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Abstract

Powerful artificial intelligence systems are often used in settings where they
must interact with agents that are computationally much weaker, for example
when they work alongside humans or operate in complex environments
where some tasks are handled by algorithms, heuristics, or other entities
of varying computational power. For AI agents to successfully interact in
these settings, however, achieving superhuman performance alone is not
sufficient; they also need to account for suboptimal actions or idiosyncratic
style from their less-skilled counterparts. We propose a formal evaluation
framework for assessing the compatibility of near-optimal AI with interaction
partners who may have much lower levels of skill; we use popular collaborative
chess variants as model systems to study and develop AI agents that can
successfully interact with lower-skill entities. Traditional chess engines
designed to output near-optimal moves prove to be inadequate partners when
paired with engines of various lower skill levels in this domain, as they are
not designed to consider the presence of other agents. We contribute three
methodologies to explicitly create skill-compatible AI agents in complex
decision-making settings, and two chess game frameworks designed to foster
collaboration between powerful AI agents and less-skilled partners. On
these frameworks, our agents outperform state-of-the-art chess AI (based on
AlphaZero) despite being weaker in conventional chess, demonstrating that
skill-compatibility is a tangible trait that is qualitatively and measurably
distinct from raw performance. Our evaluations further explore and clarify
the mechanisms by which our agents achieve skill-compatibility.

1 Introduction

As AI achieves superhuman performance in an increasing number of areas, a recurring theme
is that its behavior can be incomprehensible or incompatible with agents of lower skill levels.
Game-playing is a familiar instance of this; it is well-understood, for example, that modern
chess engines play in a style that is often alien to even the best human players, to the extent
that calling out “engine moves” (actions only computers would take) is a staple of professional
commentary. It is also standard practice for human players to use moves outputted by chess
engines as recommendations for their own play, only to find that they cannot successfully
follow them up. In a way, chess AI (which is "near-optimal") and human players (an example
of less-skilled agents) "speak" very different dialects that are often not mutually intelligible.
This lack of compatibility leads to failures when less skilled agents interact with optimal one,
in settings where the less-skilled parties may be humans interacting with powerful AI systems,
or simple heuristics interacting with much stronger ones.

Given this state of affairs, an important open question in any given domain is how to achieve
AI performance that is both high-level and compatible with agents of lower skill. How might
we accomplish this, and how would we know when we’ve succeeded?

In this work, we propose a training paradigm to create AI agents that combine strong
performance with skill-compatibility, we use our paradigm to train several skill-compatible
agents, and we illustrate their effectiveness on two novel chess tasks. Our paradigm is based on
the following idea: skill-compatible agents should still achieve a very high level of performance,
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but in such a way that if they are interrupted at any point in time and replaced with a much
weaker agent, the weaker agent should be able to take over from the current state and still
perform well. We enforce a high level of performance by testing in an adversarial environment
where the opponent might have superhuman abilities, and we encourage robustness against
interruption and replacement by a weaker agent in chess (skill-compatibility) in two different
ways: independently at random after each move; and by decomposing individual moves into
a selection of a piece type and a subsequent selection of a move using that piece type, following
the popular chess variant known as “hand and brain.”

This interruption framework thus provides computationally powerful agents with an objective
function that balances two distinct goals: (i) it dissuades them from playing incompatible
“engine moves,” since such moves may strand a weaker agent in a state where it can’t find
a good next action even when one exists, but (ii) it still promotes high performance since
the goal is to win games despite interruptions from weaker counterparts. Our paradigm thus
suggests a strong and measurable notion of the interpretability of a powerful agent’s actions:
the actions are interpretable (and skill-compatible) in our sense if and only if a weaker agent
can find an effective way to follow up on them.

2 Background and Related Work

Chess and AI. Chess has a long history in AI research Shannon (1950), with milestones
including Deep Blue Campbell (1999), followed by superhuman performance on commodity
hardware, and more recently AlphaZero and its follow-ups Silver et al. (2016); Schrittwieser
et al. (2020). More recent work on the relation of algorithmically-generated chess moves to
human behavior play an important role in our work McGrath et al. (2022); McIlroy-Young
et al. (2020); Anderson et al. (2017); Maharaj et al. (2022).

Human-AI collaboration. Recent work has studied human-AI collaboration in a multi-agent
scenario, where an AI agent and a weaker human agent work alongside each other to complete
a task Carroll et al. (2019); Strouse et al. (2021); Yang et al. (2022). One distinction from our
work is their notion of compatibility, where the focus has been on agents working simultaneously
on related tasks; in contrast, a central feature of our framework is that the compatibility is
inter-temporal, with the design goal that a less-skilled agent should be able to take over at any
point from the partially completed state of the AI agent’s progress. This inter-temporal aspect
is an important aspect toward our goal of designing agents whose actions will be intelligible
to weaker agents who need to work from a state of the world that they have created.

Opponent modeling. Agents that interact with humans have made great strides in
performance by modeling other human actors Bard et al. (2019), whether by modeling
opponents as an optimal player (Perolat et al., 2022; Gray et al., 2020; Brown & Sandholm,
2018), or by building agents that communicate and collaborate with other human players
in multiplayer games (Vinyals et al., 2019; Yu et al., 2021; (FAIR)† et al., 2022).

2.1 Chess engines

We select chess as our model system due to the ready availability of both superhuman AI
agents and AI agents designed to emulate lower-skilled human players, the complexity of the
decision-making task, and the need for more understandable game AI agents that others can
interact with. We list the existing engines that we make use of in our work.

leela. leela Lyashuk & et al (2023) is an open source version of AlphaZero Silver et al. (2018),
a deep RL agent that consists of a neural network that evaluates boards (value) and suggests
moves (policy) Silver et al. (2016), both of which are used to guide a Monte Carlo Tree Search
(MCTS) algorithmto select the next action Jacob et al. (2022); Grill et al. (2020). The network
is trained using repeated iterations of self-play followed by back-propagation. We use a small
version of leela as the superhuman engine in our tests and as our baseline for comparison.

maia. The maia engines McIlroy-Young et al. (2020; 2022) are a set of human-like chess
engines that capture human style at targeted skill levels. They are trained as a classification
task on tens of millions of human games at a specified skill level, and as such maia does not
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Figure 1: Stochastic Tag Team Framework

{
S1

J1

∣∣∣S2

J2

}
S1

J1

S2

J2

Team 1 Team 2

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNAQJBMR

a b c d e f g h

N

Nc6

p

pe4

Figure 2: Hand and Brain Framework

use MCTS during play. Most of our work uses the weakest version, maia 1100, which was
trained on games from 1100-rated players—those roughly in the 20th percentile of skill—on the
open-source online chess platform lichess.org. maia serves as the instantiation of sub-optimal,
lower-skilled agents, allowing us to study error patterns trained on human error while creating
and evaluating our compatible agents in silico.

3 Methodology

3.1 Chess frameworks

Our goal is to develop chess agents that can behave in inherently skill-compatible ways, much
like skilled coaches tailor their actions to suit their students. In this work, we approach this task
via two proxy frameworks in which our engine “coaches”, or seniors, interact collaboratively
with weaker “students”, or juniors. There are two natural ways in which this collaboration could
take place within a sequential game setup: the seniors and juniors could alternate between
who takes the current action, or the seniors and juniors could collaboratively construct each
action. Our two frameworks follow these two directions to enable cooperation within a chess
game, suiting our experimental purpose of designing and evaluating skill-compatible agents.
Note that both frameworks incorporate a strong and weak engine jointly in control of a single
color, and incorporate an element of stochasticity to preclude perfect prediction strategies
by agents that skirt the objective of achieving compatibility. We will generally refer to our
agents as playing the Focal roles against a team of opponent agents playing the Alter roles.

Stochastic Tag Team (STT). The STT setup consists of two teams, each in control of
a color on the chessboard. A team consists of two agents, the junior teammate, which is
generally maia, and the senior teammate, which is generally a stronger engine (e.g. leela,
or the engines we design). Prior to each move, Nature flips a fair coin to determine whether
the junior or senior makes the move, with no consultation with any other party allowed. This
setting introduces a cooperative aspect to chess, since a senior will need to be prepared for
the possibility that a weaker junior might be making the next move. At the same time, the
senior will need to play at a high level of chess, since the opponent senior will also be playing
at a high level, and it will simultaneously need to attempt to exploit the weaknesses in the
opponent junior. The STT framework thus allows us to explore scenarios where teammates
and opponents can be both high-skilled and low-skilled, and the high-skilled AI is required
to both perform at a high level and account for low-skill involvement in both teams. See
Figure 1. We use the following tuple to denote a game played under STT :

〈
S1

J1

∣∣∣S2

J2

〉
, where S1

is the senior engine on the white team, J1 the junior engine on the white team, S2 the senior
engine on the black team, and J2 the junior engine on the black team. Note that while the first
team is technically white and the second team black in this notation, we abuse the notation to
indicate multiple games played between these two teams, alternating between black and white.

Hand and Brain (HB). This cooperative setup, which has witnessed a massive increase in in-
terest by grandmasters (GMs) and amateurs alike in recent years, also consists of two teams, each
in control of a color on the chessboard. A team consists of two agents, the brain agent (always
the stronger agent in our case), which selects the piece type to be moved (e.g., knight N), and the
hand (maia agent in our case), which then selects the specific piece and move to make given the
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brain’s selection (e.g., move the knight on g1 to f3). See Figure 2. GM Hikaru Nakamura stated
that as the brain playing with a weaker hand, he often picks sub-optimal moves he finds more
suitable for his hand partner Nakamura (2021), which is in the spirit of our work. In contrast to
the previous framework, this framework exemplifies scenarios where the stronger agent “nudges”
the weaker agent, narrowing their action space, which then makes the action. We will use the fol-
lowing tuple to denote a game played under HB:

{
H1

B1

∣∣∣H2

B2

}
, where H1 and B1 are the hand and

brain agents on the white team, andH2 andB2 are the hand and brain agents on the black team.
In our work, the brain will always be the stronger agent, and the hand the weaker engine that
chooses a move (stochastically from its distribution, to induce some randomness and ensure the
brains aren’t able to perfectly predict their decision) conditioned on the brain’s piece-type choice.

3.2 Methodologies to create skill-compatible seniors

We contribute three methodologies to create agents that outperform superhuman chess
engines (leela) in these two skill-compatibility frameworks. We emphasize that we are not
aiming to improve upon state-of-the-art chess engines. Instead, we are interested in designing
skill-compatible chess AI that can productively interact with weaker agents.

Tree agent. Our first agent is the maia engine augmented with MCTS. By exploring future
game states based solely on maia’s policies and values, the Tree agent inherently takes its
junior’s propensities into account when deciding what move to make. Notably, this agent only
requires a maia model and does not rely on a superhuman agent. It is also framework-agnostic
and thus implemented identically for both frameworks. In HB, the tree agent’s output is
filtered to only convey the piece type, as mentioned above.

Expector agent. We introduce a type of gold standard agent that conforms to the exact
setting of the frameworks. The expector agent has access to models of juniors/hands, and
maximizes its expected win probability w over a short time horizon given the identities of
the seniors and juniors. For STT , it simulates all possible bitstrings 2 plies into the future,
selecting the move m = argmax

m

(
Es∈{00,01,10,11}[w|(m,s)]

)
; and for HB it selects the piece

that maximizes its expected win probability over maia’s distribution of moves conditioned
on that piece (Dp): p=argmax

p

(
Em∈Dp

[w|m]
)
. In the former case it requires a model of the

other three agents in the game to perform the simulation, and in the latter case it also needs
a model of its own hand to obtain the distribution Dp. In both cases, it requires access to
a strong agent to compute the win probabilities that the expectation is maximizing. Although
it requires no training, playing moves is expensive due to calls to multiple chess engines and
evaluations of the current board state. The version of the expector designed for STT will
be denoted as expt, and the one designed for HB will be denoted as exph.

Attuned agent. The attuned agent is a self-play RL agent that directly learns from playing
in the two frameworks. In contrast to learning from self-play in conventional chess, as leela
does, the attuned agents are created by generating games from self-play of leela and maia
teams in both frameworks. With a small training set, this method is essentially a fine-tuning
procedure for leela that takes into account maia’s interventions, rather than training a chess
engine from scratch. The Supplement includes full training details. This methodology is the
most practical of the three in its ability to be modified and generalize, and lies somewhere
between the rigidity of tree and the specificity of exp. However, it is the only agent of the
three we introduced that requires training. The version of the attuned agent trained on STT
will be denoted as attt, and the one trained on HB will be denoted as atth. In HB, similar
to the tree agent, we only take the piece of the outputted move.

4 Experiments

4.1 Agent strength in each framework

Our foremost goal is to quantify the objective performance of each agent on each framework. Are
they better at playing with weaker partners than state-of-the-art chess AI—that is, are they skill-
compatible? Here, we use maia1100 as the junior and hand agent for all analyses, and the three
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Table 1: Win % of focals vs leela
in STT with maia1100, and regular chess

Game Setup tree expt attt maia〈
focal
maia

∣∣∣ leelamaia

〉
56.5** 66.5** 55.0** 7.5*

focal | leela 0.5** 14.0* 12.5* 0.0**

** ≤±0.5, * ≤±1.5, see appendix for full error ranges

Table 2: Win % of focals vs leela
in HB with maia1100, and regular chess

Game Setup tree exph atth maia{
focal
maia

∣∣∣ leelamaia

}
60.0** 56.5** 55.0** 27.5*

focal | leela 0.5** N/A 4.5 * 0.0**

** ≤±0.5, * ≤±1.5, see appendix for full error ranges

Table 3: Average losses for agents in STT .

Agent Gt Ge Ga Agent Gt Ge Ga

leela 1.15** 1.16** 1.17** maial 4.46* 4.21* 4.19**

focal 1.91** 1.37** 1.43** maiaf 3.57* 3.37** 3.77**

∆Gf
(leela, focal,∗) -0.76** -0.21** -0.26** ∆Gf

(maial, maiaf,∗) 0.89* 0.84* 0.42*

∆Gf
(teamL, teamF,∗) 0.13* 0.63* 0.16**

** ≤±0.02, * ≤±0.04, see appendix for full error ranges

methodologies will accordingly make use of maia1100 as a base model to guide the search for
tree, as a junior to guide the look-ahead for exp, and in the creation of the training dataset for
att. Our evaluation metric is the win-share over games, which is defined as (W+D/2)

n , where W
is the number of wins, D the number of draws, and 1000≤n≤10000 the number of games, from
the perspective of the focal team. Equally-matched agents will each score a win-share of 50%,
and scoring above 50% indicates a victory. We compute the standard error by treating the exper-
iments as random samples from a trinomial distribution, as detailed in the Supplement. Tables
1 and 2 show the results for all three agents on both frameworks STT and HB respectively.

As shown in the first row, which documents the performance of our focal agents in matchups
against the state-of-the-art chess AI leela in our frameworks, all of our methodologies achieve
a winning score (>50%) in both frameworks. In STT , the expt agents that perform a short
look-ahead (66%) tend to dominate, and in HB it is the tree agent that scores the highest
(60%). Our main result is that all three methodologies produce agents that play well and
more intelligibly to weaker partners than state-of-the-art chess AI.

In order to validate that our focal agents are achieving their gains by explicitly accounting for the
presence of the weaker partners, we eliminate the two most pressing potential confounders. The
first hypothesis we rule out is that our focal agents are simply stronger than leela, which the
second row in Tables 1 and 2 show is evidently not the case. In fact, they are significantly weaker,
losing most of their games to leela in head-to-head regular-chess matchups. tree performs
particularly poorly (<1%), likely because it is unrelated to leela’s weights, unlike exp and
att. It is striking that tree outperforms att on the STT and HB despite being significantly
weaker, indicating that it must compensate with larger adaptation to and synergy with its
lower-skilled partner. The second hypothesis we rule out is whether leela is a particularly bad
senior/brain due to its strength, and our focals are better at adapting to their hands/brains
simply because they are weaker and more similar to them. Replacing our focals with maia
as a senior/hand (the most similar, weakest possible senior/brain) refutes this idea (see last
column). We note that, while att and exp are weaker than leela, they still achieve non-trivial
scores (>10%) in regular chess versus leela, indicating they are still strong chess agents.

We have established our central result: Our focal agents are objectively weaker than standard
state-of-the-art AI, but their compatibility with maia is more than sufficient to defeat leela
in both collaborative frameworks. We now investigate the mechanisms of skill-compatibility.

4.2 Mechanisms of achieving skill-compatibility in STT

How do our agents achieve skill-compatibility? In this section, we answer this question by
analyzing agent behavior at the individual move level. We define the win probability loss of a
move, which measures the degree to which any given move is sub-optimal. Notice that any chess
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Table 4:
maia loss induced by different seniors in distributions occurring to different teams n STT

Gt Ge Ga

maia loss induced by leela tree leela exp leela att
Distribution of

(
leela
maial

)
3.60** 3.89** 3.25** 4.47 ** 3.87** 3.95**

Distribution of
(

focal
maiaf

)
4.50** 4.85** 3.65** 4.39** 4.33** 4.46**

** ≤±0.03, see appendix for full error ranges

Table 5: Different effects of seniors on juniors
in STT . Effects that are stronger (p<0.05) than that of the opposing senior are in bold.

Gt Ge Ga

Agent leela tree leela exp leela att
Tricking : -0.03** 0.54** -0.27** 1.38** -0.01** 0.25**

Helping (Interceding Junior): 0.26* 0.36* 0.30** 0.61** 0.34** 0.21**

Helping (Interceding Senior): 0.15* 0.46* 0.12* 1.88** 0.20** 0.25**

Indirect: 0.56* -0.18** 0.37**

** ≤±0.07, * ≤±0.11, see appendix for full error ranges

move is either optimal, meaning it preserves the win probability of the previous position (as
evaluated by a strong engine such as leela), or is sub-optimal, meaning it degrades the agent’s
win probability by a certain amount. We will define the win probability loss of a move, or simply
the loss, as the difference in the win probability of the board following the move to the win
probability of the board preceding it. It ranges from 0 to 100. Given an agent A and a condition
C on moves played by A from a set of games Gf , we define a mean value LGf

(A,C) as follows:
LGf

(A,C)= 1
|S|

∑
m∈SLoss(m) where S= {m∈Gf |m satisfies C and m is played by A}. To

compare losses between agentsA1 andA2, we define∆Gf
(A1,A2,C)=LGf

(A1,C)−LGf
(A2,C),

where setting C=∗ means taking all moves.

For this section, we will be referring to agents as they appear in the tuple
〈

focal
maiaf

∣∣∣ leelamaial

〉
, where

focal refers to one of tree, expt, or attt; leela denotes leela playing as the alter; maiaf
refers to the Focal team’s junior maia agent, and maial refers to the Alter team’s junior maia
agent. Note that maiaf and maial are both maia1100 agents. We will refer to this tuple
as Gf for simplicity, with f being the starting letter of the corresponding focal. All agents
and games in this section are in STT , so we omit the specifying subscript.

4.2.1 General effects on junior performance

Table 3 shows the average loss by the agents involved at everymove from the games played in STT.
For all focal agents, we have LGf

(focal,∗)>LGf
(leela,∗), yet LGf

(maiaf,∗)<LGf
(maiaL,∗).

This is a more granular, move-level statement of our central result: our focal engines sacrifice
some optimality for the ability to influence and be skill-compatible with the sub-optimal
agents they are interacting with.

Note also that LGt
(tree,∗)>LGa

(att,∗), yet ∆Gt
(maial,maiaf,∗)>∆Ga

(maial,maiaf,∗),
implying tree’s results are more dependent on influencing the juniors present in the game.
exp combines low absolute ∆Ge

(focal,leela,∗) with higher ∆Ge
(maial,maiaf,∗) to get the

best overall team loss difference among the three agents, which explains its higher score in
the main evaluations.

To compare how these findings vary with position strength, we plot ∆Gf
(maial,maiaf,i),

where i stipulates the moves originate from boards where the probability of winning is equal to
i (Figure 4). For all focal engines, the gap is increasing in i: the closer the board is to winning,
the more maiaf outperforms maial. Winning boards are thus more critical, where the junior’s
moves have a chance to throw the game, compared to losing situations where the junior cannot
bring about large positive changes to the evaluation.
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Having established that our focal agents induce a gap between maiaf and maial performance,
we investigate three possible mechanisms by which they can achieve this: an immediate
“tricking” effect, which we define as an induction of loss in maial over a 1-ply horizon (the
alter junior’s next move), an immediate “helping” effect, which we define as reduction of loss
in maiaf over a 2-ply horizon (the focal junior’s next move), and finally an indirect effect
that cannot be measured over these short horizons (for example, early choices that impact
how the game unfolds many moves into the future).

4.2.2 Immediate tricking effect in STT

The most naive test of a tricking effect would involve comparing the losses of maiaf and maial
when preceded by alter (leela) and focal seniors respectively, but since these juniors are
on opposing teams, this direct comparison would be potentially confounded by the different
board distributions they faced. It follows that the distributions must be standardized to
properly compare our senior agents’ tricking effects. We give our focal and alter seniors the
exact same board B, allow them to play, and then observe how maia responds to their move
and compare its loss after the focal’s choice compared with the alter’s choice.

We perform this analysis with leela and each focal agent on two separate board distributions:
the set of boards that leela’s team and that the focal’s team encountered in-game. Table 4
shows these results for different focal agents. exp induces similar loss in maia regardless of the
board distribution (4.47≈4.39). This is in line with exp’s myopic optimization objective. The
gulf between exp and leela remains large regardless if we compare the distributions as seen
in game (4.39>3.25) or if we standarde the board distribution (4.39>3.65 and 4.47>3.25).
In contrast, there is a notable degradation in the loss induction abilities of tree and att when
eliminating distributional effects (3.89<4.85 and 3.95<4.46). Consequently, the standardized
comparisons for these focals to leela shows a much closer result than the unstandardized in-
game observations. Interestingly, comparing along the minor diagonal shows that leela induces
more loss than these two agents (4.50>3.89 and 4.45>3.87), suggesting that the distributional
effects induced by tree and att are actually more important than their direct effects.

4.2.3 Immediate helping effect and indirect effect in STT

In order to study helping and indirect effects, we use a more technical method of normalizing
for distributions, which is detailed in the Supplement. This method can also be used as an
alternative measurement of the tricking effects.

To measure the immediate helping effect of a senior on its partner junior—a senior making
a choice that is easier for the lower-skilled junior it is paired with to follow-up on—an opposing
team must play a move prior to the focal junior itself making a move, so the effect depends on the
opponent senior and junior being the interceding agents. leela appears to impart a minor help-
ing effect on maial, irrespective of the interceding agent (perhaps due to prophylactic moves).
The helping effect displayed by att is similarly minor (≈ 0.25), and not dependent on the inter-
ceding agent. tree exhibits a larger helping effect, and finally, the expector exhibits the largest
helping effect, with a particularly massive effect observed when leela intercedes (1.88). We
believe this asymmetry is due to exp selecting to prioritize tricking maial when it is interceding.
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We finally look at the indirect effect, to see whether the focal agents affect the
performance of their juniors over longer time horizons. We compute this as
∆Gf

(maial,maiaf, no seniors have played for at least 2 moves prior), The effect is slightly
negative for exp, indicating no indirect effect, which is consistent with the optimization
objective, positive for tree (0.56), and smaller (0.37) for att. It appears that aggressively
optimizing for immediate gain outperforms the more long-sighted strategies employed by
tree and att, which could potentially be due to the difficulty of anticipating the flow of the
game given the stochastic alternation.

4.3 Mechanisms of achieving skill-compatibility in HB

We now turn to the HB framework. Note that Gf now refers to the tuple
{

focal
maia f

∣∣∣ leelamaial

}
,

and agents without subscript will be referring to those created for the HB framework. We
examine the effect of our focal agents (playing as brain) on the maia agents (playing as hand),
and focus on two mechanisms: intra-team effects, where the brain picks a piece that causes
maia to pick a better/worse move than it would have without interference, and inter-team
effects, where the teams affect each other.

We first examine intra-team effects by computing the savings, the difference between the loss
of the team’s actual move played to the loss of the move maia would have selected without
interference from the brain agent. Interestingly, Table 6 shows that exp is the only brain
exhibiting such an effect (0.3%), which is natural as it has been explicitly instructed to minimize
the expected loss of its hand. tree, which is the best performing agent in the framework, actually
has negative savings (-0.2%), meaning its influence is causing its own hand to play worse moves.
Looking further, the loss of maia’s hypothetical moves is significantly lower for the tree than
leela, strongly suggesting the presence of an inter-team effect rather than an intra-team effect.

Since leela, tree and att are agents that output complete moves, rather than simply
choosing piece-types, we can distinguish between four types of hand-brain interactions. The
first is agreement, where the hand and the brain choose the same move. The second type is
blindsiding, where the moves differ but not the piece-type, and therefore the hand is allowed
to play its chosen move. When the piece does differ, the hand is forced to resample to follow
the rules of the game. This gives rise to two situations: one where it ultimately plays the
move selected by the brain, which we call correction, and one where it selects another move,
which we call disagreement (see Supplement for these full results).

For all brains, the correction case yields some savings (4%–6%), and the disagreement yields a
drop in the performance of the hands (1%–2%). Furthermore, the savings in the correction case
are lower for tree and att than they are for leela. On the whole, att compensates for its
lower quality corrections with a lower proportion of disagreement and blindsiding, while keeping
the proportion of correction constant. tree achieves a very high agreement rate and decreases
all other types of interactions. tree’s mechanism of action becomes apparent upon examining
the loss the opponent team incurs when it follows a particular interaction. When tree corrects
its hand, it induces a high loss in the opponents’ next move compared to leela’s correction
(4.8% vs 3.8%), showing a direct tricking action exerted by the tree on the opponent team.

As tree and att both increase their agreement with maia, we test the strategy of maximizing
agreement and eliminating disagreement (as well as correction and blindsiding) entirely by
letting maia play on its own against leela as the alter senior and maia as the alter junior.
Note this differs from instantiating two maia agents as separate stochastic hand and brain
agents (which is the benchmark in 6). maia alone outperforms the benchmark notably, but
still loses to leela with a 40% ±1.5 score. This confirms that disagreement-induced loss is
more than compensated for by the benefit of correction (even if indirectly) of a strong brain,
and pure agreement is not better than the baseline.

4.4 Model compatibility with specific players in STT

We turn to validating whether the focal agents we created here using the generic maia models
are compatible with individualized engines that are fine-tuned to mimic particular human
players McIlroy-Young et al. (2020). We do so with the objective of demonstrating the

8



Table 6: Comparison of team loss to hypotheticalmaia loss without brain inHB. Better in bold.

Gt Ge Ga maia as focal(
leela
maial

) (
tree
maiaf

) (
leela
maial

) (
exp

maiaf

) (
leela
maial

) (
att

maiaf

) (
leela
maial

) (
maia
maiaf

)
True loss 3.76** 3.55** 3.44** 3.33** 3.61** 3.50** 3.73* 4.25*

maia loss 3.75** 3.29** 3.40** 3.62** 3.59** 3.43** 3.39* 3.60*

Savings -0.01** -0.22** -0.04** 0.3** -0.02** -0.07** -0.32* -0.65*

** ≤±0.03, * ≤±0.07, see appendix for full error ranges

applicability of our method in the case where a complete model of the opponent/partner junior
is not available (as is the case in most situations). Accordingly, we selected a random subset
of 23 models, each trained on a particular human Lichess players rated between 1400 (43rd
percentile skill) and 1900 (83rd percentile skill) as the junior for this experiment. We then
use an exp that internally uses the generic Maia agent with the nearest rating to the player in
question, and have it play in STT with that player’s model. For example, testing with a player
"A" rated 1423 would result in the game structure

〈exp1400
A

∣∣ leela
A

〉
. exp does not have access

to the player’s model, only to a generic 1400 maia model with which it makes its decisions.
Even so, the median score of the different exp agents over in this scenario with the 23 different
juniors is 53.3% (±1%). While this is below exp’s performance of 66.5% in the straightforward
testing where exp is using the exact model of its opponent and partner junior, it nonetheless
demonstrates that a generic approximation is sufficient to encapsulate skill-compatibility with
individuals (i.e. outperforming state-of-the-art chess AI in our skill-compatibility frameworks).
In fact, out of 23 different players tested, exp was shown to be winning (p<0.05) in 18 of the
cases after 3000 games played, with the experiments on the remaining 5 players not showing
statistical significance to that level, and no experiments showing a statistically significant loss.

5 Limitations and Discussion

Our work proposes a methodology for creating powerful agents that are skill-compatible
with weaker partners. Our key finding is that, in a complex decision making setup as chess,
skill-compatibility is a qualitatively and quantitatively measurable attribute of agents distinct
from raw ability on the underlying task. Our designed frameworks show that in situations
where strong engines are required to collaborate with weak engines, playing strength alone
is insufficient to achieve the best results; it is necessary to achieve compatibility, even at the
cost of pure strength. Finally, our three methodologies, each distinct in design and method of
operation, demonstrate that there are multiple viable techniques to create agents that achieve
this form of compatibility, with different agents using different strategies in-game. Indeed,
some strategies center on helping the weak engine make better moves should it assume control,
while others explicitly disrupt the compatibility of the adversary forcing weak opponent agents
into errors, which even a strong partner like leela is unable to mitigate.

Our work therefore is an empirical proof-of-concept for skill-compatibility in chess, and
provides a roadmap for the creation of human-compatible agents in this domain and beyond.
While our paper does not speak directly to the prospect of skill-compatibility in other domains,
we believe that a number of the techniques here are relatively general in nature, with clear
analogues to other settings. For example, while the tree agent is very chess specific, and exp is
difficult to run in continuous environments, a number of ideas underlying these methodologies
— exp’s short-term prediction, att’s tandem training with the targeted skill — can be easily
modified to fit different tasks, and offer potential for skill-compatibility in these tasks.

The training frameworks we propose use human-like maia agents as weak partners, and a
natural next direction for future work is the design of experiments to test these methods with
human chess players. Our scope likewise did not include modification of the alter beyond
using leela, which offers opportunity to test robustness to modifications of the environment.
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6 Supplement

6.1 Code Release

Our code is released anonymously at github.com/AnonymousCodeRelease/code_release.
We also include several of our trained models.

6.2 Methodology Details

6.2.1 Testing and error range computation

To test a particular focal inSTT , we run games of the form
〈

focal
maia

∣∣∣ leelamaia

〉
. For any bitstring s, we

play 2 games, with the focal and leela teams switching between black and white. This is done
because some bitstrings are biased in favour of a particular color, and we therefore eliminate this
bias by having each team playing both sides of the bitstring. Additionally, unfair bitstrings are
undesirable, as it is likely that the team is less relevant than the color to achieve victory. Hence,
they represent a source of unbiased noise to the result, by adding 1win for each team. It is difficult
to quantify fairness of a bitstring, (it is not sufficient to ensure equal number of senior and junior
moves-the order matters). Therefore, for consistency, all experiments to test individual focal
agents are sampling from the same set of bitstrings during testing, eliminating the possibility that
some agents sample more unfair (and hence, noise-contributing) bitstrings during their testing.

No analogous measures are applicable for HB, as stochasticity is internal to the teams rather
than being a characteristic of a game.

For both frameworks, testing consists of between 1000 and 10000 games, depending on our
targeted significance. Here we detail computation of the standard error se for the win-share
displayed in the main section of the paper.

If we play n games, with W wins and L losses, we can write the empirical win-share as

0.5+
ŵ− l̂

2

where ŵ and l̂ are the empirical unbiased estimators of the true probabilities w, l, computed
as W/n and L/n respectively. Since w, l, and d (probability of a draw) form a trinomial
distribution, we have

V (ŵ− l̂)=
w(1−w)

n
+
l(1−l)

n
+
2wl

n

which simplifies to
w+l−(w−l)2

n

Plugging in the variance to get the se of the win-share, we have

se=0.5

√
w+l−(w−l)2

n

This is maximized with w= l=0.5, and we have

se≤ 0.5√
n

Our data is presented in percentages, so, this implies setting n = 10000 we guarantee
se<=0.5%, and n=1000 guarantees se<=1.5%. In practice, we are often able to get lower
errors with lower n because w ̸= l.

All other quantities in our paper are sample means, with large sample sizes allowing the central
limit theorem to be used to obtain their standard errors.

12

https://github.com/AnonymousCodeRelease/code_release


6.2.2 leela

We use the a 128x10-t60-2-5300 leela network, obtained from Vieri1, with a 1500 node search.
Against stockfish 13 (60k nodes), a strong classical engine that uses alpha-beta search, this
version of leela obtains a score of 59 ± 3. Meloni2 benchmarks stockfish 13 to human elo,
so we deduce that our version of leela plays at around 3050 elo. While leela can be made
significantly stronger if more nodes are used in search, limiting it to 1500 allows us to generate
more games and run more tests, while still retaining superhuman capability. We use 1500
nodes for all seniors, for consistency. To compute the win probabilities of boards, needed to
conduct most of our loss analysis, we use a separate instantiation of leela with the same
parameters. In practice though, the leela used for evaluation is stronger than the leela
playing as senior, because evaluations occur multiple times per move for different statistics,
which, due to caching, is equivalent to working with more nodes.

6.2.3 att

To create att, a dataset of 10000 games (80% train, 10% validate, and 10% test) is generated
of the following game

〈 leela
maia

∣∣ leela
maia

〉
for STT or

{ leela
maia

∣∣ leela
maia

}
for HB. Then, starting

with leela’s weights, and using a learning rate of 10−5, and 10000 iterations, we run
back-propagation to update leela’s policy and value neural network. We use the version
of maia for which we are attempting to achieve compatibility in this training scheme.

As this is a tuning task, and we are starting with leela weights, we perform some parameter
tuning, with the objective not necessarily to find optimal parameters, but rather to find a
set thereof that compromises between cost and robustness. The main time cost comes from
generating the datasets of games, and training the agents.

To do so, we train models with learning rates from 10−1 to 10−6 on dataset sizes of 1000,
10000, and 100000 games, and a short training time of 1000 iterations. We test these models
with a small number of matches that is sufficient to determine whether the training procedure
produced viable engines (viable simply means plausible, not necessarily successful). See table
7. Some learning rates catastrophically fail and exhibit nonsensical learning curves, or produce
agents that lose a large majority of their games.

From the above, we decide to use 10000 games as our dataset size, as it appears that a range
of learning rates are viable on it, and it is not as costly to generate as 100000. We also settle
on learning rate of 10−5, as this rate is more robust in small datasets than 10−4 and requires
less time to convergence than 10−6.

We note that there appears to be a connection between the quality of the policy and value accu-
racy curves and actual performance, meaning, models that overfit or fail to converge also perform
poorly when testing on the frameworks. Accordingly, we observe that 100000 iterations produces
more complete convergence curves for this particular learning rate and dataset size choice.

After having selected hyper-parameters which we deem plausible, we run our first full training
run 8 times to ensure that performance on the framework following training is repeatable,
rather than a product of chance. The worst model of the 8 has a win-rate of 53.5 ±1, and
the best model a win-rate of 56.0 ±1.

Note that our goal is to find valid, stable hyper-parameters, which does not preclude the
existence of better sets of hyper-parameters. For all other models, (meaning different frame-
works, or different maia juniors), we use these parameters, and if convergence issues arrive,
we modify parameters heuristically. This type of modification was not actually needed for any
models in the main paper, but was required for a few additional models which we detail here.

The rest of the hyper-parameters can be found in the configuration files in the linked code.

1https://lczero.org/dev/wiki/best-nets-for-lc0
2https://www.melonimarco.it/en/2021/03/08/stockfish-and-lc0-test-at-different-number-of-

nodes/
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6.2.4 exp

exp ismore expensive to run than the standard neural netework engines as itmakesmultiple calls
to engines as subroutines to compute the move that maximizes expectation. Accordingly, it is
unfeasible to do a full search over all legal moves, as that may consume up to hundreds of times as
much compute. Likewise, these engines use shallow leela engines for board evaluation to deter-
mine their move selection. ForSTT , we compute the expectation over the top 5 moves, with eval-
uation conducted at 300 nodes, whereas in HB, for each piece, we compute the expectation over
the top 3 maia moves (meaning 18 moves checked total), with evaluation conducted at 50 nodes.

6.2.5 Detailing analysis technique used in 4.2.3

While more involved and involving indirect comparison than the board matching employed
in 4.2.2, the technique used here comes with the added benefit that no engines play additional
moves outside what has already played within evaluation games, and therefore the comparison
is more pertinent to the games themselves. To study these three mechanisms, we analyze
special sequences on the board. Since in STT , agent selection is done via coin flipping, games
can be represented as a bitstring, s where 1s indicate senior moves and 0s indicate junior
moves. By computing the loss on moves that are preceded by specific substrings, we can
isolate different effects. Accordingly, we define LGf

(A,s) where s is a condition that stipulates
that the moves must be preceded by a (partial) bitstring s in Gf . For example, LGf

(maiaf,1)
means that we are computing the loss of maiaf only when its move comes immediately after
leela’s, whereas LGf

(maia,0) means the moves come after maial’s.

Asmentioned earlier, in order to compare the tricking effect of a seniorS1 to a seniorS2, we do not
directly compareLGf

(J2,1) (measuring howS1 tricks J2) toLGf
(J1,1) (measuring howS2 tricks

J1) , as J1 and J2 are playing on different board distributions (the distributions of the board of
the two teams are not the same, the simplest example being that the focal team will have more
winning boards). And instead of fixing distributions and then allowing focals to play hypotheti-
cal moves, we perform an indirect comparison of each senior’s effect to its own junior’s effect, as
they share a board distribution, and all necessary moves are already present. We do the same for
both seniors and then compare these quantities. Formally, we define IGf

(A,s)=LGf
(A,1⊕s)−

LGf
(A,0⊕s) where ⊕ is concatenation, the 1 and 0 denote the comparison of the loss induced

by the senior being present in that position to that by the junior, and s is a string to standardize
the agents that play in between should we be measuring an effect across more than 1 ply.

The immediate tricking effect of a senior S under this definition can thus be computed as
IGf

(Jopp,ϕ) where ϕ is the empty string and Jopp is the opposing junior.

To measure the immediate helping effect of a senior S on its partner junior Jpar, note that the
opposing team must play a move prior to Jpar, and there are two possible situations depending
on which opponent plays. There are thus two helping effects to be measured, IGf

(Jpar,1) and
IGf

(Jpar,0), denoting the opponent senior and junior being the interceding agents, respectively.

An in order to examine the indirect effect, to see whether the focal agents affect the performance
of their juniors over longer time horizons. We compute this as ∆Gf

(maial,maiaf,00), where
two zeros indicate the move must not be preceded by any senior for 2 plies.

6.3 Hardware

We made use of four Tesla K80 GPU’s for the purpose of experimentation, each with a VRAM
of 12 GB. We show in table 11 the times taken for the most important tasks of the paper.
As an example, if we wish to generate the games for an attt agent, train it, test it to se=0.5,
and obtain analysis metrics, it would take 10 hours for generation, 3 hours for training, 10
hours for testing, and 12 hours for analysis, a total of 35 hours. Alongside experiments that
are not included in the paper, we approximate the total compute time used by the project
to be approximately 1 year’s worth of our GPUs.
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6.4 Extra Experiments

6.4.1 Agreement rate of various engines

We compute the agreement rate of various engines used in our experiments in figure 5. Notice
how the att agents from both frameworks and calibrated to both juniors all play similar
moves to each other and to leela, on which they are based. maia1100 and maia1900 also
exhibit similarity to each other and dissimilarity to att agents. tree exhibits moderate
similarity to both the maia agents and the leela-derived agents. sfw, a weakened version
(25 nodes) of stockfish 8 used in a later experiment, is entirely dissimilar to any other agent,
likely due to its architectural uniqueness.

6.4.2 Modification of training target for att in STT

The training procedure for att includes back-propagating on moves that both leela and maia
play in STT . Semantically, this updates the value-head to take into account maia’s interven-
tions, however, it also updates the policy-head to learn maia’s moves, which we believed would
weaken the engine. Therefore, we created a version of the engine that only learns leela’s moves,
as to not affect the policy with maia’s moves, and only to have the value-head change to adapt
to maia’s interventions. We also use an increased training games of 40000 because convergence
with smaller datasets was worse (exclusion of maia moves halves quantity of data, and reduces
its diversity, making it prone to overfitting). Interestingly, this turns out to be less effective than
the default version in STT . (52%±0.5<55.0%±0.5) than including the maia policy moves,
although the engine turns out to be very strong in raw strength, achieving a 36.5%±1.5>
14.0%±1.5.It is expected that the engine is stronger, as it is not ingesting maia moves, and we
suspect that in STT , training the policy on maia moves is actually beneficial, as it allows the
agent to conduct search at least partially based on maia’s moves, mimicking tree to an extent.

6.4.3 Comparison of tricking vs helping strategies in STT

In order to compare the effect of attempting purely to sabotage maial, to that of purely
aiding the maiaf, we modify the algorithm of exp to m=argmax

m

(
Es∈{0,1}[w|(m,s)]

)
, which

effectively optimizes only one ply in the future, eliminating any helping effect which requires
at least 2 ply foresight and making this a pure tricking engine. In order to isolate the helping
effect, we use m= argmax

m

(
Es∈{10,11}[w|(m,s)]

)
, which (falsely) assumes an un-exploitable

leela is always playing the opponent move, thereby forcing the optimization to be solely
to help maiaf. Both versions are able to beat leela in the framework, however the tricking
version achieves a higher score of 62.5%±1 as opposed to the helping version which achives
a score of 57.0%±1, both lower than that achieved by the actual exp. We suspect that pure
tricking is easier to conduct than pure helping, as there is no interceding agent to account
for, and a shorter time horizon, hence less branching.

6.5 Cross-skill ability

How well do our methodologies generalize to other juniors/hands? Here, we use maia1900, the
strongest available version of maia, as an alternative junior/hand. We analogously create tree,
exp, and att agents designed to be compatible with maia1900. In this section, focalx denotes
a focal designed for compatibility with maia1x00. Testing focal9 agents with maia1900 as the
junior in 9 shows that they are able to beat leela in the frameworks, with the exception of
tree9 producing no gains in STT . We test cross-compatibility of the focal1 and focal9 agents
by partnering them with each other’s juniors. We emphasize that focal9 agents are not exposed
to maia1100 prior to testing, and vice versa. As shown in Table 9, focal9 agents are compatible
with maia1100 as a junior, irrespective of focal and framework, while the same is not always true
of focal1 agents with maia1900. When focal1 agents are able to achieve results with maia1900,
the results are somewhat worse than those achieved by focal9 agents on maia1100. We hypothe-
size that this is due to the different costs imposed by different mismatches. Since we expect focal9
agents to be more conservative than focal1 agents as maia1900 presents less opportunity for
exploiting, it follows that, when playing with maia1100, there will be times when focal9 agents
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do not exploit maia1100’s sub-optimal behaviour due to their training, and play closer to opti-
mally instead. The converse of the situation is when focal1 agents attempt to exploit errors that
maia1900 will not end up performing. the former case is penalized in a chess game, whereas the
latter is not directly penalized, and we believe the asymmetry in impact generates the difference.

Since maia1900 and maia1100 are reasonably similar as shown in figure, we investigate using
a completely different junior based on a non-neural architecture. To do that, we calibrate a
low-depth version of stockfish (we call it sfw), to play at the level of maia1100. The results
are demonstrated in table 10. Note that there is no tree agent. It is seen that exp is able
to obtain results against sfw, but att is unable to. We suspect this is due to the difficulty of
representing sfw’s move selection process which uses a minimax tree search in a neural network.
Generalization is nonexistant, with engines trained with maia1100 losing when testing with a
sfw junior and vice versa. We attribute this to the lack of similarity between sfw andmaia1100.
This does indicate, that our agents’ compatibility is not a function of merely skill, but also style.
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6.6 Extra Figures and Tables
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1 0.65 0.38 0.56 0.52 0.52 0.49 0.51 0.48 0.43

0.65 1 0.4 0.58 0.66 0.56 0.58 0.56 0.57 0.49

0.38 0.4 1 0.39 0.4 0.42 0.42 0.4 0.41 0.41

0.56 0.58 0.39 1 0.69 0.64 0.62 0.65 0.63 0.56

0.52 0.66 0.4 0.69 1 0.67 0.7 0.67 0.69 0.61

0.52 0.56 0.42 0.64 0.67 1 0.82 0.76 0.76 0.71

0.49 0.58 0.42 0.62 0.7 0.82 1 0.74 0.79 0.73

0.51 0.56 0.4 0.65 0.67 0.76 0.74 1 0.8 0.66

0.48 0.57 0.41 0.63 0.69 0.76 0.79 0.8 1 0.69

0.43 0.49 0.41 0.56 0.61 0.71 0.73 0.66 0.69 1
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Figure 5: Agreement rate of different engines with each other

Table 7: Viability of attt engines created according to learning rate and dataset size

Learning Rate 10−1 10−2 10−3 10−4 10−5 10−6

1000 Games X X X X ✓ ✓
10000 Games X X X ✓ ✓ ✓
100000 Games X X ✓ ✓ ✓ ✓

Table 11: Approximate times of main tasks involved in experimentation

Task Approximate Time (h)
1000 STT games, no exp 1
1000 STT games, with exp 2-3
1000 HB games, no exp 2
1000 HB games, with exp 2-3
1000 games with metric collection 4
10000 training iterations 3

6.7 Tables from main paper with standard deviations

Tables 12-17, show the standard deviation of each value from the main text.
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Table 8: Metrics by interaction type for tree and att in HB

Interaction Agreement Correction Disagreement Blindsiding

Team
(

leela
maial

) (
focal
maiaf

) (
leela
maial

) (
focal
maiaf

) (
leela
maial

) (
focal
maiaf

) (
leela
maial

) (
focal
maiaf

)
Gt Distribution 44±1 60±1 20±1 16±1 21±1 14±1 15±1 10±1
Gt Savings 0 0 5.4±0.1 4.3±0.1 -2.0±0.1 -2.1±0.1 0 0
Gt Opponent loss 3.2±0.1 3.4±0.1 3.8±0.1 4.8±0.1 4.0±0.1 4.4±0.1 3.3 ±0.1 3.8±0.1

Ga Distribution 44±1 52±1 20±1 20±1 20±1 16±1 16±1 11±1
Ga Savings 0 0 5.2±0.1 4.6±0.1 -1.8±0.1 -1.9±0.1 0 0
Ga Opponent loss 3.2±0.1 3.2±0.1 3.8±0.1 4.0±0.1 3.9±0.1 3.9±0.1 3.3 ±0.1 3.7±0.1

Table 9: Generalization results with maia1100 and maia1900 as junior partners.

STT framework
tree expt attt

Tested on junior maia1100 maia1900 maia1100 maia1900 maia1100 maia1900
Designed for maia1100 56.5±0.5 41.5±1.5 66.5±0.5 53.0 ±0.5 55.0±0.5 51.5±0.5
Designed for maia1900 51.0±0.5 50.0±0.5 55.0±0.5 65.5±1.0 52.0±0.5 53.0±0.5

HB framework
tree exph atth

Tested on junior maia1100 maia1900 maia1100 maia1900 maia1100 maia1900
Designed for maia1100 60.0±0.5 52.5±0.5 55.0±0.5 45.5 ±1.5 56.0±0.5 37.5±1.5
Designed for maia1900 57.0±0.5 58.0±0.5 51.5±0.5 55.0±0.5 54.0±0.5 54.0±0.5

Table 10: Generalization results with maia1100 and sfw on STT

expt attt

Tested on maia1100 sfw maia1100 sfw
Designed for maia1100 66.5±0.5 44.0±1.0 55.0±0.5 44.0±1.0
Designed for sfw 43.5±1.0 55.0±0.5 48.5±0.5 51.0±0.5

Table 12: Table 1 with standard deviations

Game Setup tree expt attt maia〈
focal
maia

∣∣∣ leelamaia

〉
56.5±0.5 66.5±0.5 55.0±0.5 7.5±1.5

focal | leela 0.5±0.5 14.0±1.5 12.5±1.5 0.0±0

Table 13: Table 2 with standard deviations

Game Setup tree exph atth maia{
focal
maia

∣∣∣ leelamaia

}
60.0±0.5 56.5±0.5 55.0±0.5 27.5±1.5

focal | leela 0.5±0.5 N/A 4.5 ±1.5 0.0±0

Table 14: Table 3 with standard deviations

Agent Gt Ge Ga Agent Gt Ge Ga

leela 1.15 ±0.01 1.16 ±0.01 1.17 ±0.01 maial 4.46 ±0.04 4.21 ±0.04 4.19 ±0.02
focal 1.91 ±0.01 1.37 ±0.01 1.43 ±0.01 maiaf 3.57 ±0.03 3.37 ±0.02 3.77 ±0.02
∆Gf

(leela, focal,∗) -0.76 ±0.02 -0.21 ±0.02 -0.26 ±0.02 ∆Gf
(maial, maiaf,∗) 0.89 ±0.04 0.84 ±0.04 0.42 ±0.03

∆Gf
(teaml, teamf ,∗) 0.13 ±0.03 0.63 ±0.04 0.16 ±0.02
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Table 15: Table 4 with standard deviations

Gt Ge Ga

maia loss induced by leela tree leela exp leela att
Distribution of

(
leela
maial

)
3.60±0.02 3.89±0.02 3.25±0.02 4.47 ±0.02 3.87±0.02 3.95±0.02

Distribution of
(

focal
maiaf

)
4.50±0.03 4.85±0.03 3.65±0.02 4.39±0.02 4.33±0.01 4.46±0.01

Table 16: Table 5 with standard deviations

Gt Ge Ga

Agent leela tree leela exp leela att
Tricking: I(Jopp,ϕ) -0.03±0.06 0.54±0.07 -0.27±0.04 1.38±0.05 -0.01±0.06 0.25±0.04
Helping: I(Jpar,0) 0.26±0.11 0.36±0.10 0.30±0.07 0.61±0.07 0.34±0.06 0.21±0.05
Helping: I(Jpar,1) 0.15±0.09 0.46±0.09 0.12±0.09 1.88±0.07 0.20±0.06 0.25±0.05
Indirect: ∆(maial, maiaf,00) 0.56±0.10 -0.18±0.07 0.37±0.06

Table 17: Table 6 with standard deviations

Gt Ge Ga maia as focal(
leela
maial

) (
tree
maiaf

) (
leela
maial

) (
exp

maiaf

) (
leela
maial

) (
att

maiaf

) (
leela
maial

) (
maia
maiaf

)
True loss 3.76±0.02 3.55±0.02 3.44±0.02 3.33±0.02 3.61±0.02 3.50±0.02 3.73±0.05 4.25±0.05
maia loss 3.75±0.02 3.29±0.02 3.40±0.02 3.62±0.02 3.59±0.02 3.43±0.02 3.39±0.05 3.60±0.05
Savings -0.01±0.03 -0.22±0.03 -0.04±0.03 0.3±0.03 -0.02±0.03 -0.07±0.03 -0.32±0.07 -0.65±0.07
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