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Figure 1: More Qualitative results. Our method produces high-fidelity generation results from a single-view image.

A ARCHITECTURE DETAILS
The proposed Point-to-Gaussian Generator is based on [3], which
utilizes an encoder-decoder architecture and takes the point cloud
generated from pretrained 3D diffusion models as inputs, and out-
puts 3D Gaussians for splatting. Details of the network architecture
are presented in Table 1.

B MULTI-VIEW IMAGE INPUT DETAILS
Leveraging existing image diffusion models, our Point-to-Gaussian
Generator can also support cross modality enhancement with mul-
tiple images. Specifically, we employ MVDream [5] to initially con-
vert the single image input into four consistent images, and sub-
sequently extract image features from four distinct views using
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Modules Details
Point Cloud Upsampler SPD Layer [7] 3 layers with upscale factor of [2, 1, 2]

APP Block

Attention Layers
Projection Layers
Point Feature Extractor Layers
Cross View Layers

2 layers with channel width 256, # heads 4
Image feature 768, raster point radius 0.0075, points per pixel 1
Point-based layer and voxel-based layer
Attention layer if multi-view else Identity layer

Point to Gaussian Encoder
APP Block
Point cloud scales
Feature dims

1 block per layer
Point cloud with 4 scales of [1024, 256, 64, 16]
Out feature dims (64, 128, 256, 512) with voxel resolutions (32, 16, 8)

Point to Gaussian Decoder
Normal Block
Point cloud scales
Feature dims

Point Feature Extractor Layers ONLY
Point cloud with 4 scales of [64, 256, 1024, 16384]
Out feature dims (256, 256, 128, 64) with voxel resolutions (8, 8, 16, 32)

Multi Linear Heads

Scale activation
Rotation activation
Opacity activation
Position offset activation
Color activation

Softplus
Normalize
Sigmoid
Clamp
Sigmoid

Table 1: Details of our Point-to-Gaussian Generator architecture.

w/o. Data Augw/. Data Aug

Figure 2: Visualization of rendered images with and without
data augmentation. Our model achieves richer textures and
more refined details with data augmentation.

GT 8K 16K 32K

Figure 3: Visualization with varying numbers of 3D Gaus-
sians.

the pretrained DINOv2 [4]. The framework for multi-view input is
akin to that for single-image, with the exception of an additional
cross-view layer to fuse the features from different views. Drawing
inspiration from [5, 6], we utilize the self-attention mechanism
for cross-view feature fusion. In detail, we flatten image features
from four views and concatenate them along the sequence length
to perform attention in all views.

C MORE VISUALIZATIONS
We present additional visualization results from the Objaverse [1]
and Google Scanned Objects [2] datasets in this subsection.

D ADDITIONAL ABLATION STUDY
D.1 Point Cloud Upsampling Rates
A substantial quantity of 3D Gaussians can more effectively capture
the details of an object, albeit at the cost of increased overhead.
In this section, we conduct an additional ablation study on the
number of 3D Gaussians. Specifically, we control the number of
3D Gaussians by adjusting the upsampling rates of the point cloud.
The experimental results are presented in Fig. 3, which reveals that
employing more 3D Gaussians can enhance the clarity and richness
of the texture. 8K Gaussians results in a significantly inferior out-
come compared to 16K, but the improvement is limited from 16K
to 32K. Therefore, we opt to use 16K Gaussians to strike a balance
between performance and overhead.

D.2 Data Augmentation
The point cloud utilized for inference is generated by the pretrained
3D diffusion model, which may differ from the ground truth point
cloud employed during training. To mitigate the gap in data distri-
butions, we implement data augmentation to perturb the training
data during the training process. In this section, we ablate the role
of data augmentation, with the results displayed in Fig. 2. We can
see that the application of data augmentation increases the robust-
ness of noisy point cloud inputs, ultimately yielding better texture
rendering results.
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