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A Data Collection and Licenses

We showed and compared MaRs-VQA and RAVEN in Table 9. The reason we choose
RAVEN, MaRs-VQA is because all these datasets contain zero-shot / few-shot human
investigation results in their follow-up studies. Based on these results, we can compare the
MLLM’s performance with human in matrix reasoning tasks.

For RAVEN, we followed the original data generation pipeline in their repo. For MaRs-VQA,
we download all questionnaires from MaRs-IB and then re-annotate all images by ourselves.

RAVEN The original dataset link of RAVEN is github.com/WellyZhang/RAVEN. It is un-
der GPL-3.0 License (RAVEN LICENSE) and is free to use by public. All data in RAVEN are
generated by rule-based scripts. We follow the basic setting of RAVEN, and modify the range
of COLOR_VALUES to [255, 192, 128, 64, 0] and SIZE_VALUES to [0.3, 0.45, 0.6, 0.75, 0.9].
The sample size of RAVEN is 560.

MaRs-VQA The image data of MaRs-VQA is from MaRs-IB (Chierchia et al., 2019) and
annotated with context option by our team. It contains 18 questionnaires, each of question-
naire contains 80 matrix reasoning questions. The human study of MaRs-IB is rigorous. In
MaRs-IB’s original user study, all participants provided informed consent and all procedures
were approved by UCL’s ethical committee.

The paper and study results are under MIT License. All questionnaires are under Attribution-
NonCommercial 3.0 (MaRs-IB LICENSE), which means it allows people to use the work, or
adaptations of the work, for noncommercial purposes only, and only as long as they give
credit to the creator. Thus, the MaRs-VQA dataset will under the same license.

The sub-task statistics of MaRs-VQA is in Table.

Compared to other zero-shot matrix reasoning dataset (Table 1) to evaluate matrix reasoning
for MLLMs, MaRs-VQA has advantages list below:

• MaRs-VQA comprises 1,440 image instances designed by psychologists, making it
the largest dataset for zero-shot matrix reasoning evaluation.

• MaRs-VQA includes a diverse range of data, such as variations in color, geometry,
positional relationships, and counting.

• The data source for MaRs-VQA is MaRs-IB (Chierchia et al., 2019), which is based
on rigorous human studies. This dataset is widely recognized in the psychology
community and has inspired numerous follow-up studies in child psychology and
pediatrics. This is the first time we introduce it to the AI/ML community.

B MaRs-VQA Difficulty Level Study

We also compare GPT-4o across difficulty levels and different visual complexities in the
MaRs-VQA dataset in Table 8. In Table 7, the difficulty of matrix reasoning tasks can
be categorized into five levels based on the complexity of attribute changes: Difficulty
Level 1 involves a single changing attribute (e.g., shape, color, size, position, or multi-
object) or two simple attributes; Difficulty Level 2 combines multi-object attributes with
one other attribute (e.g., shape, color, size, or position); Difficulty Level 3 involves three
simultaneously changing simple attributes (e.g., shape, color, and size); Difficulty Level
4 combines multi-object attributes with two other attributes (e.g., shape and color); and
Difficulty Level 5 and above includes combinations of four or more attributes. The difficulty
increases as the number and complexity of attribute combinations grow. The results indicate
that GPT-4o exhibits difficulty sensitivity similar to that of humans. This is because GPT-4o
can solve object size sub-tasks well in the MaRs-VQA, but is still struggling with other
sub-tasks, especially the multi-object sub-task.
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Difficulty Level Question Option Description

Level 1 Shape + Size

Level 2 Color + Multi-object

Level 3 Shape + Color + Position

Level 4 Shape + Color + Multi-object

Level 5 Shape + Color + Position + Multi-object

Table 7: Explanation of Difficulty Levels in MaRs-VQA.

Method Accuracy (%) ↑

Level 1 (90) Level 2 (96) Level 3 (84) Level 4 (72) Level 5 (138)

GPT-4o + CoT 57.78 27.08 27.38 19.43 21.74

Table 8: Test GPT-4o with different difficulty levels in MaRs-VQA. The number in the “()” is
the number of case sample of selected level. The difficulty level is based on the complexity
of color, size, geometry, positional relationships, and object counting (See Appendix for
more details).

Dataset Question Option Instance Description

RAVEN
(Zhang et al., 2019)

rule-based
generation

8 options per instance
grayscale image

rule-based stimuli
include human study

MaRs-VQA 1,440

4 options per instance
RGB image

psychologist designed stimuli
include human study

Table 9: Experiment datasets comparison. The OOD dataset RAVEN is rule-based generated
datasets. The test samples in MaRs-VQA are designed by psychologists from MaRs-IB.

C Experimental Settings

C.1 Implementation Details

We used langchain to implement all closed-source MLLMs. The temperature of all models
are 0 and the max token length is 1024. For all datasets, we follow their default image size,
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type settings for closed-source MLLMs. All experiments are run with three different random
seeds, however, since we set temperature to 0, the final accuracy is the same for all random
seeds.

For open-source models, we use the public available weights and data loader settings from
the HuggingFace. Testing is conducted using two NVIDIA H100 GPUs for all VLMs. All
experiments are run with three different random seeds, and the results are averaged.

Based on Figure 7, here is the explanation of difficulty levels presented in our paper:

• Difficulty Level 1: Single sub-task and two simple sub-tasks Description: The task
involves only one changing attribute across the matrix reasoning—either shape,
color, size, position, or multi-object. Or two simple attributes: (shape & color),
(shape & size), (shape & position), (color & size), (color & position), (size & position).
Example: Figure 4 (top-left) is a matrix reasoning task where only the size and color
of the objects changes. This is a difficulty level 1 task.

• Difficulty Level 2: Two sub-tasks involving multi-object sub-task Description: The
task involves multiple objects combined with one other changing attribute. The sub-
task combinations are (multi-object & shape), (multi-object & color), (multi-object &
size), (multi-object & position).

• Difficulty Level 3: Three simple sub-tasks combined Description: The task involves
three changing attributes simultaneously. The sub-task combinations are (shape &
color & size), (shape & position & size), (shape & position & color), (size & position
& color).

• Difficulty Level 4: Three sub-tasks involving multi-object sub-task Description:
The task involves multiple objects combined with two other changing attributes.
The sub-task combinations are (multi-object & shape & color), (multi-object &
shape & size), (multi-object & shape & position), (multi-object & color & position),
(multi-object & color & size), (multi-object & position & size).

• Difficulty Level 5 and Above: Four or more Sub-tasks Description: The task
involves combinations of four or five attributes. Example: Figure 4 (top-right) is a
matrix reasoning task (shape & position & color & multi-objects) and its difficulty
level is > 4.

As more attributes change simultaneously, the task becomes more complex, requiring higher
levels of abstract reasoning to identify patterns. In addition, each additional changing
element adds to the cognitive load, making it more challenging to discern the correct
answer.

C.2 More Qualitative analysis

In this section, we further analyze the failure cases of GPT-4o. Correct reasoning is high-
lighted in green, while incorrect reasoning is marked in red. Although GPT-4o is sometimes
able to extract a subset of key information from the question image, it frequently fails to
arrive at the correct final answer. This is primarily due to critical features being either
overlooked or inadequately utilized in the decision-making process. As a result, the final
answers are often incorrect or only partially aligned with the relevant attributes. It reveals
that visual working memory will be a key part to optimize the MLLM’s performance in
matrix reasoning problem.

D Further Discussion on Limitations

Insights Unlike other VQA benchmarks, our work approaches the perspective of human
visual cognition—an underexplored domain. Based on our experimental results, we offer
the following insights for vision researchers:

• While scaling laws have some applicability to visual cognition tasks, merely increas-
ing model size and training data is insufficient to achieve human-level performance.
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• To demonstrate that VLMs possess strong visual cognitive abilities, it is crucial to
evaluate them on zero-shot inference tasks like matrix reasoning—tasks character-
ized by simple visual content but requiring complex reasoning to find the correct
answer.

• Unlike other multi-image visual reasoning benchmarks, MaRs-VQA effectively
highlights the performance gap between MLLMs and human cognition in these
tasks.

From our main and ablation experiments, we observed that as task difficulty increases,
the performance of MLLMs in multi-image reasoning scenarios deteriorates. Interestingly,
providing language-based descriptions of each option (i.e., inputting the model with a single
question image and context-based options) improved the models’ performance compared
to using multi-image options. This suggests that language still plays a significant role in the
visual reasoning processes of current MLLMs and VLMs.

In contrast, human visual cognition—especially in children—allows individuals to solve
matrix reasoning tasks without relying on advanced language reasoning capabilities. Chil-
dren can often solve these tasks effectively by utilizing their visual working memory and
pattern recognition skills.

One potential reason for the performance gap is that current MLLMs/VLMs may under-
emphasize the visual encoder relative to the language encoder. In many recently released
VLMs, the visual module is much smaller than the language model module, and the visual
encoders are frozen during Large Language Model (LLM) and alignment layer fine-tuning
in open-sourced VLMs. This imbalance might limit the models’ capacity to retain and
process complex visual information during reasoning tasks.

To better retain visual information during the reasoning process, MLLMs may require more
capable visual modules that can handle complex visual patterns and maintain this infor-
mation throughout the reasoning steps. Moreover, optimizing the training process with
end-to-end multimodal training—without freezing any layers in the visual modules—can
be beneficial. Recent models have begun to explore end-to-end VLM fine-tuning, demon-
strating the potential of this approach, though challenges remain such as the need for
multi-round alignment. In the future, developing more advanced methods to effectively
integrate visual and linguistic features will be crucial.

Limitations In the main paper, we briefly discussed the limitations of our work. Here,
we provide a more in-depth discussion. First, our dataset is composed of limited publicly
available matrix reasoning datasets, which must include human study results. The RAVEN,
created by the AI/ML community, were not developed following rigorous psychological
research norms. Consequently, our benchmarking results, which utilize these datasets,
should not be used to derive psychological or clinical conclusions. While MaRs-VQA
addresses this problem, its samples cannot represent all formats of matrix reasoning found
in IQ tests such as the WISC and the Cattell Culture Fair Intelligence Test (Cattell & Cattell,
1960). We cannot use these IQ tests directly because they are not freely available, and
copyright restrictions usually prevent these pen-and-paper tasks from being adapted into
computerized formats.

Second, the size of MaRs-VQA is relatively small compared with typical computer vision
datasets, due to the inherent challenges involved in collecting matrix reasoning data. How-
ever, as we have argued in our paper, matrix reasoning should not be presented in typical
machine learning settings—fine-tuning models on training sets and evaluating performance
on test sets. Benchmarking MLLMs’ visual reasoning performance should be conducted
in a zero-shot inference setting, ensuring that all data in the test set are not included in the
models’ training data. Even compared with other recently released human-designed matrix
reasoning datasets, ours is still the largest (see Table 1).

Future Work Finally, we pose the open-ended question of whether MLLMs need to achieve
or surpass human-level zero-shot inference capability in matrix reasoning tasks. Addressing
this issue requires drawing on theories from cognitive science and psychology to understand
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the nature of human and MLLM intelligence. Matrix reasoning ability develops early in
human neurodevelopment, with children as young as four providing sensible answers
to simple matrix reasoning questions without additional training, making it a critical
component of IQ tests. In contrast, LLMs and MLLMs rely on training data, fundamentally
differing from how children develop cognitive abilities. However, we believe that these two
learning processes share commonalities: both involve the gradual accumulation of skills
and the ability to generalize from past experiences. Exploring these parallels can provide
valuable insights into designing MLLMs that more closely mimic human visual cognition,
ultimately leading to more advanced and capable models. Additionally, we observe that
current open-source models achieve matrix reasoning performance very close to that of
closed-source models. However, VLMs face challenges in supporting multiple images as
input and managing visual memory. Addressing these challenges is a crucial direction for
building more robust open-source VLMs in the future.

E Ethics Discussion

This research aims to advance LLMs and VLMs by providing a new benchmark for evalu-
ating AI capabilities in visual reasoning. MaRs-VQA builds on the MaRs-IB (Attribution-
NonCommercial 3.0 License), RAVEN (GPL-3.0 License). All code and data are available
on GitHub. No conflicts of interest exist among the study’s contributors. The annotation
process is IRB approved by a clinical institute.

E.1 Negative Societal Impacts

We foresee no direct negative societal impacts from our matrix reasoning benchmark. How-
ever, it could be misunderstood or misinterpreted as comparing AI “thought” to human
cognition or misused to evaluate human abilities across demographics or ethnicity. We
strongly caution against such misuse, as our datasets are not validated for human assess-
ment.

Another concern relates to the future conclusion from our benchmark. While matrix rea-
soning is a crucial test for evaluating human intelligence, observing that VLMs with large
model weights perform better on matrix reasoning tasks does not imply that the intelligence
of MLLMs follows the same “scaling law” from the general domain. A comprehensive
intelligence test requires accurate assessment using human-based tools, of which matrix
reasoning is only one critical component. We cannot conclude that larger MLLMs can
achieve human intelligence.

Additionally, there is a potential concern for discrimination against certain groups based on
race, gender, or age in human study results. Although all human results in our experiment
tables are sourced from previously published papers, we cannot guarantee that all previous
research adhered to strict standards ensuring the inclusion of all groups in the human
investigation process.

E.2 Mitigating Bias and Negative Societal Impacts

While the use of MaRs-VQA come with potential negative social impacts, there are viable
mitigations that can address these concerns. These include adding instructions for proper
use and restricting unethical human investigations. Users must be aware of the ethical
implications associated with our benchmark and take appropriate measures to ensure its
safe and responsible utilization.
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Question Image Options

In each row, the top shape is the same, 

and the bottom two shapes are always 

pink. Following this pattern, the missing 

shape should have the same top shape 

as the others in its row, which is pink, 

with two pink shapes at the bottom.

Reasoning

Each row contains the same three 

shapes in different positions. The missing 

image should include the red circle with a 

blue plus, a blue circle, and a red triangle. 

Option 3 matches this pattern.

Each row has a pattern where the 

number of blue dots increases by one as 

you move from left to right. The first 

column has 4 dots, the second has 5, 

and the third has 6. Following this pattern, 

the missing shape should have 6 dots.

In each row, the number of dots in the 

top part increases from left to right (1, 2, 

3). Following this pattern, the bottom-

right cell should have three dots on the 

top, matching the third column's pattern 

for the row.

In each row, a circle and a pair of parallel 

lines appear, with the circle shifting 

positions and colors. The third column 

should have a pink circle and pink lines 

to complete the pattern in the last row.

Each row follows a pattern where the 

main shapes alternate positions, with the 

half-circle and ellipses appearing in 

different orientations. The third row 

should mirror this pattern. In the first row, 

the half-circle is on the left, in the second 

row, it is on the right, and in the third row, 

it should be in the middle.

Figure 5: More visualization results for GPT-4o’s reasoning.
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