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ABSTRACT

Diffusion models have recently shown significant potential in solving decision-
making problems, particularly in generating behavior plans – also known as diffu-
sion planning. While numerous studies have demonstrated the impressive perfor-
mance of diffusion planning, the mechanisms behind the key components of a good
diffusion planner remain unclear and the design choices are highly inconsistent in
existing studies. In this work, we address this issue through systematic empirical
experiments on diffusion planning in an offline reinforcement learning (RL) setting,
providing practical insights into the essential components of diffusion planning.
We trained and evaluated over 6,000 diffusion models, identifying the critical
components such as guided sampling, network architecture, action generation and
planning strategy. We revealed that some design choices opposite to the common
practice in previous work in diffusion planning actually lead to better performance,
e.g., unconditional sampling with selection can be better than guided sampling and
Transformer outperforms U-Net as denoising network. Based on these insights, we
suggest a simple yet strong diffusion planning baseline that achieves state-of-the-art
results on standard offline RL benchmarks.

1 INTRODUCTION

Decision making by learning from offline data has been a fundamental approach in robotics and
artificial intelligence (Bellman, 1957). It enables agents to acquire complex behaviors by observing
and mimicking expert demonstrations, circumventing the need for explicit programming or exhaustive
exploration. However, this paradigm faces significant challenges, particularly when dealing with
long-horizon planning and high-dimensional action spaces. The complexity of modeling sequential
dependencies and capturing the intricacies of action distributions makes it difficult to scale traditional
methods (Deisenroth & Rasmussen, 2011) to more complex tasks (Parmas et al., 2018).

Recently, diffusion models have achieved remarkable success in image and video generation, demon-
strating their ability to handle complex distribution and long-range dependencies (Ho et al., 2020;
Dhariwal & Nichol, 2021). Inspired by these works, several recent studies have applied diffusion
models to planning sequential decisions, especially with continuous state and action spaces such as
robotic manipulation tasks (Janner et al., 2022; Ajay et al., 2022; Lu et al., 2023; Li et al., 2023). The
diffusion models are used to approximate the sequence of states and actions from current time step to
future – and by exploiting the diffusion models’ conditional generation capacity such as diffusion
guidance (Ho et al., 2020; Ho & Salimans, 2021), the model can make plans (i.e. state trajectory)
with desired properties such as reward maximization (i.e. offline reinforcement learning (Levine
et al., 2020)).

Despite achieving impressive performance across a diverse array of tasks, there has been limited
exploration into the fundamental components and mechanisms that constitute an effective diffusion
planning model for decision making. Previous research exhibits a lack of consistency and coherence
in design choices. It remains uncertain whether sub-optimal design choices might hinder the full
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potential of diffusion models within decision-making domains. Specifically, existing approaches have
not adequately addressed essential facets such as the choice of diffusion guidance algorithm, network
architecture, and whether the plan should contain states or state-action pairs. This naturally raises the
following fundamental question:

What makes a good diffusion planner for decision making, especially offline RL?

We seek to answer the question by conducting a comprehensive empirical investigation into key
design choices in diffusion models for decision-making, in particular for state-based robotics tasks.
Our work contributes to the field of decision making and diffusion models in several aspects.

• Comprehensive experiments: We conducted an extensive empirical study to explore what
constitutes an effective diffusion planner. By training and evaluating over 6,000 models, we
analyzed key components critical to decision making in diffusion planning, including guided
sampling algorithms, network architectures, action generation methods, and planning strategies.

• Insights and tips: We ran detailed experiments and data analysis to understand the role of
each key component in constituting a good diffusion planner. In particular, we discovered
that certain design choices, contrary to common practice in diffusion planning actually lead to
better performance. Our work offers intuitive explanations and practical tips about the choices
and provides insights about the strengths and limitations of diffusion planning.

• A simple yet strong baseline: Building on the insights from our study, we suggest a simple
yet highly competitive baseline, named Diffusion Veteran (DV). This model achieves state-of-
the-art performance in planning tasks in standard offline RL benchmarks.

2 BACKGROUND AND RELATED WORK

Offline Reinforcement Learning (Fujimoto et al., 2019; Levine et al., 2020; Fu et al., 2020) is a
subfield of reinforcement learning (RL) where the agent learns from a fixed dataset of past experiences.
This dataset typically consists of state-action-reward-next-state tuples, which encapsulate the agent’s
interactions with the environment. The challenge in offline RL is for the agent to derive an effective
policy from this static dataset without further exploration or interaction with the environment. Two
major challenges arise in this context. First, the state and action spaces may be high-dimensional
and involve long-range dependencies, making it difficult to model effectively (Levine et al., 2020).
Second, the learned policy must be optimal, even though the behavior policy that generated the offline
data may be sub-optimal or different from the desired policy (Fujimoto et al., 2019).

Recently, diffusion models have emerged as a powerful framework for tasks such as image and
video generation due to their ability to model complex distributions (Croitoru et al., 2023), which
could mitigate the first problem. Moreover, diffusion guidance techniques (Ho et al., 2020; Ho &
Salimans, 2021) allow the model to generate samples that adhere to the desired properties. The
second challenge in offline RL, learning an optimal policy, can be addressed by diffusion guidance
techniques to produce behavior that maximizes rewards. Building on this insight, a growing body of
research has explored the use of diffusion models to generate behavior trajectories, denoted as τ .

Diffusion planning (Ajay et al., 2022; Janner et al., 2022; Liang et al., 2023; Dai et al., 2023; Yang
et al., 2023; Li et al., 2023; Yang et al., 2023; Chen et al., 2024; Dong et al., 2024c) considers that at
the time step t, a trajectory τ consists of the current and subsequent H steps of state-action pairs or
states:

τ =

[
st st+1 · · · st+H−1

at at+1 · · · at+H−1

]
, or τ = [st st+1 · · · st+H−1] . (2.1)

There is a guidance function to model the reward, such as the immediate reward rt or the state value
function v(st) = E

[∑end
h=0 γ

hrt+h

]
, where γ is the discount factor (Sutton & Barto, 1998). In

classifier guidance (CG) (Ho et al., 2020), a guidance network is learned simultaneously with the
diffusion model, whose input is the generated trajectory and the output is accumulated rewards or
value function. The gradient of the guidance network is used in the generation process of diffusion
model to maximize the rewards. Examples of diffusion planning with CG are (Janner et al., 2022;
Liang et al., 2023; Zhang et al., 2022). In classifier-free guidance (CFG) (Ho & Salimans, 2021), it
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Figure 1: Diffusion planning framework for decision making. (a) The generation of a sequence
plan using the denoising process of a diffusion model. A 3-joints robot arm is used as an illustrative
example. (b) Important components and candidates in the framework. Each color corresponds to one
component in the framework. A star indicates the preferred choice in experiments.
takes the desired reward or value function as an additional argument feed into the diffusion process.
Instances are (Ajay et al., 2022; Li et al., 2023; Yang et al., 2023). However, despite some literature
reviews such as Zhu et al. (2023), the field lack a systematical study to elucidate the design space
of diffusion planning in offline RL with substantial experimental results.

Diffusion policy (Pearce et al., 2023; Wang et al., 2023b; Hansen-Estruch et al., 2023; Chen et al.,
2023) is another kind of popular usage of diffusion model in decision making. The trajectory only
includes τ = at, without lookahead planning. The model is trained by combining the loss of imitation
learning and model-free RL as in classic offline RL methods (Kumar et al., 2020; Fujimoto & Gu,
2021). Diffusion policy methods hope to improve the performance of by leveraging the capacity of
diffusion model to model complex distribution of actions (policy function). A recent study (Dong
et al., 2024b) investigated the design space of diffusion policy, proposed that diffusion policies
such as DQL (Wang et al., 2023b) can be a computationally efficient and powerful candidate for
decision-making tasks.

3 STUDY DESIGN

3.1 KEY COMPONENTS AND MECHANISMS OF DIFFUSION PLANNER

Recent pioneering work in diffusion planning (Janner et al., 2022; Ajay et al., 2022; Chen et al.,
2024) has demonstrated the potential of this approach in offline RL. However, the design choices
in these studies vary significantly, and it remains unclear whether there is an optimal configuration
for different domains. Our aim is to conduct a systematic analysis supported by comprehensive
experimental results. To achieve this, we begin by listing key design components (excluding common
deep learning hyperparameters such as learning rates) that have varied in previous studies. See
Fig. 1(b) for an overview.

Guided sampling algorithms: Classifier guidance (CG) (Ho et al., 2020), Classifier-free guidance
(CFG) (Ho & Salimans, 2021), Monte Carlo sampling with selection (sample N unconditional
trajectories and select the best, the criteria of which is given by a critic function learned simultaneously
with diffusion model). Most previous diffusion planners used CG (Janner et al., 2022; Wang et al.,
2023a; Chen et al., 2024) or CFG (Ajay et al., 2022; Li et al., 2023; Yang et al., 2023) for offline RL.

Denoising network backbone: U-Net (Ronneberger et al., 2015); Transformer (Vaswani et al., 2017).
U-Net was used in most previous diffusion planners for state-based offline RL (Janner et al., 2022;
Ajay et al., 2022; Wang et al., 2023a; Li et al., 2023; Chen et al., 2024)).
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Action Generation: Learn joint distribution of state and action and directly execute the generated
action at the current step (used in, e.g. Janner et al. (2022); Liang et al. (2023)); Learn and use inverse
dynamics to compute action from state plan (used in e.g., Ajay et al. (2022); Wang et al. (2023a)).

Planning strategy: Dense-step planning means the planned trajectory τ (Eq. 2.1) corresponds to
contiguous H steps in the environment (this is a conventional setting in diffusion planning (Janner
et al., 2022; Ajay et al., 2022; Lu et al., 2023)) ; Jump-step planning models H ×m environment
steps, where m ∈ N+ is the planning stride; Hierarchical planning (studied by Li et al. (2023); Chen
et al. (2024)).

Details of the implementation are deferred to Appendix A and B.

3.2 EXPERIMENT PROCEDURE

Given the multitude of components involved, it is challenging to draw scientific conclusions directly
from the collective results. Therefore, we structured our study using the following procedure:
(1) Conduct a comprehensive search on the key components (Sect. 3.1) by combining grid search

and manual tuning to obtain the best results.
(2) Evaluate the effect of each component using the control variable method; that is, modify only

one component of the best model at a time and compare it with the original.
(3) After identifying which components are important and understanding how they affect perfor-

mance, perform a deeper analysis to derive useful insights.

3.3 BENCHMARK

We conducted experiments on the D4RL dataset (Fu et al., 2020), one of the most widely used
benchmarks for offline RL and imitation learning. The dataset covers a variety of task domains,
including maze navigation, robot locomotion, robot arm manipulation, and vehicle driving, among
others. For our experiments, we selected three sets of behavior planning tasks that were most
commonly studied in prior works in offline RL and diffusion planning (Janner et al., 2021; Ajay et al.,
2022; Janner et al., 2022; Liang et al., 2023; Li et al., 2023; Lu et al., 2023; Chen et al., 2024). These
tasks (Fig. 2) encompass both planning and control challenges, providing a comprehensive evaluation
in various problem settings. The performance metric considered in this work is the standard RL
objective: the average total rewards in an online testing episode.

Figure 2: Rendering of the benchmarking tasks considered in this study, where dim(S) and
dim(A) denote the dimension of the state and action spaces.

Maze2D involve navigating a 2D maze, requiring the agent to find an optimal path to a goal. These
tasks are used to test planning capabilities in environments where spatial reasoning is critical.
AntMaze presents a navigation challenge with a simulated ant robot. The agent controls a multi-
legged robot to navigate through a 2D maze, combining both locomotion and planning.
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Env Kitchen Antmaze Maze2D
Category Dataset Mixed Partial avg. L.-div. L.-play M.-div. M.-play avg. L. M. Umaze avg.

BC 47.5 33.8 40.7 0.0 0.0 0.0 0.0 0.0 5 30.3 3.8 13.0
BCQ 8.1 18.9 13.5 2.2 6.7 0.0 0.0 2.2 6.2 8.3 12.8 9.1
CQL 51.0 49.8 50.4 61.2 53.7 15.8 14.9 36.4 12.5 5.0 5.7 7.7

Non-
diffusion

IQL 51.0 46.3 48.7 47.5 39.6 70.0 71.2 57.1 58.6 34.9 47.4 47.0
SfBC 45.4 47.9 46.7 45.5 59.3 82.0 81.3 67.0 74.4 73.8 73.9 74.0
DQL 62.6 60.5 61.6 56.6 46.4 78.6 76.6 64.6 – – –

DQL* 55.1 65.5 60.3 70.6 81.3 82.6 87.3 80.5 186.8 152.0 140.6 159.8
IDQL 66.5 66.7 66.6 67.9 63.5 84.8 84.5 75.2 90.1 89.5 57.9 79.2

IDQL* 66.5 66.7 66.6 40.0 48.7 83.3 67.3 59.8 – – –

Diffusion
Policies

CEP – – – 64.8 66.6 83.8 83.6 74.7 – – –
Diffuser 52.5 55.7 54.1 27.3 17.3 2.0 6.7 13.3 123 121.5 113.9 119.5
AdpDfsr 51.8 55.5 53.7 8.7 5.3 6.0 12.0 8.0 167.9 129.9 135.1 144.3

DD 75.0 56.5 65.8 0.0 0.0 4.0 8.0 3.0 – – –
HD 71.7 73.3 72.5 83.6 – 88.7 – – 128.4 135.6 155.8 139.9

Diffusion
Planners

DV (Ours) 73.6 94.0 83.8 80.0 76.4 87.4 89.0 83.2 203.6 150.7 136.6 163.6

Table 1: Normalized performance of various offline-RL methods. Our results (DV) are averaged
over 500 episode seeds. The results of other methods are obtained from literature. We omit the
variance over seeds for simplicity; however, it can be found in the detailed tables in Appendix D. The
best average performance on each task set are marked in bold fonts. BC: vanilla imitation learning,
BCQ: Fujimoto et al. (2019), CQL: Kumar et al. (2020), IQL: Kostrikov et al. (2021), SfBC: Chen
et al. (2023), DQL: Wang et al. (2023b), IDQL: Hansen-Estruch et al. (2023), DQL* and IDQL*:
replicated by Dong et al. (2024b), CEP: Lu et al. (2023), Diffuser: Janner et al. (2022), AdptDfsr:
Liang et al. (2023), DD: Ajay et al. (2022), HD: Chen et al. (2024).

Franka Kitchen simulates a robot arm performing a variety of manipulation tasks in a kitchen
environment to achieve task goals across multiple stages.

4 EXPERIMENTAL RESULTS

We trained and evaluated over 6,000 diffusion models by sweeping the key components discussed in
Sect. 3.1 and other hyper-parameters (See Appendix B for details).

By summarizing the results from the experiments, we identified one kind of diffusion planning
framework, called the Diffusion Veteran (DV). The pseudocode of DV can be found in Algorithm 1.
As shown in Table 1, DV outperforms all previous diffusion planning and diffusion policy methods.
We hope DV will serve as a simple yet strong baseline for future research in diffusion planning.

Algorithm 1: Diffusion Veteran (DV) Simplified Pseudocode
Input: Planning horizon H , Dataset D, Discount factor γ, Candidate num N , Planning stride M.
Initialize :Diffusion Transformer Planner ϵθ, Diffusion Inverse dynamics ϵω , Critic Vϕ

1 Calculate accumulated discounted returns Rt =
∑end

h=0 γ
hrt+h for every step t.

2 Function TRAINING:
3 Sample st,t+M,··· ,t+(H−1)M ,at,t+M,··· ,t+(H−1)M , Rt from D
4 Train planner ϵθ using st as condition and st,t+M,··· ,t+(H−1)M as target output
5 Train Inverse dynamics ϵω using st, st+M as input, at as target output
6 Train critic Vϕ using st,t+M,··· ,t+(H−1)M as input, Rt as target output
7 end
8 Function EXECUTION(s):
9 Randomly generate N plans using ϵθ, while fixing the first state as s during sampling

10 Select the best plan using critic Vϕ

11 Use the inverse dynamics ϵω to generate action using s and the next state in the best plan
12 end

With DV in place, we can then analyze the impact of each component in diffusion planning by looking
into how each component influences its performance. Each of the following sub-sections will focus
on one component that we have found to be crucial. In the end of this section, we will conclude our
findings into practical tips.
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4.1 ACTION GENERATION

𝑑𝑖𝑚 𝒜 = 2

50%

𝑑𝑖𝑚 𝒜 = 9

50%

𝑑𝑖𝑚 𝒜 = 8

Figure 3: Comparison of performance between two action generation strategies. "Seperate"
learns and uses inverse dynamics to compute action from state plan. "Joint" means learning joint
distribution of state and action and directly executing the generated action at the current step (see
"action generatation" in Fig. 1(b)). A straightforward conclusion drawn from the results is that
"Separate" is better than "Joint" when tackling higher-dimensional action spaces. The vertical dashed
line indicates on-par performance.

The choice of action generation design (Sect. 3.1) remains a subject of ongoing debate within the
field. On one side, the pioneering diffusion planner, Diffuser, along with subsequent studies (Janner
et al., 2022; Liang et al., 2023; Chen et al., 2024), employs a diffusion model to generate the joint
distribution of action and state trajectories ("joint"). In contrast, studies by Ajay et al. (2022); Wang
et al. (2023a); Du et al. (2024) have adopted inverse dynamics to generate actions based on planned
states ("separate").

Our experimental findings favor the latter approach: Although both strategies perform comparably in
simpler environments such as Maze2D, which lacks robotic control elements, the "separate" approach
significantly outperforms the "joint" strategy in more complex settings like Kitchen and AntMaze,
which feature robotic control and higher-dimensional action spaces.

This observed disparity may be attributed to the additional complexity introduced when modeling
the joint distribution of sequential states and actions, compared to modeling only the states. This
complexity becomes particularly pronounced in environments where state transitions involve more
complex actions due to higher-dimensional action spaces.

We tested both diffusion models and vanilla MLP as the inverse dynamics, and found similar
performance between them. We adhered to diffusion inverse dynamics (Appendix B.1).

4.2 PLANNING STRATEGY

Figure 4: Performance change of DV over planning stride. It reduces to dense-step planning when
Stride=1. The star indicates the choice of DV.

One crucial result we found is that jump-step planning (Sect. 3.1) is beneficial in almost all cases,
despite the fact that most previous work used dense-step planning. This is observed in DV (Fig. 4)
and generally in diffusion planners (see Appendix D for extensive results).

An obvious benefit from jump-step planning is that with the same planning steps, the model can
look ahead farther. This may be crucial for planning tasks that require long-term credit assignment.
The choice of stride should be related to the actual clock-time interval between two environment
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steps. Nonetheless, we suggest to try jump-steps and sweep the stride. This observed phenomenon
also implies that the diffusion planner should play the role of planning at a more abstract level or
with a longer timescale. Interestingly, this is consistent with the neuroscientific fact that the intrinsic
timescale of the prefrontal cortex (higher-level planning) is longer than that of the motor cortex
(low-level control) (Murray et al., 2014; Runyan et al., 2017; Wang et al., 2018). A recent study (Chen
et al., 2024) demonstrated impressive planning performance (Table 1, HD) using multi-timescale
diffusion planning. Exploring the hierarchical paradigm of diffusion planning could be an interesting
future direction.

4.3 DENOISING NETWORK BACKBONE

Figure 5: Using Transformer as the backbone of denoising network. (a) Performance comparison
between Transformer and U-Net.The Transformer outperforms U-Net in 8 out of 9 sub-tasks and in
all 3 main tasks. The amount of parameters in U-Net is comparable to that in Transformers. Note
that the error bars in Kitchen are too small to visualize (See Table 10 for numerical results). (b)
Visualization of attention weights of the first layer in the Transformer network during the denoising
process. More plots can be found in Appendix D.

Most diffusion planners on the D4RL dataset use 1-D U-Net for the denoising network. It is natural
to question whether attention is all you need (Vaswani et al., 2017) for diffusion planning. Thus, we
examined the benefit of replacing U-Net with the Transformer architecture as the backbone of the
denoising model (Sect. 3.1) (see Appendix B for details about network structures). The experimental
results clearly support the utilization of Transformer (Fig. 5(a)) in diffusion planning, consistent with
the latest trend in image and video generation (Peebles & Xie, 2023; OpenAI, 2024).

We conducted a case study by looking into the attention weights of the trained Transformer in the
Kitchen environment (Fig. 5(b)), which reflect the temporal credit assignment (i.e., to how many
steps later should be paid attention in the planning sequence). First, we see that the model pays more
attention to the long-range element in the trajectory compared to the short-range ones. It suggests that
the long-term dependency is crucial in this task, which breaks the local inductive bias of convolutional
neural networks such as U-Net. Second, an interesting finding is that the characteristic attention
length is consistent even with different planning stride (Sect. 4.2): 6 (attention step) × 4 (stride) ≈
25 (attention step) × 1 (stride), as depicted in Fig. 5(b). It suggests that the Transformer finds the
invariant correlations across the stride, contributing to the generalization performance.

More generally, we found long-term attention existing in the Transformer in the other tasks as well,
although the attention patterns vary across different tasks.The attention patterns typically feature
slashes, which attend to a fixed number of steps prior, and vertical lines, which attend to key steps.
We have included the attention weights visualization in Appendix D. In-depth study will be needed to
fully understand the role of long-term dependency and why Transformer is observed to outperform
UNet in the future.

4.4 IMPACT OF NETWORK SIZE

Since the experimental results are in favor of Transformer, one may wonder whether a "scaling law"
(Kaplan et al., 2020) holds, in particular, whether performance scales up with model depth (Ye et al.,
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Figure 6: Performance change over depth of the Transformer network as diffusion planner. The
star indicates the choice of DV.

2024). The results presented in Fig. 6 pass two clear messages: First, 1-layer Transformer is not
enough, except for the simplist sub-task (Maze2D-U). Second, a deeper model is not always better.
This may be due to a intrinsic difference between decision making and natural language processing
and limitations of dataset size and quality, which requires further study to systematically address.

4.5 GUIDED SAMPLING ALGORITHMS

Figure 7: Analysis of guided sampling algorithm. (a) Performance comparison among different
guided sampling algorithms for reward maximization. (b) Histogram of the value (accumulated
discounted return in the future (

∑end
h=0 γ

hrt+h, normalized to [−1, 1]) of the data points in each
environment. For AntMaze, the failed trajectories are omitted since their values are all 0.

Another inconsistent design in previous work lies in the choice of guided sampling algorithm
(Sect. 3.1), which enables the diffusion planner to generate plans that perform better than the average
level of the dataset. Fig. 7(a) visualizes the corresponding empirical results (normalized) in our model.
We can draw several conclusions from the results.

First, classifier guidance (CG) is comparable with classifier-free guidance (CFG), despite the fact that
CFG is generally considered better than CG in image synthesis (Ho & Salimans, 2021). A potential
reason is that the target value of CFG may need to be adjusted over time since the total rewards an
agent can obtain in the future may vary depending on the task stage, but we can only use a fixed
target value for CFG since there is no trivial solution.

Also, we observed that non-guidance can be better than guidance – Monte Carlo sampling with
selection (MCSS) performs overall the best, except for Franka Kitchen where MCSS lags slightly
behind CFG. This is an important finding since existing diffusion planners usually used CG or CFG
(Chen et al., 2023; Wang et al., 2023b)). To understand the potential underlying reasons, we plotted
the value distribution of data in each environment (Fig. 7(b)). It can be seen that in Maze2D and
AntMaze, there is a substantial amount of optimal and near-optimal experiences, whereas in Kitchen
most samples are sub-optimal (note that here the optimality is with respect to condition of diffusion
model). This may explain why CFG performs better than MCSS in Kitchen. Thus we can propose
a hypothesis: No guidance (MCSS) can be better than guided generation (CG, CFG) if the dataset
contains a substantial portion of expert demonstration.
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4.6 COMPARISON TO DIFFUSION POLICY

Figure 8: Average performance of methods on different tasks. The horizontal dashed line indicates
the best performance over all methods. DV (Diffusion planning) stands out in Kitchen, Maze2D, and
AntMaze; while DQL (Diffusion policy) (Wang et al., 2023b) outperforms all diffusion planning
methods in MuJoCo locomotion tasks. Refer to the caption of Table 1 for method details.

Diffusion planning and diffusion policy represent two key approaches within diffusion-based decision-
making. After examining the core components of diffusion planners, we turn to a comparison of
diffusion planning and diffusion policy across different environments. The experimental results are
illustrated in Fig. 8. We observed that diffusion planning outperforms diffusion policy in AntMaze,
Kitchen, and Maze2D, whereas diffusion policy excels in MuJoCo locomotion tasks. The first three
environments require precise goal achievement, such as positioning an object exactly, necessitating
long-term planning. This makes them well-suited to diffusion planning, which generates entire
trajectories in one step. Furthermore, these environments feature sparse reward structures, posing
challenges for model-free RL algorithms typically used in diffusion policies (Wang et al., 2023b). In
contrast, the objective in MuJoCo is simply to control agents to run faster, a task that is less related
to lookahead planning and does not require intricate planning. RL loss functions can help diffusion
policy (Wang et al., 2023b) achieve better results in such scenarios.

4.7 VALIDATIONS ON ADROIT DATASET

To examine whether the conclusions drawn from our experiments can generalize to other tasks, we
conducted experiments on the Adroit Hand dataset (Rajeswaran et al., 2018; Fu et al., 2020), which
features motion-captured human data applied to a realistic, high-degree-of-freedom robotic hand,
including both challenges from planning and control. It encompasses 8 challenging tasks highlighted
in the original paper, including as pen twirling, door opening, hammer use, and object relocation. We
found that the results are consistent with our findings, supporting the generalizablity across tasks.
The detailed results are deferred to Appendix C.

4.8 PRACTICAL TIPS TO TAKE HOME

Takeaway 1: Diffusion planning is most effective for tasks requiring long-term credit assignment,
while diffusion policies better fit locomotion tasks that demand less long-term planning (Sect. 4.6)

Takeaway 2: It is recommended to generate state plans with diffusion planners and use an inverse
dynamics model to compute the corresponding actions (Sect. 4.1).

Takeaway 3: Implementing jump-step planning can be highly beneficial; experimenting with different
planning strides is encouraged (Sect. 4.2).

Takeaway 4: It is worth trying to use Transformer as the backbone of diffusion planner, especially in
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the tasks that require long-term lookahead planning (Sect. 4.3).

Takeaway 5: A single-layer Transformer is insufficient for effective planning (Sect. 4.4).

Takeaway 6: Larger models do not necessarily lead to better performance in diffusion planner for
offline RL (Sect. 4.4).

Takeaway 7: Non-guidance approaches, such as Monte Carlo unconditional sampling with selection,
can outperform classifier or classifier-free guidance when the dataset contains enough near-optimal
trajectories (Sect. 4.5).

5 DISCUSSIONS

Synergy between diffusion planning and diffusion policy. A significant avenue for future research
involves a deeper exploration of the distinctions between diffusion planning and diffusion policy.
Drawing on Daniel Kahneman’s seminal work Thinking, Fast, and Slow (Kahneman, 2011), human
cognitive processes are categorized into System 1 and System 2. Diffusion policies are analogous
to System 1 processes, as they operate rapidly and efficiently (Wang et al., 2023b), making them
well-suited for tasks such as locomotion (Fig. 8) that do not require extensive deliberation or long-
term planning. These policies manage routine decision making with the same efficiency as intuitive
responses in human cognition. Conversely, diffusion planning mirrors System 2 thinking, charac-
terized by its slower, more deliberate, and effortful nature. This approach is particularly effective
for tasks that demand long-term credit assignment (Fig. 8), involving more computations to develop
effective plans. In RL terminology, diffusion planning can be broadly classified as model-based, while
diffusion policy aligns with model-free methodologies. Investigating the interplay between these two
systems presents a compelling intersection for both machine learning and cognitive neuroscience
(Gläscher et al., 2010; Duan et al., 2016; Botvinick et al., 2019). Studies from cognitive science
indicate that the brain may use a synergistic approach which arbitrates and selects the better system
according to the current situation, and the preference may change over time (Lee et al., 2014; Han
et al., 2024). We anticipate extensive future research focused on integrating the strengths of diffusion
planning and diffusion policies to enable both efficient and effective decision-making AI.

Computational efficiency. Despite the effectiveness of diffusion planners, their computational cost
is substantial. Our work is orthogonal to the optimization of computational cost (Dong et al., 2024a).
Nonetheless, future work may consider new schemes such as the consistency model (Song et al.,
2023) to improve computational efficiency.

Interpretability and safety. Our study focuses on a single performance metric (total return),
potentially overlooking qualitative aspects such as the interpretability and reliability of the diffusion
planner. Future work may consider issues such as explainability (Puiutta & Veith, 2020) and safety
(Xiao et al., 2023) of diffusion planning. Leveraging the experiences from computer vision domain
will be worth investigating.

Sustainability. Our work required significant computational resources, particularly in terms of
GPU energy consumption, as we trained and evaluated thousands of models across diverse tasks.
However, this investment in energy is not without purpose. We aim to provide a solid foundation
for future research. Subsequent work can build upon our findings, reducing the need for extensive
trial-and-error experimentation. In this way, our research contributes to energy efficiency in the
long term, as researchers can reference our results and apply proven methods rather than duplicating
resource-intensive exploratory efforts.

Open problems and future directions. In the current study, we have focused on standard Markov
decision process problems (Bellman, 1957) using a popular offline RL benchmark (Fu et al., 2020).
The planning and control are based on joint states and coordinates. Numerous untouched problems
exist, such as vision-based decision making (Du et al., 2024; Yang et al., 2024), goal-conditioned
reinforcement learning (Liu et al., 2022; Wang et al., 2023a), partially observable environments
(Schmidhuber, 1991), offline-to-online deployment (Matsushima et al., 2021), and the scalability of
diffusion planning models (Kaplan et al., 2020). Future efforts are anticipated to fully address these
limitations. However, even within the scope of the current work, we have found several interesting
phenomena and tips that are counter to common practices. Our work should be considered as a new
but solid starting point for behavior planning using decision models.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To facilitate this, we include the source
code of DV in the supplementary material, which is also avaliable at https://github.com/
Josh00-Lu/DiffusionVeteran. Detailed descriptions of our experimental setup, including
model architectures, training procedures, and hyperparameter settings, are provided in Appendix
A and Appendix B. We have included comprehensive information on the datasets used, along with
any preprocessing steps, in Appendix B. For all key experiments, we have specified the evaluation
protocols and metrics in Sect. 3 and provided extensive results in Appendix D. We have included the
full list of hyperparameters and configurations in Appendix B.4.
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A GUIDED SAMPLING ALGORITHMS

For decision making tasks, guided sampling algorithms are used to generate desired plans or actions.
In this work, we compare three types of different guided sampling methods: classifier guidance (Dhari-
wal & Nichol, 2021) (CG), classifier-free guidance (CFG) (Ho & Salimans, 2021), and Monte Carlo
sampling from selections (MCSS).

Classifier guidance: Classifier guidance (CG) is introduced to guide the unconditional diffusion
models qt(xt) to generate data over condition c. The conditioned score function is formulated as:

∇x log qt(xt|c) = ∇x log qt(xt) +∇x log qt(c|xt)

where the second term is also know as a noised classifier that predict the condition using noised data
xt. During sampling, the gradient of the classifier is then applied to the predicted noise ϵθ(xt, t):

ϵ̄θ(xt, t, c) = ϵθ(xt, t)− wσt∇x log qt(c|xt)

where w is a weighting factor that controls the strength of the classifier guidance. For CG sampling,
we tuned w in range [0.001, 10] on each task.

Classifier-free guidance: To avoid training classifiers, classifier-free guidance (CFG) is proposed.
The main idea of CFG is to train a diffusion model that can be used for both conditional noise
predictor ϵθ(xt, t, c) and unconditional noise predictor ϵθ(xt, t):

ϵ̄θ(xt, t, c) = ϵθ(xt, t) + w(ϵθ(xt, t, c)− ϵθ(xt, t))

where ϵθ(xt, t) = ϵθ(xt, t,∅). Noise prediction of ϵθ(xt, t,∅) and ϵθ(xt, t, c) can be jointly learned
by randomly discard conditioning with probability of puncond. For decision making tasks, we can train
diffusion models using condition of discounted returns, and using classifier-free guidance for better
plan sampling. We can normalize the discounted return in the dataset for training, and use condition
of 1 as target return for CFG sampling during inference (Ajay et al., 2022). However, experiments
shows that fixing 1 as target may lead to unrealistic or unstable plans. Consequently, besides tuning
the guidance strength w ∈ [1.0, 6.0], we also tune for the best target return within range [0.5, 1.5] for
each tasks to test CFG’s best performance.

Monte Carlo sampling from selections: For Monte Carlo sampling from selections (MCSS), N
selections are firstly sampled from an unconditional generative model as candidates. Then these
candidates are evaluated with a learned critic for the selection of the optimal one. One advantage for
MCSS is that, it do not rely on any task-specific hyperparameters for inference, such as the guidance
strength w in CFG and CG, and target return in CFG. However, it needs to sample N − 1 more
candidates during each decision making step.

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE

Planner: Our code is based on CleanDiffuser (Dong et al., 2024b). We examined U-Net (Ron-
neberger et al., 2015) and Transformer (Vaswani et al., 2017) as the neural network backbone for all
the diffusion planners. Specifically, we keep consistent with the implementation of U-Net1D (Janner
et al., 2022), with 5 kernel size, (1, 2, 2, 2) for channel multiplication, 32 base channels on MuJoCo,
Kitchen and Maze2D, and 64 base channels on AntMaze. For Transformer, we use DiT1D (Peebles
& Xie, 2023; Dong et al., 2024c), with hidden dimension of 256, head dimension of 32, 2 DiT blocks
on MuJoCo, Kitchen and Maze2D, and 8 DiT blocks on AntMaze. All the planner diffusion models
are trained with the Adam (Kingma & Ba, 2014) optimizer with learning rate of 3e− 4, batch size
of 128, for 1M gradient steps. All the diffusion models in this work are trained to predict the noise.
However, for U-Net1D experiments on Kitchen, the diffusion planner to predict the clean estimation,
because it could achieve quite better performance.

Inverse dynamics: We used an MLP-based diffusion model as the inverse dynamic model, whose
input is the current state and the planned next-state; and the output is the action to execute. It is
implemented with a 3-layer MLP with additional 2-layer embedding layer and trained with 1M
gradient steps. All the inverse dynamic models are trained with the Adam (Kingma & Ba, 2014)
optimizer with learning rate of 3e− 4, batch size of 128. We found that the using diffusion model
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as inverse dynamics show similar performance with vanilla MLP inverse dynamics. The inverse
dynamics trained on navigation tasks (Maze2D and AntMaze) are trained with policy centralization,
where the original (st, st+1) → at is modified with (0, st+1 − st) → at. We found this may improve
the generalization ability of the inverse dynamics on navigation tasks.

Critic: We also implemented two types of critic models for guided sampling. The first type has the
architecture of the U-Net1D for the planner, with a linear output layer to produce the critic value. The
second type is a 2 blocks vanilla transformer, with hidden dimension of 256 as the value function,
with a linear projection head on the first token output. We trained all the critic model using the
Adam (Kingma & Ba, 2014) optimizer with learning rate of 3e− 4, batch size of 128. The model
will be trained with 200K gradient steps, if it is a clean critic model 1. Otherwise, it is trained for 1M
gradient steps.

B.2 DIFFUSION SOLVER

We use DDIM (Song et al., 2020) of temperature 1.0 for planner diffusion sampling, and DDPM with
temperature of 0.5 for inverse dynamic action sampling. The sampling temperature is introduced to
reduce sampling randomness (Ajay et al., 2022).

B.3 DATASET PRE-PROCESSING

Diffusion policy baselines (Chen et al., 2023; Wang et al., 2023b; Hansen-Estruch et al., 2023)
commonly learns policy, Q functions, and value functions using a temporal difference manner, on
standard transitions (st,at, st+1, rt). Admittedly, diffusion planners often require careful dataset pre-
processing, including horizon padding, planning strides, return calculation, and truncation-termination
handling. An unsuccessful sequential dataset pre-processing may greatly reduce the planning ability
of diffusion planners. Most planning tasks are usually sparse rewarded, and how optimality is defined,
combined with different temporal credit assignment methods is also important. For MuJoCo and
Kitchen, we use discount factor γ = 0.997. For Maze2D and AntMaze, we use IQL-maze (Kostrikov
et al., 2021) reward shaping methods for temporal credit assignment in navigation planning tasks,
where an −1 penalty is always applied to agent during every timestep. The plan trajectory is clipped
to 1000 steps on Maze2D. Refer to our code for more details.

B.4 FULL HYPER-PARAMETERS

We conducted several rounds of hyperparameter tuning, where each round conducted grid search on
a subset of hyperparameters that we identified as most influential based on prior experiments and
domain knowledge. We control this iterative process of selecting which hyperparameters to explore
in each round, guided by preliminary results and insights. Table 2 displays the hyperparameters and
default choices in our work.

1A clean critic model is only trained on the original input data without noise, while a noised critic model is
trained using noised data using the diffusion model’s noise schedule
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Table 2: Configuration Settings

Settings Default Choices
Guidance Type MCSS [MCSS, CG, CFG, None]
State-Action Generation Separate [Joint, Separate]
Advantage Weighting True only on MuJoCo [True, False]
Inverse Dynamic Diffusion [Diffusion, Regular]
Time Credit Assignment discount=0.997 [discount=0.997, IQL-maze]
Planner Net. Backbone Transformer [Transformer, UNet]
UNet Channels Mult (1, 2, 2, 2) (1, 2, 2, 2)
UNet Base Channels 32 [16, 32, 64]
Transformer Hidden 256 256
Transformer Block 2 [2, 4, 6, 8]
Planner Solver DDIM [DDIM, DDPM]
Planner Sampling Steps 20 20
Planner Training Steps 1000000 1000000
Planner Temperature 1 1
MCSS Candidates 50 [1, 20, 50]
Planning Horizon 32 [4, 32, 40]
Planning Stride 1 [1, 2, 4, 5, 15, 25]
Inverse Dynamics Net. Backbone MLP MLP
Inverse Dynamics Hidden 256 256
Inverse Dynamics Solver DDPM DDPM
Inverse Dynamics Sampling Steps 10 10
Inverse Dynamics Training Steps 1000000 1000000
Policy Temperature 0.5 0.5
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C RESULTS ON VALIDATION DATASET

In this section, we validate our insights and findings on a new set of eight tasks, called Adroit Hand
(Rajeswaran et al., 2018; Fu et al., 2020), to test the generalizability of our conclusions regarding
diffusion planning derived from the main paper.

C.1 EXPERIMENT SETUPS

As demonstrated in Fig. 9, there are four different types of challenging tasks in the Adroit Hand
environments. Each task consists of a dexterous hand attached to a free arm, which has around 30
actuated degrees of freedom for controlling and moving to complete different manipulation tasks,
including opening the door, driving the nail, repositioning the pen orientation, and relocating the ball.

Figure 9: Rendering of the validation benchmarking tasks of Adroit Hand, where dim(S) and
dim(A) denote the dimension of the state and action spaces on each tasks.

Door The task consists of undoing the latch and swinging the door open. The latch has significant
dry friction and a bias torque that forces the door to remain closed. The agent leverages environmental
interaction to develop an understanding of the latch, as no information about the latch is explicitly
provided. The position of the door is randomized. The task is considered complete when the door
touches the door stopper at the other end.

Hammer The task involves picking up a hammer and driving a nail into a board. The nail position
is randomized and has dry friction capable of absorbing up to 15N of force. The task is successful
when the entire length of the nail is inside the board.

Pen The task requires repositioning the blue pen to match the orientation of the green target. The base
of the hand is fixed, and the target is randomized to cover all configurations. The task is considered
successful when the orientations match within a specified tolerance.
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Relocate The task involves moving the blue ball to the green target. The positions of the ball and
target are randomized over the entire workspace. The task is considered successful when the object is
within an epsilon-ball of the target.

We conduct our experiments on two types of datasets: Cloned and Expert. The Cloned dataset consists
of a 50-50 split between demonstration data and 2,500 trajectories sampled from a behaviorally cloned
policy trained on these demonstrations. The demonstration data includes 25 human trajectories, which
are duplicated 100 times to match the number of cloned trajectories. The Expert dataset comprises
5,000 trajectories sampled from an expert policy that successfully solves the task, as provided in the
DAPG repository.

C.2 BASELINES

In order to better validate the performance of our diffusion veteran (DV), we also re-implement four
representative baselines on this new set of environments: (i) Diffusion policies: DQL (Wang et al.,
2023b) and IDQL (Hansen-Estruch et al., 2023); (ii) Diffusion planners: DD (Ajay et al., 2022) and
Diffuser (Janner et al., 2022).

C.3 EXPERIMENTAL RESULTS

In this section, we validate all our insights and findings of diffusion planning in the main paper from
the same five perspectives: (1) Action Generation, (2) Planning Strategy, (3) Impact of Network
Size, (4) Denoising Network Backbone, and (5) Guided Sampling Algorithms to better assess the
generalizability of the main paper.

C.3.1 ACTION GENERATION

Table 3: Results of different action generation choices for diffusion planning on Adroit Hand. Data
are Mean ± Standard Error over 150 episode seeds.

Environment Dataset Separate (DV) Joint

door cloned 1.5 ± 0.0 15.2 ± 0.4

door expert 104.7 ± 0.5 104.7 ± 0.2

hammer cloned 11.9 ± 0.7 2.6 ± 0.0

hammer expert 125.8 ± 1.1 113.4 ± 1.1

pen cloned 80.2 ± 2.0 85.2 ± 2.0

pen expert 122.2 ± 1.8 112.7 ± 1.8

relocate cloned 0.6 ± 0.0 0.4 ± 0.0

relocate expert 108.9 ± 0.2 108.7 ± 0.3

Average 69.5 67.9

The experimental results presented in Table 3 corroborate our previous findings regarding action
generation strategies in diffusion planning. Specifically, generating state plans using diffusion
planners and then computing the corresponding actions via an inverse dynamics model (the Separate
(DV) approach) demonstrates superior or comparable performance to the Joint approach, which
involves generating actions directly. Averaged across all tasks and datasets, the Separate (DV) method
achieves a higher mean score of 69.5 compared to 67.9 for the Joint method. This overall performance
gain underscores the effectiveness of decoupling state planning from action generation, allowing the
diffusion model to focus on modeling state distributions more accurately.
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C.3.2 PLANNING STRATEGY

Table 4: Results of different planning strategy choices on Adroit Hand. Data are Mean ± Standard
Error over 150 episode seeds.

Environment Dataset Stride 1 Stride 2 (DV) Stride 4
door cloned 13.6 ± 0.4 1.5 ± 0.0 0.1 ± 0.0

door expert 104.6 ± 0.2 104.7 ± 0.5 105.6 ± 0.2

hammer cloned 3.9 ± 0.2 11.9 ± 0.7 3.2 ± 0.8

hammer expert 112.5 ± 1.2 125.8 ± 1.1 125.9 ± 1.5

pen cloned 81.6 ± 2.0 80.2 ± 2.0 - -

pen expert 125.9 ± 1.6 122.2 ± 1.8 - -

relocate cloned 0.1 ± 0.0 0.6 ± 0.0 0.0 ± 0.0

relocate expert 108.0 ± 0.3 108.9 ± 0.2 109.0 ± 0.6

Average 68.8 69.5 - -

The results in Table 4 show that implementing jump-step planning strategies can enhance the
performance of diffusion planning. On average, planning with a stride of 2 achieves a higher mean
score compared to stride 1, indicating the benefits of experimenting with different strides. Notably,
the "pen" environment has a maximum of 100 steps, which does not support planning with strides
greater than 4; however, even within these constraints, stride planning demonstrates performance
improvements. These findings suggest that increasing the planning stride can be beneficial for
diffusion planning.

C.3.3 DENOISING NETWORK BACKBONE

Table 5: Results of different denoising network backbone choices on Adroit Hand. Data are Mean ±
Standard Error over 150 episode seeds.

#Model Parameters 2.64 M 3.96 M 15.80 M 63.11 M

Environment Dataset Transformer (DV) UNet UNet UNet

door cloned 1.5 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 1.2 ± 0.4

door expert 104.7 ± 0.5 -0.1 ± 0.0 -0.0 ± 0.0 103.7 ± 0.6

hammer cloned 11.9 ± 0.7 -0.2 ± 0.0 -0.0 ± 0.0 1.6 ± 0.0

hammer expert 125.8 ± 1.1 -0.1 ± 0.0 -0.0 ± 0.0 122.0 ± 1.8

pen cloned 80.2 ± 2.0 -0.7 ± 0.2 -1.8 ± 0.3 73.4 ± 5.1

pen expert 122.2 ± 1.8 -1.3 ± 0.1 -2.6 ± 0.2 134.0 ± 3.2

relocate cloned 0.6 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0 0.0 ± 0.0

relocate expert 108.9 ± 0.2 -0.1 ± 0.0 -0.1 ± 0.0 106.5 ± 0.9

Average 69.5 -0.4 -0.6 67.8

The results in Table 5 show that when using a regular number of parameters, Transformers have
a clear advantage over UNet as the denoising backbone in diffusion planning. Specifically, the
Transformer model achieves an average score of 69.5 with only 2.64 M parameters, while UNet needs
significantly more parameters (up to 63.11 M, around 25 times of the transformer) to reach a similar
performance level (average score of 67.8). This demonstrates that UNet requires multiple times the
parameters to match the efficiency of Transformers.
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C.3.4 IMPACT OF NETWORK SIZE

Table 6: Performance change over depth of the Transformer network for diffusion planner on Adroit
Hand. Data are Mean ± Standard Error over 150 episode seeds.

#Model Parameters 1.46 M 2.64 M 3.82 M

Environment Dataset Depth 1 Depth 2 (DV) Depth 3

door cloned 4.3 ± 0.9 1.5 ± 0.0 1.3 ± 0.1

door expert 0.0 ± 0.0 104.7 ± 0.5 105.5 ± 0.4

hammer cloned 17.0 ± 2.4 11.9 ± 0.7 1.0 ± 0.0

hammer expert 76.1 ± 4.9 125.8 ± 1.1 126.0 ± 1.4

pen cloned 44.9 ± 5.3 80.2 ± 2.0 75.7 ± 5.4

pen expert 42.5 ± 4.9 122.2 ± 1.8 127.5 ± 4.1

relocate cloned 0.7 ± 0.1 0.6 ± 0.0 0.0 ± 0.0

relocate expert 0.8 ± 0.4 108.9 ± 0.2 107.4 ± 0.8

Average 23.3 69.5 68.1

The results presented in Table 6 demonstrate that a single-layer Transformer (Depth 1) is inadequate
for effective planning, as evidenced by its significantly lower average score of 23.3 compared to
deeper models. When the depth is increased to two layers (Depth 2), the performance improves
markedly, achieving an average score of 69.5. However, further increasing the depth to three layers
(Depth 3) does not yield additional benefits; the average score slightly decreases to 68.1. These
findings support our earlier observations: a single-layer Transformer is insufficient for planning tasks,
and simply enlarging the model does not guarantee better performance in diffusion planning for
offline reinforcement learning.

C.3.5 GUIDED SAMPLING ALGORITHMS

The results in Table 7 indicate that non-guidance methods like Monte Carlo sampling with selection
(MCSS) can outperform guidance-based approaches when the dataset contains sufficient near-optimal
trajectories. MCSS achieves the highest average score of 69.5, surpassing classifier-free guidance
(CFG) at 67.7, classifier guidance (CG) at 62.0, and unguided sampling (None) at 60.9.

Table 7: Results of different guided sampling algorithms on Adroit Hand. Data are Mean ± Standard
Error over 150 episode seeds.

Environment Dataset MCSS (DV) CFG CG None

door cloned 1.5 ± 0.0 12.1 ± 0.1 0.9 ± 0.0 0.7 ± 0.1

door expert 104.7 ± 0.5 103.5 ± 0.4 104.3 ± 0.1 103.7 ± 0.2

hammer cloned 11.9 ± 0.7 7.6 ± 0.1 1.2 ± 0.0 0.4 ± 0.0

hammer expert 125.8 ± 1.1 106.7 ± 0.9 110.4 ± 1.3 105.7 ± 1.3

pen cloned 80.2 ± 2.0 74.7 ± 1.6 64.3 ± 1.9 64.1 ± 2.0

pen expert 122.2 ± 1.8 128.2 ± 1.4 107.9 ± 1.9 105.8 ± 1.8

relocate cloned 0.6 ± 0.0 0.7 ± 0.0 0.0 ± 0.0 -0.0 ± 0.0

relocate expert 108.9 ± 0.2 108.2 ± 0.5 107.0 ± 0.3 106.8 ± 0.3

Average 69.5 67.7 62.0 60.9
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C.3.6 COMPARISON WITH OTHER METHODS

Table 8: Performance comparison with representative baselines on Adroit Hand. Data are Mean ±
Standard Error over 150 episode seeds.

Tasks Diffusion Policies Diffusion Planners
Dataset Environment IDQL DQL-TuneLR DQL Diffuser DD DV (Ours)

door cloned 4.4 ± 0.6 -0.3 ± 0.0 -0.1 ± 0.0 0.1 ± 0.1 15.4 ± 0.5 1.5 ± 0.0

door expert 105.0 ± 0.3 104.8 ± 0.3 104.3 ± 0.1 103.0 ± 0.5 105.5 ± 0.3 104.7 ± 0.5

hammer cloned 3.5 ± 0.5 0.2 ± 0.0 0.1 ± 0.0 1.2 ± 0.1 1.6 ± 0.1 11.9 ± 0.7

hammer expert 127.6 ± 0.1 128.3 ± 0.1 55.9 ± 5.2 103.1 ± 3.8 124.8 ± 2.1 125.8 ± 1.1

pen cloned 82.3 ± 5.0 23.3 ± 4.0 28.3 ± 4.3 61.7 ± 5.0 72.0 ± 4.2 80.2 ± 2.0

pen expert 137.8 ± 2.4 133.5 ± 3.9 60.9 ± 6.1 99.7 ± 4.8 139.8 ± 3.5 122.2 ± 1.8

relocate cloned 0.0 ± 0.1 0.1 ± 0.0 -0.1 ± 0.0 -0.0 ± 0.0 0.3 ± 0.0 0.6 ± 0.0

relocate expert 107.0 ± 0.8 108.5 ± 0.6 108.8 ± 0.6 102.2 ± 1.5 110.3 ± 1.1 108.9 ± 0.2

Average 71.0 62.3 44.8 58.9 71.2 69.5

Finally, we conduct a comprehensive comparison with our re-implemented baselines (Table 8).
Notably, we find that using the default learning rate for DQL in this environment may lead to
performance degradation. Therefore, we perform a learning rate search for DQL, select the optimal
one, and denote it as DQL-TuneLR, where learning_rate = {3e−3, 3e−4, 3e−5}. For IDQL,
we use the officially recommended 256 candidates for high-density action-value estimation. For DD,
we conduct a grid search over 35 possible configurations for each task, adjusting target_return
= {0.4, 0.6, 0.8, 1.0, 1.2} and w_cfg = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} to guarantee its maximum
performance. Our method requires only one-quarter of the candidates and no task-specific fine-tuning
to achieve comparable performance.

22



Published as a conference paper at ICLR 2025

D EXTENSIVE RESULTS

D.1 ATTENTION MAP ACROSS DIFFERENT TASKS

The following plots show some examples of the attention weights in different DDIM denoising steps
in each task using Transformer backbones. We can see that a long-term dependency is generally
existing in the Transformer.

Figure 10: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
Kitchen-Partial-v0 dataset.

Figure 11: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
Kitchen-Mixed-v0 dataset.
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Figure 12: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
AntMaze-Large-Diverse-v2 dataset.

Figure 13: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
AntMaze-Large-Play-v2 dataset.

Figure 14: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
AntMaze-Medium-Diverse-v2 dataset.
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Figure 15: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
AntMaze-Medium-Play-v2 dataset.

Figure 16: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
Maze2d-Large-v1 dataset.

Figure 17: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
Maze2D-Medium-v1 dataset.
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Figure 18: Attention weights (averaged on multi-heads) of the first Transformer layer of DV on the
Maze2D-Umaze-v1 dataset.
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D.2 EXTENSIVE RESULTS
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Table 9: The effect of guided sampling algorithms for DV, with different planning strides. In “Stride
x/y”, x is for Kitchen, and y is for Maze2D & AntMaze. Data are Mean ± Standard Error over 500
episode seeds.
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Table 10: Changing denoising network backbone for DV, with different planning strides. In “Stride
x/y”, x is for Kitchen, and y is for Maze2D & AntMaze. Data are Mean ± Standard Error over 500
episode seeds.
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Table 11: The impact of action generation method for DV, with different planning strides. In “Stride
x/y”, x is for Kitchen, and y is for Maze2D & AntMaze. Data are Mean ± Standard Error over 500
episode seeds.
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93.5

±
0.3

88.9
±

0.3
89.6

±
0.8

90.6
±

1.3
92.5

±
0.3

92.7
±

0.3

M
edium

-R
eplay

H
alfC

heetah
38.4

38.2
46.2

44.2
37.1

±
1.7

47.8
±

0.3
47.9

±
0.0

45.9
46.5

±
0.3

47.6
±

1.4
37.7

±
0.5

38.3
±

0.9
39.3

±
4.1

115.3
±1.1

45.8
±

0.1

M
edium

H
alfC

heetah
36.1

40.7
44.4

47.4
45.9

±
2.2

51.1
±

0.5
52.3

±
0.2

51.0
51.5

±
0.1

54.1
±

0.4
42.8

±
0.3

44.2
±

0.6
49.1

±
1.0

107.1
±

1.1
50.4

±
0.0

M
edium

-E
xpert

H
opper

111.9
110.9

98.7
91.5

108.6
±

2.1
111.1

±
1.3

111.1
±

0.4
108.6

110.1
±

0.7
108.0

±
2.5

103.3
±

1.3
111.6

±
2.0

111.8
±

1.8
46.7

±
0.2

110.0
±

0.5

M
edium

-R
eplay

H
opper

11.3
33.1

48.6
94.7

86.2
±

9.1
101.3

±
0.6

101.6
±

0.0
92.1

99.4
±

0.1
96.9

±
2.6

93.6
±

0.4
92.2

±
1.5

100.0
±

0.7
99.3

±
0.3

91.9
±

0.0

M
edium

H
opper

29.0
54.5

58.0
66.3

57.1
±

4.1
90.5

±
4.6

96.5
±

1.3
65.4

70.1
±

2.0
98.0

±
2.6

74.3
±

1.4
96.6

±
2.7

79.3
±

3.6
84.0

±
0.6

83.6
±

1.2

M
edium

-E
xpert

W
alker2d

6.4
57.5

111.0
109.6

109.8
±

0.2
110.1

±
0.3

111.6
±

0.0
112.7

110.6
±

0.0
110.7

±
0.6

106.9
±

0.2
108.2

±
0.8

108.8
±

1.7
38.1

±
0.7

109.2
±

0.0

M
edium

-R
eplay

W
alker2d

11.8
15.0

26.7
73.9

65.1
±

5.6
95.5

±
1.5

98.2
±

0.1
85.1

89.1
±

2.4
84.4

±
4.1

70.6
±

1.6
84.7

±
3.1

75.0
±

4.3
94.7

±
0.7

85.0
±

0.5

M
edium

W
alker2d

6.6
53.1

79.2
78.3

77.9
±

2.5
87.0

±
0.9

86.8
±

0.2
82.5

88.1
±

0.4
86.0

±
0.7

79.6
±

0.6
84.4

±
2.6

82.5
±

1.4
84.1

±
2.2

82.8
±

0.1

Average
31.9

52.0
63.9

77.0
75.6

87.9
89.1

82.1
84.1

86.6
77.5

83.3
81.8

84.6
83.5

M
ixed

K
itchen

47.5
8.1

51.0
51.0

45.4
±

1.6
62.6

±
5.1

55.1
±

1.58
66.5

66.5
±

4.1
–

52.5
±

2.5
51.8

±
0.8

75.0
±

0.0
71.7

±2.7
73.6

±
0.1

Partial
K

itchen
33.8

18.9
49.8

46.3
47.9

±
4.1

60.5
±

6.9
65.5

±
1.38

66.7
66.7

±
2.5

–
55.7

±
1.3

55.5
±

0.4
56.5

±
5.8

73.3
±

1.4
94.0

±
0.3

Average
40.7

13.5
50.4

48.7
46.7

61.6
60.3

66.6
66.6

–
54.1

53.7
65.8

72.5
83.8

A
ntm

aze-L
arge

D
iverse

0.0
2.2

61.2
47.5

45.5
±

6.6
56.6

±
7.6

70.6
±

3.7
67.9

40.0
±

11.4
64.8

±
5.5

27.3
±

2.4
8.7

±
2.5

0.0
±

0.0
83.6

±
5.8

80.0
±

1.8

A
ntm

aze-L
arge

Play
0.0

6.7
53.7

39.6
59.3

±
14.3

46.4
±

8.3
81.3

±
3.1

63.5
48.7

±
4.7

66.6
±

9.8
17.3

±
1.9

5.3
±

3.4
0.0

±
0.0

–
76.4

±
2.0

A
ntm

aze-M
edium

D
iverse

0.0
0.0

15.8
70.0

82.0
±

3.1
78.6

±
10.3

82.6
±

3.0
84.8

83.3
±

5.0
83.8

±
3.5

2.0
±

1.6
6.0

±
3.3

4.0
±

2.8
88.7

±
8.1

87.4
±

1.6

A
ntm

aze-M
edium

Play
0.0

0.0
14.9

71.2
81.3

±
2.6

76.6
±

10.8
87.3

±
2.7

84.5
67.3

±
5.7

83.6
±

4.4
6.7

±
5.7

12.0
±

7.5
8.0

±
4.3

–
89.0

±
1.6

Average
0.0

2.2
36.4

57.1
67.0

64.6
80.5

75.2
59.8

74.7
13.3

8.0
3.0

–
83.2

M
aze2D

L
arge

5
6.2

12.5
58.6

74.4
±

1.7
–

186.8
±

1.7
90.1

–
–

123
167.9

±
5.0

–
128.4

±
3.6

203.6
±

1.4

M
aze2D

M
edium

30.3
8.3

5.0
34.9

73.8
±

2.9
–

152.0
±

0.8
89.5

–
–

121.5
129.9

±
4.6

–
135.6

±
3.0

150.7
±

1.0

M
aze2D

U
m

aze
3.8

12.8
5.7

47.4
73.9

±
6.6

–
140.6

±
1.0

57.9
–

–
113.9

135.1
±

5.8
–

155.8
±

2.5
136.6

±
1.3

Average
13.0

9.1
7.7

47.0
74.0

159.8
79.2

119.5
144.3

139.9
163.6

Table 12: Normalized performance of various offline-RL methods. Data are Mean ± Standard Error
(if available).
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