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ABSTRACT
Symbols play a pivotal role in the documentation and dissemination
of art. For instance, we use musical scores and dance notation to
document musical compositions and choreographic movements.
Existing hand representations do not fit well with hand movement
documentation since (1) data-oriented representations, e.g., coordi-
nates of hand keypoints, are not intuitive and vulnerable to noise,
and (2) the sign language, another widely adopted representation
for hand movements, focuses solely on semantic interaction rather
than action encoding. To balance intuitiveness and precision, we
propose a novel notation system, named Hand Labanotation (HL),
for hand movement documentation. We first introduce a new HL
dataset comprising 4M annotated images. Thereon, we propose a
novel multi-view transformer architecture for automatically trans-
lating hand movements to HL. Extensive experiments demonstrate
the promising capacity of our method for representing hand move-
ments. This makes our method a general tool for hand movement
documentation, driving various downstream applications like using
HL to control robotic hands.
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1 INTRODUCTION
In music, people symbolize frequencies into various musical notes,
thereby creating the musical staff [4] for the documentation and
dissemination of music. In the domain of dance, dance movements
are symbolized, resulting in the Human Labanotation for recording
dance movements [9, 16, 31]. An intuitive, accurate, and compre-
hensive method should document the content practically. As shown
in Figure 1, symbols replace data-based methods for documenting
music and dance movements.

Hand movements are a crucial component of daily human com-
munication and human-computer interaction [23], making their
documentation and dissemination equally important. However,
existing methods do not adequately fulfill the requirements for doc-
umenting hand movements. Data-based recording methods such
as Skeleton [8, 28, 34], Mesh [18, 19], and MANO [2, 26], though
capable of capturing hand movements with relative precision, are
deficient in intuitiveness. Sign Language (SL), as a set of symbols for
gestural communication, is likewise unsuitable for recording hand
movements. SL as a language focuses more on conveying semantic
information than the movements themselves, limiting its ability to
cover the full spectrum of hand movements. Additionally, the exe-
cution of SL sometimes necessitates the involvement of upper limb
movements and facial expressions. Therefore, the sign language
notation is not suitable for documenting hand movements.

Inspired by human Labanotation, this paper introduces a novel
methodology for documenting hand movements, termed Hand La-
banotation. It employs simple symbols to represent the motion
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Figure 1: Methods of documenting music and dance move-
ments. (a) Artistic creations such as musical compositions
performed by musicians and dance movements executed by
humans require documentation and dissemination. (b) Data-
based forms allow for accurate recording of results, such as
using frequency for music and 3D coordinates of key points
for dance movements. (c) Symbolic forms represent the dis-
cretization of data-based results, losing a small amount of
precision but being more intuitive and easier to disseminate.
Existing recordings of music and dance movements often
utilize symbolic documentation.

state of each part of the hand, thereby documenting hand move-
ments. Hand movements revolve around the joints, and based on
the hand’s physiological structure, we have defined 20 regional vec-
tors based on the hand skeleton model to represent the spatial state
of each part of the hand. As illustrated in Figure 2, our framework
designs the spatial division method by the activity characteristics
of the fingers, resulting in a total of 26 basic Hand Labanotation
symbols. To automate the conversion of hand movements into
Hand Labanotation scores, we construct a large-scale multiview
Hand Labanotation dataset (HLD) with over 4 million annotated
hand movement images. We also propose a learning model fea-
turing a novel multiview transformer (MHLFormer) architecture
for the automated translation of images into Labanotation scores.
To evaluate MHLFormer’s performance on HLD, we introduced
three evaluation metrics. Furthermore, we propose the Labanota-
tion Hierarchical (LH) Loss Function to facilitate precise model
translation. Extensive experimental results validate the accuracy of
our method for documenting hand movements. We can also use it
as an intermediary representation to control robotic hands.

In summary, our contributions are as follows:
• We introduce Hand Labanotation, a novel symbol system
for hand movements, facilitating symbolic documentation
and analysis, streamlining hand movement analysis, and
applying it to robotic hand control.

• Our creation of the HLD dataset, derived from annotated
Interhand2.6M [21] and Freihand [36] data, represents the
first extensive multi-view dataset for Hand Labanotation,
marking a leap in hand movement documentation.

• We propose and train the MHLFormer model using the inno-
vative LH loss function, achieving outstanding performance
in translating hand movements into HL scores.

2 RELATEDWORK
Existing Representation Methods for Hand Movement Docu-
mentation. We can broadly categorize feasible methods into three

y

z

x

LowNormal High

22.5°

67.5°

90°

112.5°

157.5°
±180°

-22.5°

-67.5°

-90°

-112.5°

-157.5°

x

y

(a) Basic symbols (b) Spatial mapping of Labanotation symbols
Figure 2: Fundamental symbols of hand Labanotation and
their corresponding spatial representation.

classes. (1) Using video to record movements.While video recording
offers the advantage of being intuitive, it fails to address the issue
of occlusions effectively [8, 24]. Additionally, the requirement for
substantial storage space is another drawback of video recording
[25, 27]. (2) Utilizing data-based hand representation methods for
documentation. In computer vision research, 3D hand movement
documentation relies on methods such as Skeleton [34, 35], Mesh
[18, 19], and MANO [2, 26]. Although these methods can record
handmovements with relative accuracy, they severely lack intuitive-
ness. It is challenging for observers to replicate hand movements
merely based on coordinates data. Moreover, capturing accurate
hand pose data is also difficult. (3) Employing symbolic methods
for documentation. Symbolic recording methods also offer the ad-
vantage of being intuitive and, thus, easier to replicate. Existing
Sign Language methods [17] have developed their unique system of
symbols. However, since Sign Language focuses on semantic infor-
mation, we cannot document many non-semantic hand movements
using Sign Language symbols. Therefore, it is essential to design
an intuitive and reliable symbolic system.

Labanotation for Human Body. Human Labanotation has a
long history. Developed in the early 20th, Labanotation is a symbolic
method for recording body movement [9]. With the continuous
development of Labanotation, it eventually evolved into a system
composed of four basic elements: body, space, time, and dynamics
[12]. The body represents the body’s moving parts, such as the ‘left
leg’, ‘right hand’, etc., typically comprising 11 body parts. Space
represents the methodology of characterizing movements through
direction, level, distance, and degree. Time indicates the duration of
each movement, while dynamics denote the emotional components
contained within the movement. In the Labanotation score, we
describe movements using two dimensions: body and time [15, 31].
The vertical axis represents the temporal progression of the action
sequence, with time flowing from the bottom to the top. Each
column on the horizontal axis represents a part of the body. The
shape and color of symbols represent the spatial position of each
body part [9]. With the development of Human Labanotation, the
differentiation of human body regions by various Labanotation
symbols has become increasingly refined [16, 31]. This refinement
provides a viable method for documenting hand movements.

Motion-to-Labanotation Translation. The goal of Labanota-
tion translation is to be rapid and accurate. Initially, experts manu-
ally recorded Labanotation while observing dance [7, 9]. To stream-
line this process, computer-assisted tools like Genlaban [6], Laban
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(b) Primary range of finger movement

Figure 3: The structural composition of Hand Labanotation. (a) The depiction of the coordinate definition and regional vector
distribution for the human hand. (b) In our defined coordinate system, the thumb has a larger range of motion along the 𝑍 -axis
direction and a smaller range of motion within the 𝑋𝑌 plane. Conversely, the remaining four fingers have a larger range of
motion within the 𝑋𝑌 plane and a smaller range along the 𝑍 -axis. (c) The structure of a single-Hand Labanotation score, with
horizontal entries recording 20 regional vectors represented by Labanotation symbols and the vertically upward direction
indicating time. We extend the horizontal record to include the other hand’s regional vectors for both hands.
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Figure 4: Visualization of the Correlation and Penalty Matrix
for basic HL symbols. The horizontal and vertical coordinates
of the image correspond to 26 symbols, respectively. We ob-
tain the correlation matrix for two symbols by calculating
the dot product of their direction vectors.

Writer [3, 30], and Led&Lintel [11, 13] were developed, simplifying
symbol creation and speeding up notation. While aiding in Labano-
tation symbol editing and scoring, these tools demand substantial
Labanotation expertise, posing barriers for many users [15, 31].
Recent advances in computer science have led to automated Laban-
otation translation from 3D motion data, increasing efficiency [31].
This method relies on the accuracy of 3D pose estimation. However,
during the pose estimation process, the accuracy of the annotations
may be affected due to frequent occlusions. The subsequent manual
proofreading workload remains significant. Researchers have de-
veloped end-to-end methods and datasets such as Laban16 [15] and
Laban48 [31] in response. However, these datasets only cover basic
upper limb movements. Lower limb and hand movements tend to
be more complex. There is still a lack of existing datasets.

3 METHOD
3.1 Hand Labanotation Score
Figure 3 displays the correlation of the Hand Labanotation with
different parts of the hand. In the following, we will elaborate on
the construction process of the Hand Labanotation score.

Hand Modeling. The skeletal model of each human hand con-
sists of 21 keypoints based on the hand’s skeleton, which we refer

to as nodes. As shown in Figure 3 (a), the red node on each hand is
located at the wrist, representing the origin of the hand joints.

Coordinate Setting. Based on the skeleton model, we can de-
fine a coordinate system of the hand. We set the root node as the
coordinate origin, let 𝑌 -axis be in the direction from the root node
towards the base of the middle finger, 𝑍 -axis be in the direction
perpendicular to the 𝑌 -axis and the left on the plane of the palm,
and let 𝑋 be the cross product of 𝑌 and 𝑍 . The hierarchical relation-
ship among the 21 nodes depends on the edge between the nodes
and the distance from the joint root and the hand model. For each
pair of nodes at the ends of an edge, the node closer to the joint
root is regarded as the father of the other.

Regional Vectors. From the coordinate information of the
nodes, we get 20 vectors ®𝑣𝑖 , 𝑖 ∈ [1, 20], which we call regional
vectors. Each vector corresponds to a non-root node state, utilizes
its father node as the reference, and stands for the node’s relative
position concerning its father node. These vectors represent the
state of the particular section of the hand. Thus, the handmovement
is represented by the set 𝑉 = ( ®𝑣1, . . . , ®𝑣20), as shown in Figure 3 (a).
Finally, each regional vector ®𝑣𝑖 can be converted to a symbol in the
Hand Labanotation score system based on their spatial positions.
In this way, the current hand movement of a single hand can be
represented by 20 Hand Labanotation symbols, 40 for both hands.
Since the entire palm is close to a rigid structure, we use a region
vector parallel to the 𝑦 axis to represent the whole palm section.

Basic Hand Labanotation Symbol. On the surface of a cuboid,
we select 8 vertices, the centers of the 6 faces, and the midpoints
of the 12 edges. Thus, we obtain 26 points, each corresponding
to one of the Hand Labanotation symbols. As shown in Figure 2,
we select the center of the cuboid as the coordinate origin, the
horizontal plane as the 𝑋𝑌 plane, and the vertical direction as the
𝑍 -axis direction. For a given spatial region vector ®𝑣𝑖 , 𝑖 ∈ [1, 20], we
determine the shape of the symbol based on the projection of ®𝑣𝑖
on the 𝑋𝑌 plane and the texture of the symbol based on the angle
between ®𝑣𝑖 and the 𝑍 -axis. This way, we can map any spatial region
vector to a Hand Labanotation symbol. As shown in Figure 3 (b), the
range of motion for the thumb is predominantly along the 𝑍 -axis.
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Figure 5: The architecture of the MHLFormer model. (a) The presentation of the overall structure of the model. We take a series
of hand movement images from different views as input. These images first undergo feature extraction through a convolutional
neural network (CNN) to obtain feature maps. These maps are then mapped to form a sequence of tokens and further processed
through the Encoder Block of the Multiview Transformer for information exchange. Information between adjacent views is
fused using a Cross View Fusion model via a linear layer. The Confidence Map (CMP) module, composed of a simple ResNet-50
[10] network, operates parallel to the model to supervise the attention-focused features, with an Einstein product applied to
the feature maps at the end. (b) The details of the Encoder Block’s structure. The output from the previous view is linked to
the Encoder Block of the current view through a linear layer. Here CVA is for Cross View Attention, MHSA is for Multi-Head
Self-Attention, and MLP is for multilayer perception. For more details, refer to [22].

We divide the𝑍 -axis direction into 3 intervals. Within the𝑋𝑌 plane,
the four fingers other than the thumb primarily rotate around the
𝑍 -axis, so we make a more detailed division of the regions within
the 𝑋𝑌 plane, dividing it into 9 intervals.

3.2 Formulation of HL Translation
Due to the reason that the manual drafting of Hand Labanotation
scores is both costly and cumbersome, it is necessary to develop a
dataset-trained, end-to-end model capable of autonomously trans-
lating Hand Labanotation scores for arbitrary hand movements. We
formulate this task as follows. The given input data is firstly for-
mulated in the form of V ∈ R𝑇×𝑁×𝐻×𝑊 ×𝐶 . V = {V1,V2, . . .VT},
where 𝑇 represents the number of frames of the data. For ∀𝑖 ∈
[1,𝑇 ],Vi ∈ R𝑁×𝐻×𝑊 ×𝐶 , which is collected from 𝑁 cameras lo-
cated in the same experimental site. Vi = {V1

i ,V
2
i , . . . ,V

N
i }, for

∀𝑗 ∈ [1, 𝑁 ],Vj
i ∈ R

𝐻×𝑊 ×𝐶 represents the hand movement infor-
mation at the 𝑖-th moment from the 𝑗-th view in the data. Then, we
use the function T to represent the system’s transformation from
the image data to the translated Hand Labanotation sequence.

f : T (Vi
1,Vi

2, . . . ,Vi
𝑁 ,Φ) = L, (1)

where L = {𝑝1𝑟 , 𝑝2𝑟 , . . . , 𝑝20𝑟 ;𝑝1
𝑙
, 𝑝2
𝑙
, . . . , 𝑝20

𝑙
}. For ∀𝑘 ∈ [1, 20], 𝑝𝑘𝑟 rep-

resents the right part, and 𝑝𝑘
𝑙
represents the left part. 𝑝𝑖𝑟 , 𝑝𝑖𝑙 ∈ R

1×𝑐𝑙𝑠 ,
where 𝑐𝑙𝑠 = 26, represents all Hand Labanotation symbol categories
that can be used to represent a complete Hand Labanotation space.

3.3 Hand Labanotation Dataset
To facilitate the automatic translation of Labanotation scores, we
construct a dataset named Hand Labanotation Dataset (HLD) based
on InterHand2.6M dataset [21] and Freihand dataset [36]. To our
knowledge, it is the first comprehensive dataset of multiview and
single-view hand movements. Our dataset encompasses more than
4 million hand movement images, covering a diverse range of hand
movements. Specifically, it includes more than 200 in distinct types
of hand movements and involves more than 26 in different male
and female participants. Each entry is detailed with high-resolution
spatial and temporal annotations, capturing nuances in hand move-
ments. The dataset is developed using algorithmic and manual
methods to annotate Hand Labanotation. Here, we briefly intro-
duce the HLD annotation process. First, we use rules demonstrated
in Sec. 3.1 to calculate all the regional vectors ( ®𝑣1, . . . , ®𝑣20) of each
hand. Each of the regional vector ®𝑣 = (𝑥,𝑦, 𝑧) is then transformed
from a Cartesian coordinate system to a spherical coordinate system
by the following rule

𝑟 =

√︃
𝑥2 + 𝑦2 + 𝑧2,

𝜃 = arccos
𝑧

𝑟
, 𝜃 ∈ [0, 180],

Φ = arctan(𝑦
𝑥
),Φ ∈ [−180, 180] .

(2)

Identifying the region where the rotation angles (𝜃,Φ) are deter-
mined in the corresponding Hand Labanotation symbols. In our
dataset, annotation is conducted through a hybrid approach. 19.85%
of the joint frames have incomplete information. We manually an-
notated all joints for these joint frames. For these joints, when the
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manually annotated joints with existing information match the
algorithmic calculations, we consider the annotation of the missing
joint information to be correct. After annotating these frames, we
use an algorithm to obtain the results for the remaining frames. The
final annotations are preserved as texts. The resultant dataset is
categorized into 3 subsets: training, validation, and testing. Figure 6
features a six-frame sequence of a “fist-clenching” gesture captured
from multiple views and the corresponding HL symbols.

3.4 Multiview Hand Labanotation Transformer
3.4.1 Cross Fusion Mechanism. The Cross Fusion mechanism to
fuse information from different views is depicted in Figure 5. The
overall fusion strategy is designed to draw inspiration from the
linear fusion approach in MVT [32]. This entails jointly executing
self-attention on a single view. We sequentially blend the infor-
mation between every two adjacent view pairs to efficiently fuse
information while conserving computational resources. Since the
number of tokens is the same for each view after encoding, there
are no issues related to size matching. The cross-fusion processing
between two adjacent views is illustrated as follows

z(𝑖+1) = CVA
(
z(𝑖+1) ,Wprojz(𝑖 )

)
, (3)

where CVA represents the cross-view attention mechanism, which
the following formula can express.

CVA(x, y) = Softmax

(
(W𝑄x) (W𝐾y)⊤√︁

𝑑𝑘

)
(W𝑉 y) . (4)

Consider that W𝑄 ,W𝐾 , and W𝑉 represent the query, key, and
value projection matrices, respectively, utilized within the attention
mechanism [29]. As depicted in Figure 5 (b),Wproj is the weight ma-
trix after a linear layer during the fusion of adjacent views. Within
the Cross-View Attention (CVA) module, the dashed line repre-
sents the features of the previous view after passing through the
Encoder Block. Furthermore, we incorporate a residual connection
surrounding the cross-view attention mechanism.

3.4.2 Multiview Encoder. The Encoder Block modules from differ-
ent views consist of the Multiview Encoder, illustrated in Figure 5
(b). For single frame hand movement, the input data is denoted as
V ∈ R𝑁×𝐻×𝑊 ×𝐶 , where 𝑁 denotes the number of views of the in-
put image.We employ ResNet-50 [10] to obtain feature maps. Figure
5 (a) shows that the Encoder Block obtains token sequences by ex-
tracting feature maps from images from different views. After pass-
ing through the Multiview Encoder block, these token sequences
yield feature and confidence maps from different views. They have
the same size and hence can be denoted as ∀𝑖 ∈ [1, 𝑁 ], zi ∈ R𝑑×𝑐𝑙𝑠 .
Here, 𝑑 denotes the total count of regional vectors associated with
a hand movement, while 𝑐𝑙𝑠 signifies the number of fundamental
categories within the Hand Labanotation symbol taxonomy. In the
Global Encoder module, we concatenate them and then process
them through Multi-Head Self-Attention (MHSA) [29]. Finally, we
map the encoded classification to the output by a linear classifier.

3.5 Labanotation Hierarchical Loss
Since the structure of the hand can be viewed as a tree-like structure
emanating from the root node, there is a dependency relationship be-
tween different keypoints. We can perform hierarchical supervision
based on the structural differences of the keypoints. Accordingly,
we introduce the Labanotation Hierarchical (LH) loss to train our
model, comprised of HXE loss [1] and penalty loss. We calculate
the correlation matrix based on the orientation ®𝑑 of different HL
symbols in space. Since each symbol corresponds to a portion of
the spatial region, we use the direction from the coordinate origin
to the center of the spatial region as the direction of the symbol.
The calculation process for correlation is as follows

𝐶𝑜𝑟 [𝑖 − 1, 𝑗 − 1] = ®𝑑𝑖 · ®𝑑 𝑗 ,∀𝑖, 𝑗 ∈ [1, 26] . (5)

Based on the degree of correlation between different categories
in Figure 4, we propose a penalty matrix to generate penalty loss,
which assignsweights to various erroneous translations. The penalty
matrix is defined as follows

𝑀𝑝 = 𝑒−𝛼 (𝐶𝑜𝑟+1) , (6)

where 𝐶𝑜𝑟 is the correlation matrix between different categories,
and 𝛼 is a positive scaling factor to control the rate at which the
penalty coefficient varies with the correlation coefficient. The ex-
pression of the penalty loss is

L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑦,𝑦) = −
𝑐𝑙𝑠∑︁
𝑖=1

(𝑚𝑝𝑦𝑖 · log(𝑚𝑝𝑦𝑖 )+

(1 −𝑚𝑝𝑦𝑖 ) · log(1 −𝑚𝑝𝑦𝑖 )) .
(7)

In the above expression, 𝑦 is the ground truth label, 𝑦 is the raw
translation value, and 𝑐𝑙𝑠 represents the number of basic Hand La-
banotation symbol categories.𝑚𝑝 is the weight value of the penalty
matrix𝑀𝑝 between ground truth and predicted labanotation sym-
bols. Finally, we define the LH loss function of the model as

L𝐿𝐻 = 𝛽L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + (1 − 𝛽)LHXE, (8)

where 𝛽 is a hyperparameter ranging between 0 and 1.

4 EXPERIMENTS
4.1 Dataset
The HLD is constructed based on the Interhand2.6M [21] and Frei-
hand [36] datasets. The HLD dataset consists of 4, 243, 136 images,
including a training set of 2, 525, 049 images, a validation set of
852, 343 images, and a test set of 865, 744 images. A statistical anal-
ysis is conducted on Labanotation’s distribution across various
spaces within all training data subsets for left, right, and both hands.
The results are illustrated in Figure 7. We find that the distribution
of Hand Labanotation in space is relatively uniform. Figure 6 offers
a visualization of the dataset, which displays photographs of hand
movement sequences and their corresponding HL scores.

4.2 Evaluation Metrics
To assess the efficiency of our network’s automatic translation re-
sult of Hand Labanotation, it is advantageous to adopt a distance
metric to quantify the disparity between the translated Hand Laban-
otation score and the ground truth Hand Labanotation. To provide a
comprehensive evaluation, three metrics are proposed in this work:
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Figure 6: Partial display of dataset data, where one frame of hand movement corresponds to a single row of Hand Labanotation
score. Over time, HL scores are generated progressively from bottom to top.

Method 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐@1 ↑ 𝐻𝑜𝑟𝑎𝑐𝑐@1 ↑ 𝑉𝑒𝑟𝑎𝑐𝑐@1 ↑ Para. (MB) FLOPs (Giga)

OpenPose [5] 46.43% 54.41% 75.37% 36.83 50.02
InterNet [33] 64.72% 68.89% 85.44% 143.37 32.81
IntagHand [14] 59.48% 65.42% 76.34% 39.04 17.88

Ours 78.75% 81.86% 89.35% 58.20 15.15

Table 1: Comparison of different methods. For fairness, we
limit the MHLFormer input to one view.

𝐻𝑜𝑟𝑎𝑐𝑐 , 𝑉𝑒𝑟𝑎𝑐𝑐 , and 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐 . Each metric evaluates performance
across the horizontal, vertical, and overall dimensions.

Labanotation symbols translation result can be represented as a
matrix L, which is illustrated in Sec. 3.2. The columns correspond to
different regional vectors of two hands, and the rows are associated
with individual frames. Each element of the matrix indicates the
direction of a regional vector. These directions are divided into 26
distinct categories, each corresponding to a specific Hand Laban-
otation symbol. For 𝑡 frames data, the translation result from the
network of Hand Labanotation is denoted as

L =


𝑝{𝑡,𝑟1 } . . . 𝑝{𝑡,𝑟20 } 𝑝{𝑡,𝑙1 } . . . 𝑝{𝑡,𝑙20 }
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

𝑝{2,𝑟1 } . . . 𝑝{2,𝑟20 } 𝑝{2,𝑙1 } . . . 𝑝{2,𝑙20 }
𝑝{1,𝑟1 } . . . 𝑝{1,𝑟20 } 𝑝{1,𝑙1 } . . . 𝑝{1,𝑙20 }


,

for ∀𝑖 ∈ [1, 20], 𝑝{𝑡, 𝑟𝑖 } and 𝑝{𝑡, 𝑙𝑖 } represents the transforma-
tion result of the Hand Labanotation symbols corresponding to
the 𝑖-th regional vectors of the right and left hands in the hand
movement at frame 𝑡 . In our dataset, each sample comprises three
distinct components: the left hand, the right hand, and their in-
teraction. Applying a mask matrix, denoted as M, is imperative
during the testing phase. The matrix can filter out non-essential
elements by using mask weights represented by binary numbers.
To evaluate horizontal and vertical Hand Labanotation transla-
tion accuracies, we introduced two specific mapping matrices: the
horizontal mapping matrix H and the vertical mapping matrix
V. These matrices facilitate the transformation of each Labano-
tation into forms that exclusively contain horizontal or vertical
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Figure 7: Statistical distribution of 26 Hand Labanotation
symbols in the train and test datasets for the left hand, right
hand, and both hands. The visualization demonstrates a rela-
tively balanced quantity of different Labanotation symbols
across various data types.

elements. Building on the ingredients we discussed above, the over-
all accuracy rate of Labanotation translation is formulated as fol-
lows: 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐 = 1

𝐾

∑𝑇
𝑖=1

∑𝑀
𝑗=1 𝛿 (L𝑖 𝑗 , L′

𝑖 𝑗 ) ·M𝑖 𝑗 . Similarly, the ac-
curacy rate of horizontal Labanotation translation is calculated by
𝐻𝑜𝑟𝑎𝑐𝑐 = 1

𝐾

∑𝑇
𝑖=1

∑𝑀
𝑗=1 𝛿 ((L · H)𝑖 𝑗

𝑝𝑟𝑒𝑑
, (L′ · H)𝑖 𝑗𝑔𝑡 ) ·M𝑖 𝑗 . Lastly, the

accuracy rate of vertical Labanotation translation is determined
by 𝑉𝑒𝑟𝑎𝑐𝑐 = 1

𝐾

∑𝑇
𝑖=1

∑𝑀
𝑗=1 𝛿 ((L · V)𝑖 𝑗

𝑝𝑟𝑒𝑑
, (L′ · V)𝑖 𝑗𝑔𝑡 ) ·M𝑖 𝑗 . In these

formulas, 𝐾 =
∑𝑇
𝑖=1

∑𝑀
𝑗=1M

𝑖 𝑗 , 𝑇 represents the total number of
sample frames,𝑀 = 40 denotes all hand parts within a single frame,
L and L′ represent the predicted and ground truth Labanotation
symbols on each regional vector, respectively, and 𝛿 (𝑥,𝑦) is an
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Backbone Method Loss 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐@2 ↑ 𝐻𝑜𝑟𝑎𝑐𝑐@2 ↑ 𝑉𝑒𝑟𝑎𝑐𝑐@2 ↑ 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐@4 ↑ 𝐻𝑜𝑟𝑎𝑐𝑐@4 ↑ 𝑉𝑒𝑟𝑎𝑐𝑐@4 ↑
ResNet-50 - L𝐶𝐸 73.85% 77.34% 88.59% 76.66% 81.01% 90.10%
ResNet-50 - L𝐻𝑋𝐸 74.23% 77.36% 89.95% 79.89% 82.13% 90.33%
ResNet-50 - L𝐿𝐻 75.13% 79.50% 91.78% 82.14% 86.53% 92.46%
ResNet-50 Cross Fusion L𝐶𝐸 79.09% 82.86% 91.30% 83.47% 86.77% 92.69%
ResNet-50 Cross Fusion L𝐻𝑋𝐸 80.11% 82.90% 92.49% 85.89% 87.20% 94.21%
ResNet-50 Cross Fusion L𝐿𝐻 83.46% 85.79% 92.09% 87.71% 89.48% 95.27%

ResNet-152 - L𝐶𝐸 76.38% 80.15% 89.68% 77.45% 82.57% 90.64%
ResNet-152 - L𝐻𝑋𝐸 76.82% 79.30% 90.28% 77.90% 82.68% 90.86%
ResNet-152 - L𝐿𝐻 78.92% 84.14% 91.94% 85.16% 87.30% 94.73%
ResNet-152 Cross Fusion L𝐶𝐸 80.98% 83.71% 91.51% 84.88% 87.72% 92.79%
ResNet-152 Cross Fusion L𝐻𝑋𝐸 82.64% 84.22% 93.76% 87.45% 89.63% 94.94%
ResNet-152 Cross Fusion L𝐿𝐻 84.17% 86.36% 94.43% 88.04% 89.99% 95.31%

Table 2: A summary of results for MHLFormer using different backbones, with and without the Cross Fusion mechanism, and
employing various loss functions. We conducted experiments with 2 and 4 views, respectively.

(a) Multiview hand gesture sequences (b) Hand Labanotation scores
(c) Hand movement skeleton reconstructed 

from Hand Labanotation score
Figure 8: Testing from hand movement to Hand Labanotation score and then to the reconstruction of hand movement skeleton.
(a) The display of two multiview sequences of hand movements. (b) The translation result of Hand Labanotation scores using
MHLFormer. (c) The visualization of the hand movements skeletons reconstructed from the translated HL scores.

indicator function

𝛿 (𝑥,𝑦) =
{
1 if 𝑥 = 𝑦

0 otherwise
. (9)

4.3 Comparison with Existing Methods
Hand movement documentation is a novel task, similar to 3D hand
pose estimation. We can apply methods from 3D hand pose es-
timation to our task and compare them with our method. Since
our dataset is constructed based on the Interhand2.6M [21] and
Freihand [36] datasets, we select models trained on the Interhand
dataset and fine-tune them on the Freihand dataset. After the model
training is complete, we can obtain HL results by calculating based
on the 3D coordinates derived from the 3D pose estimation method.
We compare our method with methods OpenPose [5], InterNet [33],
and IntagHand [14]. For fairness, we standardize the number of

input image views to one. Thus, we can compare our method with
existing 3D hand pose estimation methods. As seen from Table 1,
the performance of our model is significantly superior to methods
that generate HL based on existing hand pose estimation models.
The size and computational demand of our model are also very
competitive.

4.4 Ablation Study
In our experiments, we compared various loss functions. Table 2
shows that our proposed loss function significantly outperforms
the traditional Cross-Entropy (CE) and HXE losses, indicating its
superior efficacy with different backbones. Additionally, Table 2
highlights the effectiveness of the cross-fusionmodule in enhancing
model performance, which suggests that it facilitates better infor-
mation integration across views. Notably,@2 in the table represents
the use of 2 views in the experiment.
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(a) Perspectives selection (b)  Translation accuracy under different perspectives

Figure 9: Sampling methods of views and the translation
accuracy of HL with varied numbers of input viewpoints. Ex-
perimental results demonstrate that selecting four views as
inputs to the MHLFormer can achieve efficient performance.

4.5 Implementation Details
The Interhand2.6M [21] dataset provides many images captured
from multiple views, from which we select various viewpoints. We
select 6 multiview schemes in the experiment with 1 to 6 views
around the hand. The details can be found in Figure 9 (a). The
accuracy of Hand Labanotation translation 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐 for Hand La-
banotation at each iteration is calculated for each scheme. Figure 9
(b) illustrates the 𝐿𝑎𝑏𝑎𝑛𝑎𝑐𝑐 curves corresponding to the 6 different
schemes. It is shown that the scheme with 4 views enables the
translation of accurate Hand Labanotation with relatively fewer
resources. Correspondingly, in the Freihand [36] dataset, we also
select 4 viewpoints from these same positions. We conducted our
experiments on 2 Nvidia RTX 3090 GPUs. A total of 50 epochs is
trained, and the learning rate is 1 × 10−4. Since the model’s Back-
bone does not significantly impact the experimental results, we
primarily use the ResNet [10] model in the CNN module.

5 DISCUSSION AND APPLICATIONS
Hand Labanotation can be an intermediate representation for down-
stream tasks, yielding satisfactory results. Herein, we will present
some potential applications of HL.

5.1 A Control Signal for Robotic Hand
Hand Labanotation, as a symbolic system, effectively applies to doc-
umenting hand movements and controlling robotic hands. Our pro-
posed Hand Labanotation symbol quantifies the rotation angles of
individual hand vectors in polar coordinates, which shares similari-
ties with the current approach of using dense rotation angle param-
eters to control robotic hands. Hand Labanotation can directly serve
as an intermediary representation for non-high-precision robotic
hand movement imitation, efficiently realizing an integrated pro-
cess from documenting to simulating hand movements. Although
HL loses some precision regarding angles, it also acts as a natural
filter for angles, which can prevent severe jitter. Experimental re-
sults indicate that HL can replicate human hand movements with
relative accuracy as a language for controlling robotic hand actions.
Our method is faster and more efficient than capturing images with
optical cameras and then using a 3D hand pose estimation model
to estimate hand coordinates for controlling a robotic hand.

5.2 An Efficient Representation for ASL
Sahand [20] is a dataset comprising 64, 000 images of American
Sign Language (ASL), covering 10 numbers and 26 English alphabet.
The essence of this task is a gesture classification problem with 36
categories. Initially, after pre-training the IntagHand model [14] on
the Interhand2.6M dataset [21], we predict the 3D gesture represen-
tation from input images, including Skeleton, MANO, and Mesh.
Subsequently, we directly connect the results to the final output
through the Linear layer. Similarly, we employ the MHLFormer
model, pre-trained on the HL dataset, to predict HL representations.
Based on HL, we also use the Linear layer for gesture classification.

5.3 A Symbol System for Approximate Gesture
Recovery

To further explore the rationality of Hand Labanotation, we con-
verted the predicted Labanotation back to the hand skeleton. After
initializing the root node coordinates, the rotational information
of the hand is restored based on the Hand Labanotation symbols
for each segment. We represent the spatial orientation with the
central axis of the space corresponding to HL symbols. By assign-
ing phalange lengths proportional to those of an adult hand, we
obtain the skeleton results as shown in Figure 8. A comparison with
the original input images reveals that while not completely pre-
cise, the skeleton structure reconstructed from Hand Labanotation
still accurately records the hand movements relatively well. For
example, the two actions shown in Figure 8 are both hand-opening
movements, and the results after reconstruction still allow for an
intuitive understanding of the corresponding actions.

Based on the aforementioned capabilities and the distinct differ-
ences in shape and texture of HL symbols, HL can be used as Braille
to encode gestures, further expanding its application scenarios.

6 CONCLUSION
This paper introduces Hand Labanotation, a symbolic system de-
signed to document hand movement sequences intuitively. The ex-
pansive Hand Labanotation dataset (HLD), a comprehensive repos-
itory comprising over 4 million frames capturing single and mul-
tiview hand movements, accompanies this novel notation system.
Furthermore, we propose the MHLFormer method, a pioneering
network specifically designed for the autonomous translation of
hand movements into HL symbols. Experimental results demon-
strate that our method achieves commendable performance. We
achieve relatively good results using the predicted HL for hand
movement reproduction. HL can also directly serve as an intermedi-
ary representation for controlling robotic hands, thereby unifying
documentation and dissemination.

Limitations: Due to the loss of some information in the process
of symbolization, there will be a small amount of unavoidable errors
when we store hand movements with HL and then restore them.
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