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Abstract

Few-shot learning is based on the premise that labels
are expensive, especially when they are fine-grained and
require expertise. But coarse labels might be easy to ac-
quire and thus abundant. We present a representation learn-
ing approach - PAS that allows few-shot learners to lever-
age coarsely-labeled data available before evaluation. In-
spired by self-training, we label the additional data us-
ing a teacher trained on the base dataset and filter the
teacher’s prediction based on the coarse labels; a new stu-
dent representation is then trained on the base dataset and
the pseudo-labeled dataset. PAS is able to produce a rep-
resentation that consistently and significantly outperforms
the baselines in 3 different datasets. Code is available at
https://github.com/cpphoo/PAS

1. Introduction
Large annotated datasets [4, 8, 19] have empowered the

progress of visual recognition systems over the last decade.
However, for many practically important recognition prob-
lems, annotations might require expertise and thus might be
difficult to acquire. For example, to build a recognition sys-
tem that identifies insect species, one would have to hire an
entomologist to label hundreds of thousands of images from
hundreds of species: an expensive, time-consuming affair.

This concern has sparked research in few-shot learning
(FSL), which aims to train domain-specific learners that
can learn new classes from very few examples. These learn-
ers are “meta-trained” on a large labeled dataset of “base”
classes from the same domain. The hope is that this base
dataset provides the learner with the right inductive bi-
ases for the domain of interest so that recognizing “novel”
classes does not require quite as much labeled data. FSL is
now an extremely active research area with a veritable array
of recent results [33, 6, 12, 10, 16, 44, 38, 47, 30, 23]. Yet,
existing FSL systems still lag far behind systems trained
with large quantities of labeled training data. One might
conjecture that the base dataset does not provide sufficient
information about the novel classes.

Figure 1. The top row represents 6 different fine-grained classes
in iNat2019 and the bottom row consists of 6 fine-grained classes
from tieredImagenet. Without domain expertise, one might find
it challenging to distinguish the 6 different classes (orange) but
identifying them based on their coarse labels (green) is intuitive.

One possible approach to address this issue is to lever-
age some auxilliary information about novel classes that
might be more readily available. For example, recent work
[26, 9, 35] uses unlabeled data from the novel classes: it is,
after all, the labels that are expensive; data is often cheap.
While such unlabeled data can inform the learner about the
data distribution of the novel classes, they contain no infor-
mation about the semantics of the class distinctions.

A potential source of auxiliary information about seman-
tics is labeling at a coarser granularity, which might be eas-
ier to obtain than the actual labels of interest. Consider
again the problem of insect classification. It is true that one
would have to hire an entomologist or even a lepidopterist to
help distinguish between the 3 species of butterflies in figure
1; these labels are therefore difficult to acquire. But a lay-
person would be able to distinguish between butterflies and
bees. Labels at that coarse granularity can thus be crowd-
sourced quite easily. This leads us to the following question:
what if we had access to data from the novel classes that
were weakly labeled with easy-to-acquire coarse labels?

Although such coarsely-labeled data are both readily

1

https://github.com/cpphoo/PAS


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

available and potentially informative, no current FSL tech-
nique is capable of using this extra information. Class tax-
onomies have been explored in traditional supervised learn-
ing through hierarchical inference strategies, but it is un-
clear if these address the few-shot generalization problem.
One could use these additional labels as an auxiliary loss
in a multitask-training framework. However, it has been
shown that multitask-training is not guaranteed to help all
tasks [34]. Besides, multitask-training ignores the strong
constraints that tie the coarse and fine labels together, thus
missing out on vital semantic knowledge.

We propose a new few-shot learning approach that ef-
fectively leverages coarsely-labeled data. Following re-
cent results, we focus on improving the feature represen-
tation, since this turns out to be crucial for FSL [38, 2, 11].
Inspired from recent work based on pseudo-labeling and
self-training [26], we develop a representation learning ap-
proach named Parent-Aware Self-training (PAS). Specif-
ically, we use a classifier trained on the base dataset to
provide fine-grained pseudo-labels to coarsely-labeled data.
These pseudo-labels are filtered so that they are consistent
with the coarse labels. These pseudo-labels will definitely
be incorrect, because they will wrongly declare novel class
examples to be from one of the base classes. However, they
will induce a fine-grained grouping of the coarsely-labeled
novel examples that is consistent with other fine-grained
base classes with the same coarse labels. We then train with
these pseudo-labels to produce a feature representation that
hopefully captures the unknown novel class distinctions.

We experiment with three different datasets, and com-
pare representations that use such coarsely-labeled data and
those that do not. We find that using coarsely-labeled data
improves five-shot accuracy between 5 to 15 points on the
challenging all-way classification setup. Our particular ap-
proach is also the best way to use this additional data,
providing up to an average (across datasets) of 2 points
improvement in five-shot accuracy compared to multitask
training. All these gains vindicate the power of this addi-
tional information and the ability of our approach to use it.

2. Related Work
Few-shot Learning (FSL). We tackle FSL in our work.

There are three main categorizations of FSL techniques:
initialization-based approaches [6, 7, 28, 24, 31, 36, 16]
build model initializations that can lead to rapid conver-
gence on the base classes, positing that such initializations
can also be good model initializations for the novel classes;
metric learning approaches [41, 33, 37, 14, 10, 27] build a
metric on the base dataset, assuming that base and novel
share similar discriminative features; augmentation-based
approaches [12, 43, 3] aim to learn augmentation mecha-
nisms on the base dataset, postulating that base and novel
classes share some class agnostic, intra-class variations.

Most FSL techniques assume no access to the data from the
novel classes when training the learners and solely hinge on
the similarity between base and novel datasets. This crit-
ical assumption has led to underperformance of FSL tech-
niques when the gap between base and novel datasets are
large [11, 2]. To remedy this, we propose to use easy-to-
acquire coarsely-labeled data from the novel classes in FSL.

FSL with Additional Data. Additional data have
proven to be useful in FSL. The two most common setup
that utilizes additional data are: semi-supervised FSL [29,
18, 48, 30, 42] and tranductive FSL [23, 5]. Different from
our setup, the additional data in these setups are unlabeled
and only available during evaluation. [20] operates in a
setup similar to ours but they focus on developing special-
ized inference procedures using the class hierarchy. In par-
ticular, they build upon Prototypical Network [33] and seek
to build learned prototypes for coarse classes during repre-
sentation learning that can be used to refine the prototypes
for fine-grained classes during evaluation. In contrast, our
approach focuses on building representations that are ag-
nostic to any inference methods. The two approaches focus
on different aspects of the setup and can be combined.

FSL with Class Taxonomy. Leveraging class taxonomy
or hierarchy is common in supervised machine learning [1].
In fact, a survey on hierarchical classification by Silla and
Freitas [32] have shown that in a wide range of application
domains, incorporating class hierarchy when building clas-
sifiers can yield performance gains. In FSL, class taxonomy
has been used to build better techniques. Efforts include
building specific ConvNet architectures using semantic re-
lationships between base and novel classes [17, 25] or spe-
cialized inference procedures that leverage the class taxon-
omy [21, 22]. All these methods can be directly used in our
setup but they do not consider the use of coarsely-labeled
examples which could bring forth more improvements.

Self-training. Our approach for using coarsely-labeled
data is closely related to self-training. Self-training is of-
ten used in semi-supervised learning. The idea is to use a
teacher model trained on the labeled data to label the un-
labeled data and train another student model on both the
original labeled data and the pseudo-labeled data. This sim-
ple technique has been shown to improve ImageNet classi-
fication performance [45, 46]. Another venue where self-
training is used is knowledge distillation where the goal is
to compress a large teacher model by training a student to
reproduce the teacher’s predictions. Self-training has also
been used in semi-supervised FSL [18, 42]. However, most
of these approaches deploy self-training in a “closed set”
setup, i.e., the set of classes is fixed, and the unlabeled data
comes from this same set of classes. Thus, there is a signif-
icant chance the pseudo-labels are actually correct (though
[45] do note that noisy pseudo-labels help).

Our approach moves away from the closed set setup

2
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and labels the coarsely-labeled novel class data with fine-
grained base class pseudo-labels that are guaranteed to be
incorrect: an uncommon scenario. The only related work
here is [26] in which the authors adapt feature representa-
tions to far off domains by training a network to replicate
pseudo-labels produced by an unrelated classifier from a
distant source domain. The authors observe that this is ef-
fective if the groupings induced by the pseudo-labels match
class distinctions in the novel domain. However, the authors
only use unlabeled data during representation learning re-
sulting in potentially poor pseudo-labels, and as such resort
to additional tricks such as self-supervised learning tech-
niques. In contrast, our coarsely-labeled data leads to much
better pseudo-labels, removing the need for such tricks.

3. Problem Setup
Our setup is illustrated in figure 2. We assume that we

have a taxonomy of classes with two levels, a set of fine-
grained classes that are more challenging to annotate (C)
and a set of coarse-grained classes that are easier to anno-
tate (P ). The classes we are interested in recognizing are
the former. Every fine-grained class c is associated to a sin-
gle coarse-grained class p(c), i.e., the taxonomy is a tree.
The fine-grained classes are split into base classes Cbase

and novel classes Cnovel. Similar to the traditional few-
shot classification setup, the goal is to build learners that
can quickly learn to recognize novel classes Cnovel each of
which has very few training images.

Before encountering the novel classes, the learner fits its
parameters in a representation learning phase. In this phase,
similar to FSL, we assume that the learner has access to a
large annotated base dataset Dfine

rep :

Dfine
rep = {(xi, yi, pi)}ni=1 (1)

where xi is the image, yi is the base class label and pi is
the coarse label associated to base class yi. Different from
conventional FSL, we assume that the learner has access
to an additional set of coarsely-labeled examples Dcoarse

rep :

Dcoarse
rep = {(xj , pj)}n

′

j=1 (2)

that contains images xj from some of the novel classes but
weakly annotated with coarse label pj .

We define the representation set as Drep = Dfine
rep ∪

Dcoarse
rep . We assume that we know the parents for the base

classes, so that Dfine
rep can also be decorated with coarse la-

bels. We also assume that only a subset of the novel classes,
Cseen

novel are “seen” by the learner through Dcoarse
rep (with only

coarse labels). The remainder of the novel classes are “un-
seen” (Cunseen

novel = Cnovel − Cseen
novel) .

After the representation learning phase, the learner goes
into the evaluation phase where it gets a small reference

Figure 2. Problem setup. There are two levels of labels in our
setup - the coarse label (light green) and the fine-grained label (or-
ange). During representation learning, the learner learns from data
with fine-grained and coarse labels (purple) and data with coarse-
grained labels that can be labeled as one of the novel classes (red).
Upon receiving the reference images where only the fine-grained
label is available, the learner has to produce a model that can rec-
ognize the query images at the fine-grained level.

set Dref = {(xj , yj)}
nref

j=1 of novel class examples xj and
their corresponding label yj . In our experiments, Dref is
disjoint from Dcoarse

rep though this is not necessary. Using
Dref , the learner must train a classifier for the novel classes,
which will be evaluated on a completely unseen, unlabeled
query set of novel class examples Dquery: We stress that
the coarse label of reference and query examples are not
revealed during evaluation.

For most of our experiments, we assume that each novel
class has a base class as its sibling in the taxonomy. We ex-
plore the scenario where some novel classes are not related
to any base classes in section 6.2.2.

4. Methodology
The goal is to build learners that can output a classifi-

cation model fθ parametrized by θ upon receiving a small
Dref . We assume fθ consists of two components: a feature
extractor ϕθ(·) that maps an input image x into Rd and a
classification model hθ(·) that maps ϕθ(x) to the predicted
probabilities Pθ(y|x). In general, the feature extractor ϕθ

would be learned during representation learning and kept
fixed during few-shot evaluation to avoid overfitting.

4.1. Parent-Aware Self-training, PAS

We learn our feature representation ϕθ∗ as follows:

1. Learn a teacher model fθ0 on Dfine
rep via minimizing

cross entropy loss (with respect to the base classes).
2. Use the teacher model fθ0 to “pseudo-label” the

3
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coarsely-labeled dataset Dcoarse
rep . Crucially, we use the

coarse labels to filter the pseudo-labels:

Dpseudo
rep = {(xj , pj , ȳj)}n

′

j=1 (3)

ȳj = g(fθ0(xj), pj) ∀(xj , pj) ∈ Dcoarse
rep (4)

where g filters the pseudo-labels fθ0(xj) based on the
coarse-label pj (section 4.1.1).

3. Learn a new student model fθ∗ on Dbase
rep and Dpseudo

rep :

min
θ

1

n

∑
(xi,yi,pi)∈Dfine

rep

lCE(fθ(xi), yi)

+
1

n′

∑
(xj ,ȳj ,pj)∈Dpseudo

rep

lKL(fθ(xj), ȳj)

(5)

where lCE is the cross entropy loss, lKL is the
Kullback-Leibler divergence.

After representation learning, the student’s feature ex-
tractor ϕθ∗ can be used to extract features for training the
downstream classifier on the reference set.

4.1.1 Filtering Function g

Consider a data point x with coarse label p. The pseudo-
labels produced by the teacher Pθ0(y = k|x) = fθ0(x) need
not be consistent with the coarse labels. This is especially
true for the coarsely-labeled novel class examples, since
these are sampled from a different data distribution as com-
pared to the base classes. We therefore filter the pseudo-
labels to encourage consistency between the pseudo-labels
fθ0(x) and the coarse labels p. To do so, we first zero out
the predicted probabilities for fine-grained labels that are
inconsistent with p to produce an unnormalized probability
vector s̄:

s̄[k] =

{
0 if p(k) ̸= p

Pθ0(y = k|x) otherwise
(6)

We then renormalize s̄j to construct the filtered soft pseudo-
label:

g(fθ0(x), p) =
s̄∑

k s̄[k]
(7)

Intuitively, the filtering function ensures that an example
with coarse label p would only have non-zero probability
mass for base classes associated to coarse label p.

4.2. Inference Strategy

During evaluation, a variety of inference methods [33,
10] can be used along with the student’s representation dur-
ing inference. For simplicity, we decided to use classifiers

Setup Base Novel-
Seen

Novel-
Unseen

Super-
category

iNat2019-CL 398 126 119 50

tieredImageNet-CL 498 60 50 34

CIFAR-100-CL 40 40 20 20

Table 1. Class distribution of the benchmarks introduced in this
paper.

based on the nearest class prototype [33]. For each class k
we compute the class prototype:

c̄k =
1∑

j I[yj = k]

∑
xj∈Dref :yj=k

ϕ(xj)

||ϕ(xj)||2
(8)

The class probability of a query examples xi is computed
via measuring the cosine similarity between ϕ(xi) and c̄k:

P(y = k|xi) ∝ exp

{
c̄Tk ϕ(xi)

||ck||2 · ||ϕ(xi)||2

}
(9)

To accommodate the use of cosine similarity, we use a
cosine classifier[10] as our default classification model h(·)
when training the teacher and the student.

5. Experimental Setup
5.1. Benchmark and Datasets

Since our problem setup is new and requires additional
coarsely labeled examples during representation learning,
we set up new benchmarks from three existing datasets:
iNaturalist [39], TieredImageNet [29] and CIFAR100 [15].
In these new benchmarks, we ensure (via re-splitting the
classes between base and novel) that every novel class has a
sibling base class. We also make sure that there are at least
two novel classes associated to a single coarse label to en-
sure that the coarse label does not automatically give away
the fine label. We present the class distribution of these
datasets in table 1 and some relevant information below:

1. iNat2019-CL. We construct this benchmark from the
iNaturalist 2019 (iNat2019) competition dataset [39]
- a fine-grained animal species classification dataset
with a natural taxonomy (We use the genera level la-
bels as supercategory). After removing species and
genera with insufficient examples, we split each genus
into base, novel-seen and novel-unseen.

2. TieredImageNet-CL. TieredImageNet [29] comes
with 34 high level supercategories but different super-
categories are split into base and novel in the original
benchmark. To reflect the assumption that novel and
base classes share coarse labels, we resplit each super-
category into base, novel-seen and novel-unseen.

4
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3. CIFAR-100-CL. CIFAR-100 [15] contains 100
classes of images that can be grouped evenly into
20 supercategories. We split each supercategory into
2/2/1 for base, novel-seen and novel-unseen.

For each dataset, we split examples of each class into three
buckets: 60%/20%/20%. For base classes and novel-seen
classes, the 60% split is used to construct the representation
set. For novel-seen and novel-unseen classes, the two 20%
splits are used to form Dref and Dquery respectively.

5.2. Evaluation Protocol

We report the top-1 per class accuracy averaged across
each class for all datasets (to avoid issues arising from class
imbalance in iNat2019). We consider two evaluation pro-
tocols - all-way-k-shot and 5-way-k-shot classification for
k = 1, 5. When sampling 5-way classes for evaluation,
we restrict the maximum number of supercategories in each
single classification task to 3 to ensure that there are at least
two classes that share the same supercategory in a single
task and simply identifying the supercategory alone does
not yield good performance. Regardless of 5-way or all-
way, we construct a classification task by sampling k dif-
ferent reference examples from each novel classes and then
evaluate the performance of a model on the whole query
set. The process is repeated 1000 times for all-way classifi-
cation and 10,000 times for 5-way classification (following
[47]) to generate statistically meaningful comparisons. In
addition, we also consider the all-shot setup where we use
all the examples in the 20% split for all-way classification.

5.3. Comparisons

To assess PAS’s representations, we establish a few rep-
resentations for comparisons. These representations are
trained similarly to PAS (same architecture with cosine
classifiers [10]) but with different loss functions:

1. Baseline. Here the representation is simply obtained
via training the model to classify the fine-grained ex-
amples on Dfine

rep .
2. Repr-Coarse. Similar to Repr-Fine. This represen-

tation is the feature extractor of a ConvNet trained to
classify the examples from both Dfine

rep and Dcoarse
rep

into their respective supercategories.
3. Self-training. This representation is trained similarly

to PAS except that the filtering function g is removed
when generating the pseudo-labels.

4. Repr-Multi. This multi-tasked representation is pro-
duced by training a ConvNet with two cosine classifier
heads - one for classifying the fine-grained label and

another for the supercategory:

min
θ

1

n

∑
(xi,yi)∈Dbase

rep

lCE(fθ(xi), yi)

+
C

n+ n′

∑
(xi,pi)∈Drep

lCE(fθ(xi), pi)

(10)

where C is set to 1 for simplicity

We also get an upper bound for representation learning
techniques by training a classifier on a fully labeled dataset
consisting of all training examples from both base and
novel-seen classes (obtained by adding fine-grained novel
class labels to Dcoarse

rep and combining it with Dfine
rep ); the

classifier head is discarded and the feature extractor is used
for few-shot transfer as with the other methods. This fea-
ture representation is the best representation one can get
from the task; hence it is an upper bound for representation
learning-based FSL technniques.

When evaluating the representations, we deploy the
same inference procedure (sec 4.2) for fair comparison.
In addition, we compare PAS’ representation (with near-
est class prototype inference) to two recent few-shot learn-
ers that deploy more sophisticated inference strategies:
MetaOptNet [16] and FEAT [47] for 5-way classification.
These learners are trained assuming no knowledge of the
coarse labels (i.e. trained on Dfine

rep without the coarse la-
bels) since they were initially developed for the conven-
tional few-shot learning setup. We use ResNet18 [13] as
the backbone for all methods and defer training details to
the supplementary materials.

6. Experimental Results
6.1. Coarsely-labeled Data Improve FSL

We present the all-way classification result on all novel
classes Cnovel in table 2 and 5-way classification result in
table 3. We observe the following:

1. Data from novel classes improves representation
even without labels: Methods that use the additional
data (Repr-Multi, Self-training, PAS) outperform the
Baseline that is trained only on the base classes. This
is true even for Self-training, which uses only the novel
class data and not the coarse labels. The performance
of Self-training confirms the findings in [26].

2. Learners trained with coarsely-labeled data out-
perform those trained without: The addition of
coarse label information significantly helps: Among
representation learning approaches, Repr-Multi and
PAS both outperform the Baseline and Self-training,
which do not use the coarse label information on
all-way classification; for 5-way classification, Repr-
Multi slightly underperforms Self-training but PAS

5
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iNat2019-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 20.46 39.22 57.22 28.68 50.68 67.25 28.14 50.37 67.49

Repr-Coarse 19.89 29.32 41.72 33.50 44.62 57.62 28.09 40.32 51.39
Self-training 22.94 42.17 59.69 33.18 54.79 69.85 29.95 52.11 69.87
Repr-Multi 24.72 41.42 57.34 38.24 56.77 70.72 32.03 51.21 65.88
PAS 25.21 43.27 61.04 39.06 58.76 73.63 30.91 51.85 69.12

Upper Bound 27.30 47.98 64.20 41.64 64.61 75.36 30.71 53.77 72.29

tieredImageNet-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 32.16 53.36 68.97 41.22 62.92 77.19 54.19 75.50 85.51

Repr-Coarse 25.69 37.19 49.76 38.14 48.83 62.55 41.64 55.70 66.32
Self-training 35.49 57.26 70.87 48.12 69.11 80.60 54.71 75.89 86.08
Repr-Multi 37.16 57.27 70.20 49.54 68.38 80.28 53.28 72.94 83.31
PAS 38.11 59.08 71.84 50.60 69.52 80.40 53.18 74.68 85.12

Upper Bound 42.86 65.68 76.71 60.03 80.67 87.14 55.94 76.96 86.55

CIFAR-100-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 20.32 33.24 42.67 25.50 39.95 50.45 34.37 51.80 64.00

Repr-Coarse 31.56 38.90 47.87 45.74 53.36 63.10 37.52 50.65 55.20
Self-training 25.68 42.43 54.93 32.96 51.42 63.30 38.24 57.51 69.50
Repr-Multi 34.99 46.30 55.07 49.18 60.51 69.20 39.00 53.69 61.20
PAS 35.00 48.42 58.37 48.57 61.95 72.65 37.92 54.91 65.10

Upper Bound 51.83 64.97 69.17 73.75 85.02 85.45 36.53 56.25 70.30

Table 2. Average top-1 per class accuracy of various representations across 1000 runs. For each novel categories, we use k=1, 5 and all
reference examples. Best performing entries that leverage coarsely-labeled data are bolded. 95% confidence intervals are omitted for
brevity. The full table can be found in the supplementary materials.

performs comparatively to Self-training. Further, PAS
with simple nearest prototypes inference can outper-
form MetaOptNet and FEAT (except on iNat2019-CL)
on 5-way classification. These observations validate
our hypothesis, that easy-to-acquire coarse labels can
significantly improve FSL.

3. PAS is the strongest representation overall: On
all-way-5-shot classification, PAS significantly out-
performs Repr-Multi by 1.92 points on average, and
yields a 8.31 points gain over the Baseline; On 5-way-
5-shot classification, PAS outperforms Repr-Multi by
1.17 points and the Baseline by 3.24 points. All these
results show that even though multitask-training can

be used to leverage coarsely annotations, it is not as
effective as PAS . In conclusion, with coarse annota-
tions, PAS is an extremely effective way of improving
FSL.

To unpack the performance gains, we also evaluate the
different representations separately on the novel-seen and
novel-unseen classes (Table 2). To ensure that the classi-
fication tasks are truly fine-grained, we remove supercat-
egories that only have one child when splitting the novel
classes for tieredImageNet-CL (we report the performance
on novel-unseen for CIFAR-100-CL for completeness even
though there is only one novel-unseen class per supercat-
egory). We observe, as expected, that the performance
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iNat2019-CL tieredImageNet-CL CIFAR-100-CL

Method k=1 5 k=1 5 k=1 5

MetaOpt 59.32 ± 0.22 72.92 ± 0.20 59.12 ± 0.20 73.96 ± 0.16 51.57 ± 0.21 63.90 ± 0.18
FEAT 62.76 ± 0.22 76.45 ± 0.20 67.60 ± 0.21 82.05 ± 0.15 55.65 ± 0.21 71.05 ± 0.17
Baseline 57.07 ± 0.20 73.68 ± 0.19 65.17 ± 0.20 81.09 ± 0.15 51.28 ± 0.20 67.01 ± 0.17

Repr-Coarse 54.43 ± 0.19 65.29 ± 0.18 56.92 ± 0.19 68.28 ± 0.17 57.76 ± 0.18 67.18 ± 0.15
Self-training 60.19 ± 0.22 75.82 ± 0.20 68.35 ± 0.21 83.42 ± 0.14 57.92 ± 0.21 73.76 ± 0.16
Repr-Multi 59.06 ± 0.20 73.74 ± 0.19 66.51 ± 0.20 81.76 ± 0.15 60.81 ± 0.19 72.48 ± 0.15
PAS 59.74 ± 0.21 74.88 ± 0.20 68.02 ± 0.20 83.26 ± 0.15 60.82 ± 0.19 73.37 ± 0.15

Upper Bound 62.64 ± 0.22 78.52 ± 0.19 73.03 ± 0.20 87.34 ± 0.12 72.78 ± 0.22 84.34 ± 0.13

Table 3. Average 5-way-k-shot top-1 accuracy and 95% confidence intervals of various few-shot learners and our representations across
10000 runs. Top performing entries (excluding Upper Bound) are bolded.

Dataset Before Filtering After Filtering

iNat2019-CL 0.4258 0.7260
tieredImageNet- CL 0.4620 0.7352
CIFAR-100-CL 0.3695 0.8293

Table 4. Adjusted Mutual Information (AMI) of the predicted class
identities of examples in Dcoarse

rep and their ground truth identities.
AMI has a theoretical range of [0, 1] with higher value signifying
stronger alignment between the prediction and ground truth.

gains are largest on the novel-seen classes. However, even
on the novel-unseen classes we do observe performance
gains from Self-training, Repr-Multi and PAS for iNat and
CIFAR-100 (though on TieredImageNet-CL, the gains dis-
appear). This suggests that using coarsely labeled data can
potentially help even for completely unseen novel classes.

6.1.1 The Effect of Filtering

From table 2, we observe that PAS significantly outper-
forms Self-training. As reported in [26], the key to good
transferrability of self-trained student representation relies
on the alignment between the grouping induced by the
teacher and the ground truth of the additional data. We posit
that filtering has strengthened the alignment and thus yields
a superior result. To validate this, we investigate the gener-
ated pseudo-labels on Dcoarse

rep by the teacher before and af-
ter filtering. Specifically, we use the most probable predic-
tion of the pseudo-label to “label” each example in Dcoarse

rep .
Then, as in [26], we evaluate the induced grouping by mea-
suring the adjusted mutual information (AMI) [40] between
the induced clustering and the ground truth. Table 4 shows
that the AMI increases significantly with filtering, indicat-
ing a stronger alignment between the grouping induced by
the filtered pseudo-labels and the ground truth class distinc-
tions as compared to the original pseudo-labels. We believe
that this alignment results in a cleaner signal for training the

student’s representation.

6.2. Analyses

In this section, we analyze PAS on iNat2019-CL. Unless
explicitly stated, we report performance on all novel classes.

6.2.1 Reducing the number of Base Classes.

Few-shot learners rely on a large diverse base dataset. The
usage of coarsely-labeled data sets up the possibility of re-
ducing this dependence. In this subsection, we investigate
the effect of reducing the number of base classes. To start,
we remove the fine-grained labels of 2/3 of the base classes
in iNat2019-CL while keeping their coarse labels. This re-
duces the number of base classes from 398 to only 144. As
a result, the number of novel classes during evaluation (126
+ 119 = 245) becomes significantly more than the effective
number of classes available during representation learning
(144 fine-grained, 50 coarse-grained).

We report the results on this benchmark in table 5. We
find that when the number of base classes is substantially re-
duced, the accuracy of the baseline drops by 6 to 10 points.
In contrast, we observe that with the aid of coarsely-labeled
data, PAS experiences a much smaller performance degra-
dation. PAS is thus less reliant on the availability of large
amounts of fine-grained labels on the base dataset.

6.2.2 Effect of Unseen Supercategories

So far we have assumed that each novel class shares a coarse
label with a base class. However, it is crucial that few-
shot learners generalize to completely unseen parts of the
class taxonomy. To test how PAS works in this setting, we
constructed another modification of iNat2019-CL: we ran-
domly chose a fifth of the coarse categories and removed
all labels associated with these supercategories in the repre-
sentation set. In particular, we removed all base classes that

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Large Reduction in Base Classes

Method k=1 5

Baseline - Original 20.46 39.22

PAS- Original 25.31 43.27

Baseline 14.19 (↓ 6.26) 28.37 (↓ 10.84)

PAS 21.80 (↓ 3.41) 37.31 (↓ 5.96)

Table 5. Average k-shot performance of different representations
evaluated on the original iNat2019-CL novel classes. PAS- Origi-
nal and Baseline - Original are trained on the original base dataset.
(↓) indicates absolute amount of degradation due to reduced base
classes. 95% confidence intervals can be found in the supplemen-
tary materials. See section 6.2.1 for more details.

Removing Some Coarse Labels

Method k=1 5

Baseline 18.15 35.72
Repr-Multi 21.92 (+ 3.77) 37.23 (+ 1.50)
PAS 23.14 (+ 4.99) 40.73 (+ 5.00)

Table 6. Average k-shot performance (on iNat2019-CL novel
classes) of various representations trained on a base dataset with
unseen supercategories. (+) indicates absolute improvement from
the Baseline. 95% confidence intervals can be found in the sup-
plementary materials. See section 6.2.2 for details.

belong to this set of supercategories, and we removed the
coarse labels corresponding to these supercategories from
the coarsely-labeled dataset. Note that in this setup, the con-
nection between base and novel classes is weakened which
could impact the performance of PAS.

We adapt PAS to this setting by simply using this newly-
unlabeled data with unfiltered pseudo-labels when training
the student representation. In table 6, we observe that with
this modification, PAS is still able to leverage all the avail-
able data to yield considerable performance gains. PAS out-
performs both the baseline as well as Repr-Multi, indicating
the efficacy of PAS in leveraging additional data that are
less related to the base dataset.

6.2.3 Effect of Coarser Labels

Even though the distinction at the genus rank for iNat2019
is rather clear-cut (as shown in figure 1), one can also easily
obtain coarser labels that corresponds to higher taxonomic
rank. For instance, one can recognize bees and butterflies
as insects which corresponds to the kingdom of the species;
one might also label bees and wasps as insects that have
transparent wings (Hymenoptera) which corresponds to the
order of the species.
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Figure 3. Performance of PAS with various class taxonomies. We
observe that PAS with coarser labels yields less performance gains

In this section, we investigate how using these coarser la-
bels would affect PAS. We conjecture that the coarser labels
would dilute the effect of filtering and thus leading to degra-
dation in performance. To investigate, we look into three
taxonomic ranks available in iNat2019 (in decreasing order
of coarseness): Kingdom (5 supercategories), Order (27 su-
percategories) and Genus (50 supercategories). Indeed, we
find that the coarser labels are less effective, though we still
see considerable gains from the “Order” level coarse labels
(Figure 3). These gains roughly correlate with the AMI of
the predicted class labels induced by the filtered pseudo-
labels (with different coarse labels) and the ground truth.

Additional Analyses: We show the following additional
results in the supplementary: (a) PAS can bring more im-
provements when coupled with a semi-supervised inference
approach when the coarse labels of the reference set is avail-
able, and (b) the strength of PAS’ representation is corre-
lated with the amounts of coarsely-labeled data. For more
details, please see the supplementary materials.

7. Conclusion
We investigate the use of coarsely-labeled data in build-

ing more transferrable representations for few-shot learn-
ing. We found that representations that are built using the
additional coarsely-labeled examples are significantly bet-
ter than their counterparts when evaluated under 1-shot and
5-shot classification in three different datasets. We develop
a new representation learning technique - PAS that lever-
ages self-training and parent consistent filtering to achieve
stronger representations, bringing forth enormous improve-
ment to few-shot learning.

Acknowledgements: This work was funded by
the DARPA Learning with Less Labels program
(HR001118S0044).
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Pérez, and Matthieu Cord. Boosting few-shot visual learn-
ing with self-supervision. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 8059–8068,
2019. 1

[10] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4367–4375, 2018. 1, 2, 4, 5

[11] Yunhui Guo, Noel CF Codella, Leonid Karlinsky, John R
Smith, Tajana Rosing, and Rogerio Feris. A new benchmark
for evaluation of cross-domain few-shot learning. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2020. 2

[12] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 3018–3027, 2017. 1, 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[14] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan,
and Xilin Chen. Cross attention network for few-shot clas-
sification. In Advances in Neural Information Processing
Systems, pages 4003–4014, 2019. 2

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4, 5

[16] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 10657–10665,
2019. 1, 2, 5

[17] Aoxue Li, Tiange Luo, Zhiwu Lu, Tao Xiang, and Liwei
Wang. Large-scale few-shot learning: Knowledge transfer
with class hierarchy. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7212–
7220, 2019. 2

[18] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao
Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to self-
train for semi-supervised few-shot classification. In Ad-
vances in Neural Information Processing Systems, pages
10276–10286, 2019. 2

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[20] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, Lina Yao,
and Chengqi Zhang. Prototype propagation networks (ppn)
for weakly-supervised few-shot learning on category graph.
In International Joint Conference on Artificial Intelligence
(IJCAI), 2019. 2

[21] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and
Chengqi Zhang. Learning to propagate for graph meta-
learning. In Advances in Neural Information Processing Sys-
tems, pages 1037–1048, 2019. 2

[22] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and
Chengqi Zhang. Many-class few-shot learning on multi-
granularity class hierarchy. IEEE Transactions on Knowl-
edge and Data Engineering, 2020. 2

[23] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propa-
gate labels: Transductive propagation network for few-shot
learning. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019. 1, 2

[24] Alex Nichol and John Schulman. Reptile: a scalable met-
alearning algorithm. 2

[25] Zhimao Peng, Zechao Li, Junge Zhang, Yan Li, Guo-Jun Qi,
and Jinhui Tang. Few-shot image recognition with knowl-
edge transfer. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 441–449, 2019. 2

[26] Cheng Perng Phoo and Bharath Hariharan. Self-training
for few-shot transfer across extreme task differences. arXiv
preprint arXiv:2010.07734, 2020. 1, 2, 3, 5, 7

[27] Hang Qi, Matthew Brown, and David G Lowe. Low-shot
learning with imprinted weights. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5822–5830, 2018. 2

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In Proceedings of the International
Conference on Learning Representations (ICLR), 2017. 2

[29] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2018. 2, 4

[30] Pau Rodrı́guez, Issam Laradji, Alexandre Drouin, and
Alexandre Lacoste. Embedding propagation: Smoother
manifold for few-shot classification. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 1,
2

[31] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-
sell. Meta-learning with latent embedding optimization. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2019. 2

[32] Carlos N Silla and Alex A Freitas. A survey of hierarchi-
cal classification across different application domains. Data
Mining and Knowledge Discovery, 22(1-2):31–72, 2011. 2

[33] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In Advances in neural in-
formation processing systems, pages 4077–4087, 2017. 1, 2,
4

[34] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas,
Jitendra Malik, and Silvio Savarese. Which tasks should be
learned together in multi-task learning? In International
Conference on Machine Learning, pages 9120–9132. PMLR,
2020. 2

[35] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan.
When does self-supervision improve few-shot learning? In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2020. 1

[36] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 403–412, 2019. 2

[37] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1199–1208, 2018. 2

[38] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classifi-
cation: a good embedding is all you need? In Proceedings
of the European Conference on Computer Vision (ECCV),
2020. 1, 2

[39] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769–8778,
2018. 4

[40] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Infor-
mation theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance.

The Journal of Machine Learning Research, 11:2837–2854,
2010. 7

[41] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. In
Advances in neural information processing systems, pages
3630–3638, 2016. 2

[42] Yikai Wang, Chengming Xu, Chen Liu, Li Zhang, and Yan-
wei Fu. Instance credibility inference for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12836–12845, 2020.
2

[43] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath
Hariharan. Low-shot learning from imaginary data. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7278–7286, 2018. 2

[44] Davis Wertheimer and Bharath Hariharan. Few-shot learning
with localization in realistic settings. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6558–6567, 2019. 1

[45] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–
10698, 2020. 2
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