic dimensionality 596

reduction or feature abstraction, allowing routing 597

models like TAGROUTER to focus on the main 598

features. Therefore, the routing system achieves 599

improved learning efficiency and performance. 600

7 Conclusions 601

In this work, we introduce TAGROUTER, a training- 602

free routing method designed to scale with the 603

growth of LLMs and handle open-domain text gen- 604

eration tasks. Extensive experimental evaluations 605

demonstrate that TAGROUTER not only outper- 606

forms 13 baseline routing methods across a va- 607

riety of datasets and tasks, but also exhibits strong 608

adaptability and generalization. By dynamically 609

orchestrating LLMs of varying scales and abilities, 610

TAGROUTER allows users to benefit from high- 611

performance LLM services without always relying 612

on larger LLMs, reducing costs and improving effi- 613

ciency of the system. Its practical design positions 614

TAGROUTER as a promising solution for develop- 615

ing cost-efficient model systems. 616
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Limitations617

Language Capability. The BCUQ dataset primar-618

ily comprises queries in Chinese and English, lead-619

ing to the TAGGENERATOR that is limited to pro-620

cessing these two languages.621

Evaluation Methods. (i) While the LLM-as-a-622

judge evaluation method may be less reliable than623

human evaluation, large-scale human evaluations624

are impractical due to the vast number of models,625

datasets, and experiments. Tab. 4 demonstrates626

a strong consistency between the two evaluation627

methods. (ii) Using a single model as the reference628

model MLLM may limit the advantages of crowd-629

sourcing approaches like Chatbot Arena. Evaluat-630

ing the quality of LLM-generated responses using631

the Elo rating system to obtain more precise tag-632

score pairs could provide a more efficient solution633

and support scaling of the model system. We leave634

this avenue for future research.635

Ethical Statement636

This work aims to provide a cost-efficient model637

routing method for inference in the era of LLMs.638

This method facilitates a more equitable distribu-639

tion of LLM advancements, extending their bene-640

fits beyond well-resourced institutions to a wider641

range of users, promoting fairness and inclusiv-642

ity within the NLP community. Furthermore, by643

dynamically selecting models rather than relying644

solely on larger LLMs, our method helps organi-645

zations reduce costs, lower carbon emissions, and646

support sustainable development.647
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Appendix931

A Related Works932

A.1 Model Enhancement933

Techniques such as fine-tuning (Chen et al., 2025),934

Retrieval-Augmented Generation (RAG) (Lewis935

et al., 2020), and agentic LLMs (Qian et al., 2024)936

have been wisely used for improving model per-937

formance on specific tasks. However, these meth-938

ods generally require additional training, domain-939

specific data, or intricate workflows (Chen et al.,940

2024b). In contrast, methods like Chain-of-941

Thought (CoT) (Wei et al., 2022), few-shot learn-942

ing (Song et al., 2023), and prompt engineering (Ye943

et al., 2023) enhance performance without neces-944

sitating model training. Additionally, Mixture of945

Experts (MoE) approaches (Jacobs et al., 1991; Dai946

et al., 2024) enhance performance through intelli-947

gent routing, leveraging specialized expert modules948

within the model. Despite their utility, these meth-949

ods do not fully exploit the synergistic potential of950

multiple models and model systems.951

A.2 LLM Tagging952

Studies have demonstrated that capturing the se-953

mantic features of a task or query through tag-954

ging and supplying these tags to LLMs can effec-955

tively activate the various specialized capabilities956

of model. Tag-LLM (Shen et al., 2024) incorpo-957

rates tags directly within the embedding layers as958

soft prompts, enhancing the specialized capabilities959

of model. Feldman et al. (2023) use tags to detect960

domain-external knowledge, reducing erroneous961

fabrications in LLMs. Further, Lu et al. (2024c)962

introduced INSTAGGER, an LLM with seven bil-963

lion parameters tailored for generating tags in open964

domains, capable of assessing the diversity and965

complexity of instruction data to improve data sam-966

pling. ZOOTER (Lu et al., 2024b) employs INSTAG-967

GER for adjusting biases in the off-the-shelf reward968

models to facilitate model routing. However, this969

method does not address the costs of using and970

retraining reward models. Unlike previous stud-971

ies, this work introduces the lightweight TAGGEN-972

ERATOR, specifically designed to facilitate model973

routing in a training-free manner.974

B Implementation Details975

B.1 Training TAGGENERATOR976

We train TAGGENERATOR on the BCUQ dataset,977

sampled using Alg. 2, for one epoch to mitigate the978

risk of overfitting. We adopt Qwen2.5-0.5B as the 979

base model and optimize it using the AdamW opti- 980

mizer (Loshchilov and Hutter, 2019), with a maxi- 981

mum learning rate of 5e−5. A cosine learning rate 982

schedule is employed, incorporating a 10% warm- 983

up ratio. Training is performed on eight A100 80G 984

GPUs, with a global batch size of 32. The maxi- 985

mum token length is set to 4096. 986

B.2 Training Baselines 987

For baseline methods where an open-source model 988

implementation is available, we directly use the 989

off-the-shelf model. In cases where no such im- 990

plementation is available, we replicate the model 991

following the specifications provided in the origi- 992

nal paper as similar as possible. For each baseline 993

method, we perform multiple experimental config- 994

urations and report the best-performing results. 995

FrugalGPT: We extend the standard Distil- 996

BERT (Sanh et al., 2020) by adding a linear layer, 997

which takes the final representation as input and 998

produces a two-dimensional vector that encodes 999

the correctness of the answer. The learning rate 1000

optimized via grid search is 1e−4. 1001

PairRanker: We employ the off-the-shelf Pair- 1002

Ranker from LLM-Blender (Jiang et al., 2023) to 1003

rank model-generated responses in pairs and route 1004

the query to the highest-ranked model. We conduct 1005

inference five times and report the result with the 1006

highest AUC score. 1007

Blending: This method randomly selects a can- 1008

didate model to respond to the query, enhancing 1009

response diversity. We conduct inference five times 1010

and report the result with the highest AUC score. 1011

RouteLLMMF: We first generate text embed- 1012

dings using a pre-trained language model. Then, 1013

Singular Value Decomposition (SVD) (Klema and 1014

Laub, 1980) is applied to reduce the dimensionality 1015

of these embeddings. Finally, a logistic regression 1016

classifier is used for classification. We experiment 1017

with four embedding models: all-MiniLM-L12-v2 1018

(Wang et al., 2021b), acge-text-embedding (As- 1019

pire, 2024), bge-base-en-v1.5, and bge-base-zh- 1020

v1.5 (Chen et al., 2024a), selecting all-MiniLM- 1021

L12-v2 as the best-performing model. The SVD 1022

dimensionality parameter is tuned via hyperparam- 1023

eter search, with the optimal dimension found to 1024

be 50. 1025

RouteLLMSW: We generate text embeddings 1026

using a pre-trained language model and classify 1027

them using a class-center similarity-based ranking 1028

method. After experimenting with four embedding 1029
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models, we select all-MiniLM-L12-v2 as the best1030

performer. The number of class centers optimized1031

via grid search is 11.1032

RouteLLMBERT: We employ BERT (Devlin1033

et al., 2019) for text classification, incorporating an1034

additional fully connected layer for binary classifi-1035

cation. We use an entropy-based loss function for1036

loss calculation and AdamW as the optimizer. The1037

model is trained for two epochs. The learning rate1038

optimized via grid search is 5e−5.1039

RouteLLMLLM: We incorporate model iden-1040

tifiers as additional tokens in the vocabulary of1041

Qwen2.5-0.5B, specifically adding <Model_A> and1042

<Model_B>. LoRA (Hu et al., 2021) is applied to1043

fine-tuning Qwen2.5-0.5B to enable LLM-based1044

text classification. The optimal learning rate deter-1045

mined via grid search is 5e−4.1046

RouteBenchKNN: Text embeddings are gener-1047

ated using a pre-trained language model and classi-1048

fied using a KNN classifier. Among the four embed-1049

ding models tested, acge-text-embedding performs1050

best. The optimal K value determined via grid1051

search is 11.1052

RouteBenchMLP: We generate text embeddings1053

using a pre-trained language model and classify1054

them using an MLP. Among the four embedding1055

models tested, bge-base-zh-v1.5 achieves the best1056

performance. We experiment with different num-1057

bers of hidden layers (one, two, and three) and find1058

that two hidden layers yield the best results.1059

FORC: We adopt transfer learning with Distil-1060

BERT, introducing two special tokens <Model_A>1061

and <Model_B> in its vocabulary to differentiate be-1062

tween models and classification tasks. The optimal1063

learning rate determined via grid search is 7e−5.1064

RouteLLMMF w/TAGGENERATOR: We use1065

TAGGENERATOR as a feature extractor, select all-1066

MiniLM-L12-v2 as the embedding model, and set1067

the SVD dimensionality reduction parameter to 50.1068

RouterBenchKNN w/TAGGENERATOR: We1069

use TAGGENERATOR as a feature extractor, choose1070

acge-text-embedding as the embedding model, and1071

set the K value to 11.1072

FORC w/TAGGENERATOR: We use TAGGEN-1073

ERATOR as a feature extractor. For DistilBERT, the1074

learning rate is set to 7e−5.1075

C Dataset1076

C.1 BCUQ Details1077

The BCUQ dataset consists of 95,559 samples, cat-1078

egorized into eight distinct task categories. Fig. 41079

brainstroming
close QA

open QA

classification

content creation
summarization

others

rewrite

0.25%
20.17%

8.08%

1.93%

40.42%

14.95%

4.99%
9.20%

Figure 4: Task distribution in BCUQ.

shows the distribution of task types in BCUQ 1080

dataset. The classification of tasks is as follows: 1081

Brainstorming: This task focuses on generating 1082

creative ideas or solutions to stimulate innovation. 1083

Classification: This task involves the automatic 1084

categorization of text, including tasks like senti- 1085

ment analysis and topic identification. 1086

Close QA: This task requires the model to an- 1087

swer factual questions based on specific texts or 1088

knowledge bases. 1089

Open QA: This task involves questions that do 1090

not have fixed answers, such as general knowledge 1091

questions or opinion-based queries. 1092

Content Creation: In this task, the model is re- 1093

quired to generate coherent and creative text, such 1094

as articles or advertising copy. 1095

Rewrite: This task involves rephrasing or modi- 1096

fying a given text, such as transforming its style or 1097

optimizing its grammar. 1098

Summarization: The goal of this task is to ex- 1099

tract key information from long texts to produce 1100

concise summaries. 1101

Others: This category encompasses tasks that 1102

do not belong to any of the previously defined cate- 1103

gories, including but not limited to code generation 1104

and translation. 1105

C.2 Automatic and Human Evaluation on 1106

BCUQ 1107

Given the cost and feasibility constraints associated 1108

with large-scale evaluations, this work employs 1109

the cost-efficient EB4.0 to assess the quality of re- 1110

sponses generated by various models. To validate 1111

the reliability of the automated evaluation method, 1112
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Dataset Train Size Validation Size Test Size Query Source
Alpaca 51,014 - 988 GPT-4
Dolly 14,013 - 998 Databricks Employees
BCUQ 93,669 1,000 890 LLM Service Usage

Table 3: Dataset statistics for Alpaca, Dolly and BCUQ datasets. The training, validation, and test set sizes are
reported alongside the sources of the query data.

we randomly selected 50 samples from the BCUQ1113

dataset and computed the Cohen’s Kappa coeffi-1114

cient between EB4.0 and human evaluation results.1115

The Cohen’s Kappa coefficient measures the agree-1116

ment between two evaluators, with values closer to1117

1 indicating higher consistency. Moreover, we eval-1118

uated the consistency between the GPT-4, human1119

evaluation, and EB4.0 evaluation results.1120

Tab. 4 presents the Cohen’s Kappa coefficient1121

results between human and two LLMs. The results1122

indicate that EB4.0 exhibits a high level of consis-1123

tency with both human evaluation and the GPT-4.1124

Thus, the use of EB4.0 for automated evaluation is1125

considered reliable.1126

Comparison Cohen’s Kappa Value
Human vs. EB4.0 0.79
Human vs. GPT-4 0.75
EB4.0 vs. GPT-4 0.71

Table 4: Cohen’s Kappa results between human and
two LLMs. EB4.0 exhibits a high Cohen’s Kappa value.
One of the authors served as the human annotator.

C.3 Dataset Statistics1127

This study utilizes the Alpaca (Wang et al., 2023),1128

Dolly (Conover et al., 2023), and BCUQ datasets.1129

The hyperparameters for TAGROUTER were op-1130

timized based on experiments conducted on the1131

BCUQ dataset. The BCUQ dataset, sourced from1132

LLM service usage, is more representative of open-1133

domain text generation tasks compared to Alpaca1134

and Dolly, thereby offering a closer reflection of1135

real-world user demands and expectations for LLM1136

capabilities. A detailed statistical summary of these1137

datasets is provided in Tab. 5.1138

D Additional Experiments in1139

TAGROUTER1140

D.1 Performance Comparison of1141

TAGROUTER and Baselines1142

Fig. 5 presents supplementary results that com-1143

plement Tab. 2, showing the performance of1144

TAGROUTER and baseline methods on the BCUQ 1145

dataset as they vary with the ratio to EB3.5. The 1146

results demonstrate that TAGROUTER consistently 1147

outperforms all baseline methods in terms of AUC. 1148

Notably, in the high-gain region where the AR 1149

value surpasses that of EB3.5, TAGROUTER ex- 1150

hibits an even more significant performance advan- 1151

tage. This observation underscores the effective- 1152

ness of TAGROUTER in enhancing system perfor- 1153

mance through ensembling multiple models. 1154

D.2 Routing Capability Among Comparable 1155

LLMs 1156

Significant differences in parameter sizes often lead 1157

to performance disparities. This has made model 1158

routing based on parameter size a widely studied 1159

topic (Aggarwal et al., 2023; Chen et al., 2023; 1160

Yue et al., 2024; Lee et al., 2024). However, we 1161

argue that even among models with similar param- 1162

eter sizes, variations in training data, model archi- 1163

tectures, and training methods can still lead to no- 1164

table performance differences. In some cases, these 1165

variations may result in complementary strengths 1166

across specific tasks. Therefore, investigating effi- 1167

cient routing methods for LLMs with comparable 1168

parameter sizes is important. 1169

To evaluate the routing capability of 1170

TAGROUTER in such scenarios, we selected 1171

GLM4-9B and Qwen2.5-7B as candidate models. 1172

These models not only have comparable parameter 1173

sizes but also exhibit similar performance on both 1174

Chinese and English comprehension tasks, as 1175

assessed by the CMMLU (Li et al., 2023) and 1176

MMLU (Hendrycks et al., 2021) benchmarks. We 1177

further evaluated their performance on the BCUQ 1178

dataset, with the experimental results presented 1179

in Fig 6, where the blue curve represents the 1180

performance of TAGROUTER under this setting. 1181

The results demonstrate that TAGROUTER ef- 1182

fectively improves the AR score of the model sys- 1183

tem while simultaneously reducing computational 1184

cost, thereby enhancing system efficiency. This 1185

further validates the effectiveness and applicability 1186
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Figure 5: Performance comparison of TAGROUTER and the baseline methods on BCUQ dataset. TAGROUTER
outperforms all baselines. (a) Comparison between TAGROUTER and the top three existing routing methods. (b)
Comparison between TAGROUTER and other tag-based routing methods introduced in Sec. 5.1.
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Figure 6: Performance of TAGROUTER on BCUQ
dataset. The candidate LLMs are GLM4-9B and
Qwen2.5-7B. "w/ original TAGSCORER" denotes the
use of tag-score pairs generated by EB3.5 and EB-
speed as capability representations, while "w/ enhanced
TAGSCORER" refers to the use of tag-score pairs gener-
ated by GLM4-9B and Qwen2.5-7B.

of TAGROUTER in routing LLMs with comparable1187

capabilities.1188

D.3 Generalization to Unseen LLMs1189

Routing without the need for labeled samples from1190

unseen LLMs is critical for the practical applicabil-1191

ity of routing systems. In this work, we selected1192

GLM4-9B and Qwen2.5-7B as candidate models.1193

To assess generalization performance, we use tag-1194

score pairs generated by EB3.5 as the capability1195

representation for GLM4-9B and tag-score pairs1196

generated by EBspeed for Qwen2.5-7B. These rep-1197

resentations were then used to evaluate the ability1198

of TAGROUTER to generalize on the BCUQ dataset.1199

The experimental results are presented in Fig. 6, 1200

where the green curve corresponds to the scenario 1201

without labeled samples. 1202

The results indicate that although the AUC scorer 1203

in the no-labeled-sample setting (green curve) is 1204

lower than in the labeled-sample setting (blue 1205

curve), TAGROUTER still significantly enhances 1206

the performance of the model system. This sug- 1207

gests that TAGROUTER has implicitly learned to 1208

differentiate between complex and simple queries 1209

during training, enabling it to dynamically select 1210

the appropriate LLM for inference based on task 1211

complexity. 1212

D.4 Generalization to Other Benchmarks 1213

To evaluate the generalization capability of 1214

TAGROUTER, we trained the model on the BCUQ 1215

dataset and assessed its performance on the Alpaca 1216

(Wang et al., 2023) and Dolly (Conover et al., 2023) 1217

datasets. The experimental results are illustrated 1218

in Fig. 7, where the green curve depicts the ac- 1219

cept rate as a function of the ratio to EB3.5. The 1220

results demonstrate that TAGROUTER effectively 1221

enhances system performance compared to using 1222

an individual model, further validating its general- 1223

ization ability across diverse datasets. 1224

To further optimize system performance, we ag- 1225

gregate the tag-scores of candidate models com- 1226

puted on Alpaca and Dolly datasets with those ob- 1227

tained from BCUQ. By incorporating this enhance- 1228

ment strategy, the experimental results represented 1229

by the blue curve in Fig. 7, exhibit a significant 1230

improvement in model system performance. This 1231

finding reinforces the scalability and adaptability 1232
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Figure 7: Performance of TAGROUTER on Alpaca and Dolly datasets. Candidate models include EB3.5 and
EBspeed. "w/ original TAGSCORER" refers to routing based solely on tag-scores computed from the BCUQ dataset,
whereas "w/ enhanced TAGSCORER" incorporates tag-scores computed from the training sets of the target evaluation
datasets (Alpaca and Dolly) in addition to those from BCUQ.
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Figure 8: Performance comparison of TAGROUTER and the top three ranking existing routing methods on Alpaca
and Dolly datasets. TAGROUTER outperforms all baselines.

of TAGROUTER as a training-free routing method.1233

Furthermore, Fig. 8 presents a comparative1234

analysis between TAGROUTER and the top three1235

ranking existing routing methods on the Alpaca1236

and Dolly datasets. The results indicate that1237

TAGROUTER is the only method capable of achiev-1238

ing a AR score that surpasses all individual candi-1239

date models, further substantiating its effectiveness1240

in model routing tasks.1241

D.5 Analysis of TAGROUTER Across Different1242

Benchmarks1243

By examining Fig. 5 and Fig. 8, we observe no-1244

table variations in the effectiveness of model rout-1245

ing methods across different datasets in terms of1246

improving routing system performance and surpass-1247

ing all individual candidate models. For instance,1248

on the BCUQ dataset, both TAGROUTER and base- 1249

line methods significantly enhance model system 1250

performance. However, achieving comparable per- 1251

formance improvements on the Alpaca and Dolly 1252

datasets proves to be more challenging. Analyz- 1253

ing this phenomenon provides deeper insights into 1254

the applicability of routing methods in diverse real- 1255

world scenarios. 1256

Tab. 5 presents the key statistics of the 1257

three datasets alongside the performance of 1258

TAGROUTER. The following observations can be 1259

drawn: longer queries tend to contain a greater 1260

number of tags, which serve as representations 1261

of user intent. For example, Alpaca exhibits the 1262

fewest tags and the lowest PAUC score, whereas 1263

BCUQ contains the highest number of tags, corre- 1264

sponding to the highest PAUC score. This suggests 1265
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that a greater number of tags facilitates a more dis-1266

tinctive query representation, enabling the routing1267

system to more effectively allocate queries to the1268

most appropriate model.1269

D.6 Impact of Training Data Size1270

Tab. 6 presents the performance of TAGROUTER1271

on the BCUQ dataset when trained with varying1272

amounts of data. The experimental results indi-1273

cate that even with only 100 training samples, the1274

AR score of the model system improves by 0.86%.1275

As the training data size increases, system per-1276

formance continues to improve, suggesting that1277

a larger training samples further enhances the ef-1278

fectiveness of the routing system.1279

E TAGGENERATOR1280

E.1 Algorithms for Developing1281

TAGGENERATOR1282

Algorithm 1 Iterative Reduction of Tags within
Clusters for a Set of Queries
Input : A set of queries Q = {q1, q2, . . . , qn},

each associated with a set of tags T (q)
Output : The reduced set of tags after clustering

and reduction for all queries
EncodeTags(T (q)) return Normalized embed-
dings of T (q)

DBSCANCluster(Eq) return Clusters based on
the distance matrix derived from Eq

ReduceTags(C) while |C| > 2 do
Remove the tag with the least cumulative simi-
larity within C

end
return C
ReducedTags← ∅
foreach query q ∈ Q do

Eq ← EncodeTags(T (q))
Clusters← DBSCANCluster(Eq)
foreach cluster C in Clusters do

ReducedC ← ReduceTags(C)
ReducedTags ← ReducedTags ∪
ReducedC

end
end
return ReducedTags

Algorithm 2 Hybrid Weight-Based Data Sampling
Input :Training dataset D with associated tags,

sampling ratio α ∈ (0, 1]
Output :Sampled training dataset Dsampled
Step 1: Compute Hybrid Weights for Tags Com-
pute frequency ft of each tag t ∈ D
foreach tag t ∈ D do

Compute hybrid weight:

w
hybrid
t ← 1

ft
+ log

(
max
t∈T

ft

)
− log(ft)

Assign w
hybrid
t to corresponding entries in D

end
Step 2: Normalize Weights Compute total
weight:

Wtotal ←
∑
t∈D

w
hybrid
t

foreach data point d ∈ D do
Normalize weight:

wnormalized
d ←

w
hybrid
d

Wtotal

end
Step 3: Perform Weighted Sampling
Determine the number of samples to draw based
on α:

n = ⌈α · |D|⌉

Initialize Dsampled = ∅ with capacity n (sampled
dataset)
for i = 1 to n do

Sample a data point di from D with probability
proportional to wnormalized

di
Append di to Dsampled
Remove di from D to avoid re-sampling

end
return Dsampled

E.2 Grid Search for the Best α 1283

We adopted the knowledge distillation method to 1284

transfer knowledge from the large model to the 1285

small model for training the TAGGENERATOR. 1286

Specifically, we first used EB4.0 to generate tags 1287

corresponding to queries, which were then used to 1288

construct the instruction datasetD to fine-tune base 1289

model (Qwen2.5-0.5B in this experiment). How- 1290

ever, we observed a significant class imbalance 1291

in the instruction dataset. Therefore, we applied 1292

Alg. 2 for sampling, where the sampling ratio α 1293

determines the number of training samples. To find 1294
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Dataset Average Query Tokens Average Tag Count PAUC
Alpaca 18.67 1.95 0.14
Dolly 107.13 2.19 0.50
BCUQ 329.98 3.33 1.46

Table 5: Basic statistics of the three datasets and the performance of TAGROUTER. Query token counts are computed
using the EBspeed tokenizer, tag numbers are generated by TAGGENERATOR, and PAUC score represents the
performance of TAGROUTER on the respective dataset.

Category Method Performance at Max AR AUC(%)↑ PAUC(%)↑
AR(%)↑ Uplift(%)↑ Cost↓ Rank↓

Single LLM
EBspeed 59.78 -24.1 2.01 1.212 - 0
EB3.5 78.76 0 13.49 1.400 - 0

Training Data

100 79.44 0.86 12.49 1.206 71.36 0.01
300 80.79 2.58 13.02 1.192 73.18 0.19
500 80.90 2.72 12.82 1.191 73.45 0.22
1,000 81.01 2.86 12.78 1.190 73.95 0.27
3,000 81.24 3.15 12.55 1.188 75.28 0.75
5,000 82.25 4.43 12.56 1.178 75.46 0.97
10,000 82.58 4.85 12.56 1.174 75.48 0.95
30,000 83.37 5.85 11.35 1.166 75.95 1.29
50,000 83.26 5.71 11.32 1.167 75.90 1.30
70,000 83.48 5.99 11.32 1.165 76.00 1.40
93,669 83.60 6.15 11.17 1.164 76.10 1.46

Table 6: Performance of TAGROUTER on BCUQ dataset with different size of training data.

the optimal α, we performed grid search for hyper-1295

parameter tuning. Tab. 7 shows the consistency and1296

diversity evaluation results between the tags gener-1297

ated by TAGGENERATOR and those generated by1298

EB4.0 for different values of α.1299

Consistency. From the F1-score results, we can1300

see that as α increases, the consistency between1301

the tags generated by TAGGENERATOR and those1302

generated by EB4.0 consistently improves. This1303

phenomenon indicates that, as the training data in-1304

creases, TAGGENERATOR better learns the pattern1305

of tags generated by EB4.0, leading to a higher1306

match rate in the generated tags.1307

Diversity. From the inter-rate results, we ob-1308

serve a trend where the diversity of the generated1309

tags first increases and then decreases as α in-1310

creases. When α is small, a moderate increase in1311

α enhances the model ability to learn the tag gen-1312

eration pattern, thus improving the diversity of the1313

generated tags. However, as α grows further, the1314

proportion of high-frequency tags in the training1315

data increases, leading to overfitting on these high-1316

frequency tags, which in turn reduces the diversity1317

of the generated tags.1318

When α = 0.10, TAGGENERATOR achieves 1319

both high consistency and diversity. Therefore, we 1320

select α = 0.10 as the final parameter for training 1321

the TAGGENERATOR. 1322

E.3 Selecting Base Model 1323

We selected the base models suitable for TAGGEN- 1324

ERATOR from the Qwen2.5 and Llama3.2 series. 1325

Tab. 8 shows the performance of the TAGGENERA- 1326

TOR trained with different base models at α = 10 1327

in terms of consistency, diversity, and routing per- 1328

formance. Here, routing performance refers to the 1329

AUC score of TAGROUTER on the BCUQ dataset 1330

when EB3.5 and EBspeed are used as candidate 1331

models. 1332

As the model parameter size increases, consis- 1333

tency, diversity, and routing performance all show 1334

an upward trend. When using Qwen2.5-0.5B as 1335

the base model, the routing system not only per- 1336

forms excellently but also maintains low cost and 1337

latency due to its small parameter size. Therefore, 1338

Qwen2.5-0.5B is chosen as the final base model. 1339
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α Accuracy Precision Recall F1-Score Inter Rate
0.03 31.84 46.74 49.96 48.30 0.6340
0.05 37.82 53.46 56.40 54.89 0.7448
0.08 32.67 48.45 50.08 49.25 0.8144
0.10 40.60 55.85 59.78 57.75 0.8686
0.20 41.08 56.61 59.97 58.24 0.8325
0.30 40.57 56.48 59.03 57.73 0.7887
0.40 43.71 59.39 62.34 60.83 0.7809
0.50 48.72 65.24 65.80 65.52 0.5600
0.80 45.55 61.73 63.47 62.59 0.4716

Table 7: Consistency and diversity evaluation results between tags generated by TAGGENERATOR and EB4.0.
Accuracy, Precision, recall, and F1-score reflect the consistency between the tags generated by TAGGENERATOR and
those generated by EB4.0. The inter rate metric measures the proportion of tag types generated by TAGGENERATOR
in the EB4.0 tag set, which is used to evaluate the diversity of the generated tags. α = 0.10 is the best.

Base Model Accuarcy Precision Recall F1-Score Inter Rate AUC
Qwen2.5-0.5B 40.60 55.85 59.78 57.75 0.8686 76.10
Qwen2.5-1.5B 40.77 55.78 60.23 57.92 0.9072 77.14
Qwen2.5-3B 40.11 55.12 59.56 57.25 0.8943 76.24
Qwen2.5-7B 41.00 55.79 60.72 58.15 0.8918 77.48
Llama3.2-1B 39.83 54.99 59.10 56.97 0.8660 76.03
Llama3.2-3B 40.87 55.69 60.57 58.03 0.8969 77.26

Table 8: Consistency, diversity, and routing performance of TAGGENERATOR trained with different base models.

E.4 Compare TAGGENERATOR with1340

INSTAGGER1341

INSTAGGER is an LLM with seven billion param-1342

eters designed for generating open-domain tags,1343

and it can quantify the diversity and complexity of1344

instruction data. This work compares the perfor-1345

mance of the TAGROUTER using INSTAGGER for1346

tag generation with the standard TAGROUTER (us-1347

ing TAGGENERATOR). Tab. 9 shows that TAGGEN-1348

ERATOR outperforms INSTAGGER across all met-1349

rics and can improve the performance of the model1350

system more effectively.1351

E.5 Win/Tie/Loss Distribution for Tags1352

Analyzing the contribution of various tags to the1353

final model selection in the routing system helps us1354

understand the role tags play in model routing de-1355

cisions. Tags were selected from the tag set based1356

on the proportion of the sum of "win" and "tie"1357

counts relative to the total count of "win," "tie,"1358

and "loss" for each tag in the pairwise compari-1359

son results. We present the top 10 and bottom 101360

tags, along with the distribution of pairwise com-1361

parison results, shown in Fig. 9 and Fig. 10. The1362

pairwise comparison results were obtained using1363

the LLM-as-a-judge method on the BCUQ dataset,1364

which evaluates the quality of responses generated 1365

by EBspeed and EB3.5. 1366

Tags play a important role in model rout- 1367

ing. For queries associated with tags in Fig. 9, 1368

the routing system should select EBspeed as the 1369

final model. For example, when the tag "Medical 1370

Report" is generated, selecting EBspeed results in 1371

an AR score (sum of "win" and "tie") of 100%. 1372

Conversely, for queries corresponding to tags in 1373

Fig. 10, the system should select EB3.5. This "fine- 1374

grained classification" based on tags is challenging 1375

to achieve with predefined task categories. 1376

Tags with similar semantics contribute sim- 1377

ilarly to model routing. In Fig. 9, we observe 1378

that tags related to experience (e.g., "Product Sales 1379

Experience," "Product Identification," "Experience 1380

Analysis") exhibit consistent contributions to the 1381

performance of EBspeed and EB3.5 on queries 1382

containing experience-related semantic features. 1383

Specifically, EBspeed performs better on these 1384

queries. Similarly, in Fig. 10, EB3.5 is more effec- 1385

tive at handling queries related to travel, indicating 1386

that tags are interpretable in terms of model capa- 1387

bilities. 1388
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Category Method Performance at Max AR AUC(%)↑ PAUC(%)↑
AR(%)↑ Uplift(%)↑ Cost↓ Rank↓

Single LLM
EBspeed 59.78 -24.1 2.01 1.212 - 0
EB3.5 78.76 0 13.49 1.400 - 0

TAGROUTER
INSTAGGER 82.47 4.71 12.31 1.175 74.18 1.13
TAGGENERATOR 83.60 6.15 11.17 1.164 76.10 1.46

Table 9: Performance comparison between TAGROUTER using INSTAGGER (7B) and TAGGENERATOR (0.5B).
TAGGENERATOR outperforms INSTAGGER across all metrics.
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Figure 9: Win/Tie/Loss distribution for the top 10 tags.
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Figure 10: Win/Tie/Loss distribution for the bottom 10 tags.

E.6 Cases of TAGGENERATOR1389

Tab. 10, 11, and 12 present the tagged cases from1390

the Alpaca, Dolly, and BCUQ datasets, with tags1391

generated by TAGGENERATOR. The tags accu- 1392

rately reflect user intentions. 1393
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Query Tag
Describe a process of making crepes. Text Generation, Process

Description
Given the parameters of a triangle, find out its perimeter.
Side 1 = 4, Side 2 = 6, Side 3 = 8

Geometry, Problem Solv-
ing

Rewrite the sentence so that it’s in the present tense: She had worked at
the company for the past 3 years.

Text Rewriting, Language
Style

Table 10: Cases from Alpaca dataset tagged by TAGGENERATOR.

Query Tag
Identify which instrument is string or woodwind: Panduri, Zurna. Text Classification,

Knowledge Application
Who is Thomas Jefferson?
Please answer the above question based on the following context:
Thomas Jefferson (April 13, 1743 – July 4, 1826) was an American
statesman, diplomat, lawyer, architect, philosopher, and Founding Father
who served as the third president of the United States from 1801 to 1809.
Among the Committee of Five charged by the Second Continental
Congress with authoring the Declaration of Independence, Jefferson was
the Declaration’s primary author. Following the American Revolutionary
War and prior to becoming the nation’s third president in 1801, Jefferson
was the first United States secretary of state under George Washington
and then the nation’s second vice president under John Adams.

Question Answering, Fact
based Response

You are a master of marketing copy, tasked with creating a catchy slogan
for a product named "One-Stop Website Solutions." The product’s
strengths are professionalism, ease, cost-effectiveness, and superior
post-sales service. Try to emphasize these keywords: "professional team,
dedicated post-sales support."

Text Generation, Adver-
tising, Markdown Format-
ting, Keyword Incorpora-
tion

Table 11: Cases from Dolly dataset tagged by TAGGENERATOR.

F TAGSCORER1394

F.1 Impact of Tag Normalization and1395

Alignment1396

To enhance the performance of TAGSCORER, we1397

adopt the tag set obtained through tag normaliza-1398

tion, followed by an embedding-based tag align-1399

ment procedure. These methods strengthens the1400

robustness and generalization ability of the routing1401

system. As illustrated in Fig. 11, both tag nor-1402

malization and tag alignment enhances the perfor-1403

mance of model system. Furthermore, we observe1404

that after applying tag normalization, the effect of1405

tag alignment on the AUC score is minimal, with1406

only a marginal increase of 0.0001. This finding1407

suggests that when optimizing for low-latency re-1408

sponses, tag alignment can be omitted while main-1409

taining the AR score of the model system within a1410

satisfactory range.1411

F.2 Grid Search for the Best stie 1412

In Ong et al. (2024), the values of swin, stie, and 1413

sloss are set to 1, 1, and -1, respectively. We hypoth- 1414

esize that when the generated response results in 1415

a "tie" during pairwise comparisons with a value 1416

of stie, it should not be treated the same as swin. In- 1417

stead, it should lie within a range between 0 and 1. 1418

The experimental results, as shown in Fig. 12, sug- 1419

gest that the model achieves optimal performance 1420

when stie is set to 0.15. 1421

G Additional Experiments in 1422

TAGDECIDER 1423

G.1 Performance at Different Values of θ 1424

The design of TAGDECIDER aims to enable routing 1425

system achieve the highest AR score when θ = 1426

0. Fig. 13 shows the performance of the model 1427

system across various values of θ. Experiments 1428
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Query Tag
Translate the following text into Chinese: To cool down, a snake moves
into the shade.

Translation

Your task: Extract the core keywords from the input content and output
them in the required format.
Requirements:
1. The extracted keywords should represent the core intent of the
sentence.
2. The output should strictly follow the required format without any
unrelated text.
3. Only output the required JSON format, without using markdown
formatting.
Input content: What should I do if I catch a cold?

Keyword Extraction, Out-
put Formatting, Text Pro-
cessing

You are a master of marketing copy, tasked with creating a catchy slogan
for a product named "One-Stop Website Solutions." The product’s
strengths are professionalism, ease, cost-effectiveness, and superior
post-sales service. Try to emphasize these keywords: "professional team,
dedicated post-sales support."

Text Generation, Adver-
tising, Markdown Format-
ting, Keyword Incorpora-
tion

Table 12: Cases from BCUQ dataset tagged by TAGGENERATOR.
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Figure 11: Impact of tag normalization and tag align-
ment on the performance of the routing system.

conducted on three datasets demonstrate that the1429

default setting of θ = 0 is an satisfactory choice.1430

In this configuration, the model system not only1431

outperforms any individual model in AR score, but1432

also incurs lower costs compared to the method of1433

routing all queries to EB3.5.1434

As θ decreases, the routing system increasingly1435

prioritizes cost and routes more queries to the more1436

affordable EBspeed, thereby reducing the system1437

cost. However, when θ > 0, further increasing θ1438

results in some queries that should have been routed1439

to EBspeed being incorrectly assigned to EB3.5,1440

causing a degradation in performance. Thus, by1441

dynamically adjusting θ, we can achieve an optimal1442

trade-off between performance and cost.1443
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Figure 12: Impact of different stie values on the perfor-
mance of the model system. "1/Relative Cost" refers to
the inverse of the normalized cost when the AR reaches
its maximum value.

G.2 Method for Best θ Selection 1444

As shown in Fig. 13, while the default setting θ = 0 1445

is effective, it is not always the best value in differ- 1446

ent datasets. To identify the best θ tailored to the 1447

specific characteristics of different datasets, we em- 1448

ployed a grid search method to evaluate the perfor- 1449

mance model system on the training set for various 1450

values of θ, selecting the best value θ∗. Specifi- 1451

cally, we randomly sampled 1000 instances from 1452

the training sets of the Alpaca, Dolly, and BCUQ 1453

datasets to determine the best θ∗. The results of 1454

this search algorithm are presented in Tab. 13. Ex- 1455

perimental results show that the proposed method 1456
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Figure 13: Performance of TAGROUTER on the Alpaca, Dolly, and BCUQ datasets for various values of θ.

significantly improves the selection of the optimal1457

θ across all three datasets. This method allows1458

for dynamic selection of θ∗ based on the unique1459

characteristics of different datasets.1460
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Dataset θ
Performance at Max AR

AR(%)↑ Uplift(%)↑ Cost↓ Rank↓

Alpaca
θ=0 82.49 1.25 12.81 1.175
θ=θ∗ 86.64 6.35 12.63 1.166

Dolly
θ=0 86.67 4.68 15.34 1.131
θ=θ∗ 86.86 4.91 14.35 1.132

BCUQ
θ=0 82.47 4.71 11.67 1.175
θ=θ∗ 83.60 6.15 11.17 1.164

Table 13: Performance of TAGROUTER on the Alpaca, Dolly, and BCUQ datasets for θ = 0 and θ = θ∗. θ = θ∗ is
more cost-effient than θ = 0.
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H Prompt Template1461

Prompt for Tag Generation Using EB4.0

[ System ]
You a r e an i n s t r u c t i o n t a g g i n g sys tem d e s i g n e d t o p r o v i d e c o a r s e

− g r a i n e d t a g s f o r human i n s t r u c t i o n s , a iming t o i d e n t i f y and
a n a l y z e t h e s e m a n t i c s and i n t e n t i o n s o f i n s t r u c t i o n s t h r o u g h
t h e s e t a g s .

P l e a s e p r o v i d e c o a r s e − g r a i n e d t a g s , such as " Text G e n e r a t i o n " , "
S p e l l i n g and Grammar Check " , and " Cosp lay " , t o c l e a r l y
d e s c r i b e t h e main i n t e n t i o n s o f t h e p r o v i d e d i n s t r u c t i o n .
These t a g s w i l l a i d i n t h e q u a n t i t a t i v e a n a l y s i s o f t h e
d i v e r s i t y and c o m p l e x i t y o f i n s t r u c t i o n s . Here i s an
i n s t r u c t i o n :

[ b e g i n ]
``` j s o n
{{

\ " i n s t r u c t i o n \ " : \ " { prompt } \ " ,
}}
```
[ end ]

Your r e s p o n s e s h o u l d i n c l u d e a l i s t o f t a g t i t l e s and a b r i e f
e x p l a n a t i o n f o r each t a g . Your r e s p o n s e must s t r i c t l y f o l l o w
t h e JSON f o r m a t below . P l e a s e r e s p o n d i n E n g l i s h .

[ Outpu t Format ]
``` j s o n
[

{{
\ " t a g \ " : s t r ,
\ " e x p l a n a t i o n \ " : s t r

}}
]
```

1462

Prompt for Tag Generation Using TAGGENERATOR

[ System ]
You a r e an e x p e r t t e x t t a g e x t r a c t o r . Your t a s k i s t o i d e n t i f y

t a g s t h a t r e a d e r s s h o u l d f o c u s on w h i l e e n g a g i n g wi th t h e
u s e r que ry below .

[ User Query ]
{ I n p u t }

1463
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Prompt for Pairwise Comparison of Model Responses Using EB4.0/GPT-4

[ System ]
P l e a s e a c t a s an i m p a r t i a l j u d g e and e v a l u a t e t h e q u a l i t y o f

r e s p o n s e s p r o v i d e d by two AI a s s i s t a n t s t o t h e u s e r q u e s t i o n
d i s p l a y e d below . Your e v a l u a t i o n s h o u l d c o n s i d e r c o r r e c t n e s s
and h e l p f u l n e s s . You w i l l be g i v e n a s s i s t a n t A ' s answer , and
a s s i s t a n t B ' s answer . Your j o b i s t o e v a l u a t e which a s s i s t a n t
' s answer i s b e t t e r . You s h o u l d i n d e p e n d e n t l y s o l v e t h e u s e r
q u e s t i o n s t e p −by− s t e p f i r s t . Then compare bo th a s s i s t a n t s '
an swer s wi th your answer . I d e n t i f y and c o r r e c t any m i s t a k e s .
Avoid any p o s i t i o n b i a s e s and e n s u r e t h a t t h e o r d e r i n which
t h e r e s p o n s e s were p r e s e n t e d does n o t i n f l u e n c e your d e c i s i o n
. Do n o t a l l o w t h e l e n g t h o f t h e r e s p o n s e s t o i n f l u e n c e your
e v a l u a t i o n . Do n o t f a v o r c e r t a i n names o f t h e a s s i s t a n t s . Be
as o b j e c t i v e as p o s s i b l e . A f t e r p r o v i d i n g your e x p l a n a t i o n ,
o u t p u t your f i n a l v e r d i c t by s t r i c t l y f o l l o w i n g t h i s f o r m a t :
"A" i f a s s i s t a n t A i s b e t t e r , "B" i f a s s i s t a n t B i s b e t t e r ,
and "C" f o r a t i e . P l e a s e answer i n E n g l i s h .

[ User Q u e s t i o n ]
``` j s o n
{{

\ " i n s t r u c t i o n \ " : \ " { r e q u e s t _ d a t a } \ " ,
}}
```

[ The S t a r t o f A s s i s t a n t A ' s Answer ]
``` j s o n
{{

\ " i n s t r u c t i o n \ " : \ " { answerA } \ " ,
}}
```
[ The End of A s s i s t a n t A ' s Answer ]

[ The S t a r t o f A s s i s t a n t B ' s Answer ]
``` j s o n
{{

\ " i n s t r u c t i o n \ " : \ " { answerB } \ " ,
}}
```
[ The End of A s s i s t a n t B ' s Answer ]

[ Outpu t Format ]
``` j s o n
{{

" e x p l a n a t i o n " : s t r ,
" c o m p a r e _ r e s u l t " : A/ B / C

}}
```

1464
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