
Transfer Learning using Spectral Convolutional Autoencoders
on Semi-Regular Surface Meshes

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

The underlying dynamics and patterns of 3D surface meshes deforming over2

time can be discovered by unsupervised learning, especially autoencoders, which3

calculate low-dimensional embeddings of the surfaces. To study the deformation4

patterns of unseen shapes by transfer learning, we want to train an autoencoder5

that can analyze new surface meshes without training a new network. Here,6

most state-of-the-art autoencoders cannot handle meshes of different connectivity7

and therefore have limited to no generalization capacities to new meshes. Also,8

reconstruction errors strongly increase in comparison to the errors for the training9

shapes. To address this, we propose a novel spectral CoSMA (Convolutional Semi-10

Regular Mesh Autoencoder) network. This patch-based approach is combined11

with a surface-aware training. It reconstructs surfaces not presented during training12

and generalizes the deformation behavior of the surfaces’ patches. The novel13

approach reconstructs unseen meshes from different datasets in superior quality14

compared to state-of-the-art autoencoders that have been trained on these shapes.15

Our transfer learning errors on unseen shapes are 40% lower than those from16

models learned directly on the data. Furthermore, baseline autoencoders detect17

deformation patterns of unseen mesh sequences only for the whole shape. In18

contrast, due to the employed regional patches and stable reconstruction quality,19

we can localize where on the surfaces these deformation patterns manifest.20

1 Introduction21

We study the deformation of surfaces in 3D, which discretize human bodies, animals, or work pieces22

from computer aided engineering. Using autoencoders as a method for unsupervised learning, we23

analyze and detect patterns in the deformation behavior by calculating low-dimensional features.24

Since surface deformation is locally described by the same physical rules, we want to study the25

deformation patterns of unseen shapes by transfer learning. In our context, the broad term transfer26

learning means that an autoencoder should be able to analyze new surface meshes without being27

trained again.28

While two-dimensional surfaces embedded in R3 are locally homeomorphic to the two-dimensional29

space, they are of non-Euclidean nature. Their representation by surface meshes lacks the regularity30

of pixels describing images, which is so convenient for 2D CNNs [1]. This is why existing methods31

for unsupervised learning for irregularly meshed surface meshes depend on the mesh connectivity32

when defining pooling or convolutional operators. For this reason, a trained mesh autoencoder cannot33

be applied to a surface that is represented by a different mesh, although the local deformation behavior34

might be similar.35

The authors of [2] presented a mesh autoencoder for semi-regular meshes of different sizes. The36

semi-regular surface representations enforce some local mesh regularity and are made up of regularly37

meshed patches as illustrated in Figure 1, which allows the application of their patch-wise approach.38

However, the reconstruction quality decreases by a factor of 4 when applying their mesh autoencoder39

to new meshes and shapes that have not been used during training. This limits the method’s application40

for unseen shapes.41

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

⇒ ⇒

Irregular surface mesh Low resolution base mesh Semi-regular mesh with rl = 4

Figure 1: Remeshing of the horse template mesh. In the semi-regular mesh, the boundaries of the
regularly meshed patches are highlighted in gray.

Additionally, baseline mesh autoencoders for deforming shapes do not provide an understanding or42

explanation about which surface areas lead to the patterns in the embedding space. The embeddings43

represent the entire shape. Nevertheless, when identifying and analyzing deformation patterns, it is44

of particular relevance where on the surfaces these patterns manifest.45

Our work remedies these gaps by adopting the patch-based framework for semi-regular meshes46

and choosing a spectral graph convolutional filter [3] projecting vertex features to the Laplacian47

eigenvector basis in combination with surface-aware training. Since the spectral filters consider the48

entire patch, the network generalizes better in comparison to a spatial approach, whose filters consider49

smaller n-ring neighborhoods. This improves the quality and smoothness of the reconstruction50

results when being applied to unknown meshes and the errors are 40% lower than errors from51

models learned directly on the data. Although spectral graph neural network methods require fixed52

mesh connectivity, the patch-based and therefore mesh-independent approach is not limited by this53

constraint. This is because the filters are applied to the regular substructures of semi-regular mesh54

representations of the surfaces as in [2]. Furthermore, our patch-based approach allows us to correlate55

patch-wise embeddings with the embedding of the entire shape (Figure 2). This way we localize and56

understand where on the surfaces the deformation patterns, which are visible in the low-dimensional57

representation, manifest.58

The research objectives can be summarized as a) the definition of a spectral convolutional autoencoder59

for semi-regular meshes (spectral CoSMA) and a surface-aware training loss, by this means b)60

improving the transfer learning, generalization capability and runtime of baseline mesh autoencoders,61

and c) localizing the deformation patterns visible in the low-dimensional embedding on the surfaces.62

Further on in section 2, we discuss work related to learning features from meshed geometry. Addition-63

ally, we present relevant characteristics of surface meshes for CNNs and the semi-regular remeshing,64

In section 3 we present the definition of our spectral CoSMA and the surface-aware loss calculation.65

Results for different datasets containing meshes with different connectivity are presented in section 4.66

2 Related Work: Handling Surface Meshes by Neural Networks67

Surfaces are generally represented either in form of point clouds or by a surface mesh, which is68

defined by faces connecting vertices to each other. We consider the representation via meshes,69

because their faces describe the underlying surface [4, 5].70

2.1 Convolutional Networks for Surfaces71

Surface meshes can be viewed as graphs, and hence graph-based convolutional methods are often72

applied to meshes. Generally, convolutional networks for graphs can be separated into spectral and73

spatial ones, of which [1, 6, 7] give an overview. Spatial convolutional methods for graphs aggregate74

features based on a node’s spatial relations, which allows generalization across different mesh75

connectivities [7, 8]. Spectral approaches, on the other hand, interpret information on the vertices as76

a signal propagation along the vertices. They exploit the connection of the graph Laplacian and the77

Fourier basis and vertex features are projected to the Laplacian eigenvector basis, where filters are78

applied [9]. Instead of explicitly computing Laplacian eigenvectors, the authors of [3] use truncated79

Chebyshev polynomials, and in [10] they use only first-order Chebyshev polynomials. These spectral80

methods require fixed connectivity of the graph. If not, the adjacency matrix and consequently81

2

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

(a) (b)

(c)

Figure 2: (a) 2D Embedding of the low-dimensional representation of the whole elephant over time.
(b) Highlighting the distance of the patch-wise embeddings to the embedding of the whole shape.
(c) Patch-wise score for the TRUCK’s front beam from Figure 5 at t = 24. Only the patch with the
high score manifests the deformation in two patterns. This is visible in the example patches with high
and low scores. The embedding’s colors encode timestep and branch.

the Laplacian eigenvector basis change. Furthermore, there are network architectures only for82

surface meshes, e.g. DiffusionNet [11] and HodgeNet [12], which are applied for classification, mesh83

segmentation, and shape correspondence. Nevertheless, these architectures cannot be implemented84

directly into autoencoders, because of missing mesh pooling operators.85

2.2 Neural Networks for Semi-Regular Surface Meshes86

Semi-regular triangular surface meshes, also known as meshes with subdivision connectivity, come87

with a regular local structure and a hierarchical multi-resolution structure. In section 2.4, we provide88

a more detailed definition. The Spatial CoSMA [2] and SubdivNet [13] take advantage of the local89

regularity of the patches by defining efficient mesh-independent pooling operators and using 2D90

convolution. By inputting the patches separately into the network, [2] can define an autoencoder91

pipeline that is independent of the mesh size. [13] apply self-parametrization using the MAPS92

algorithm [14] to remesh watertight manifold meshes without boundaries. [2] on the other hand,93

apply a remeshing algorithm that works for meshes with boundaries and coarser base meshes.94

2.3 Mesh Convolutional Autoencoders95

Some of the first convolutional mesh autoencoders have been introduced in [15] and [16] (CoMA).96

The authors of CoMA introduced mesh downsampling and mesh upsampling layers for pooling97

and unpooling, which are combined with spectral convolutional filters using truncated Chebyshev98

polynomials as in [3]. The Neural3DMM network presented in [4] improves those results using spiral99

convolutional layers. By manually choosing latent vertices for the embedding space, [17] define an100

autoencoder that allows interpolating in the latent space. All the above-mentioned mesh convolutional101

autoencoders work only for meshes of the same size and connectivity because the pooling and/or102

convolutional layers depend on the adjacency matrix. The authors of [2] showed that the latter103

methods are not able to learn data with greater global variations in comparison to their patch-based104

approach, which generalizes and reconstructs the deformed meshes to superior quality. Additionally,105

their architecture can be applied to unseen meshes of different sizes. The MeshCNN architecture106

[5] can be implemented as an encoder and decoder. Nevertheless, the pooling is feature dependent107

and therefore the embeddings can be of different significance. [18] or [19], achieve particularly good108

results in shape reconstruction and completion by representing shapes using signed distance functions109

and other implicit representations. As these approaches are representing whole shapes using a single110

fixed-length vector, their generalization and scalability are often limited, which is why our work is111

mainly focused on mesh-based methods.112

2.4 Definition of Semi-Regular Meshes113

The irregularity of surface meshes gives rise to difficulties when handling them with a neural network.114

Whereas CNNs in 2D [20, 21] apply the same local filters to local neighborhoods of selected pixels115

of the image and shift them horizontally and vertically, this is not applicable to surface meshes [22].116

3

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Level 4 Level 3 Level 2

Padded Pooling

⇒

Level 4 Level 3 Level 2

Padded Pooling

⇒

Level 4 Level 3 Level 2

Padded Pooling

⇒ ⇒

Level 2 Level 3 Level 4

Padded Unpooling with Identical Padding on 2nd Level

⇒

Level 2 Level 3 Level 4

Padded Unpooling with Identical Padding on 2nd Level

Padded Input
patch

Pooling Embedding Unpooling Output Patch

Figure 3: Resolution of the regularly meshed patches inside the spectral CoSMA. The encoder pools
the patches twice by undoing subdivision. In the decoder, the unpooling increases the resolution
again by subdivision. The orange vertices are the vertices from the irregular base mesh. Red and
purple vertices have been created during the 1st and 2nd refinement steps.

In comparison to 2D images, surface meshes lack global regularities, because they are not defined117

along a global grid, local neighborhoods can have any size and arrangement as long as they are locally118

Euclidean.119

One cannot enforce a regular mesh discretization for every surface in R3, which would lead to120

an underlying global grid [23]. This is why [2, 24] proposed to enforce a similar structure in121

the local neighborhoods by choosing a semi-regular representation of the surface. In this way,122

an efficient application of convolution on surface meshes becomes possible. Note that remeshing123

the polygonal mesh only changes the representation of the objects, allowing just small, bounded124

distortions. The considered surface embedded in R3 is the same, but now represented by a different125

discrete approximation.126

Following the definition in [25], we call a surface mesh semi-regular if we can convert it to a low-127

resolution mesh by iteratively merging four triangular faces into one. Consequently, all vertices of128

the semi-regular mesh except for the ones remaining in the low-resolution mesh are regular (i.e. have129

six neighbors). Vice versa, the regular subdivision of a possibly irregular low-resolution mesh yields130

a semi-regular mesh. Such a regular subdivision can be achieved by inserting a vertex on each edge131

and splitting each original triangle face into 4 sub-triangles. [13, 26] refer to this property as Loop132

subdivision connectivity of the semi-regular mesh. The subdivision connectivity makes semi-regular133

meshes particularly useful for multiresolution analysis and directly implies a suitable local pooling134

operator on semi-regular meshes (see section 3).135

2.5 Semi-Regular Remeshing136

There are different remeshing algorithms, for example Neural Subdivision [24] or MAPS [14]. Also137

the authors of [2] present their own remeshing algorithm. We cannot apply Neural Subdivision nor138

MAPS, because they only work for closed surfaces without boundaries and fail for base meshes as139

coarse as ours Therefore, we apply the remeshing from [2]. The algorithm iteratively subdivides a140

coarse approximation of the original irregular mesh (see Figure 1). The resulting semi-regular mesh141

is fitted to the original mesh using gradient descent on a loss function based on the chamfer distance.142

The refinement level rl states the number of times each face of the coarse base mesh is iteratively143

subdivided. The number of faces in the final semi-regular mesh is nsemireg
F = 4rl ∗ nc

F , with nc
F144

being the number of faces describing the coarse base mesh. We choose the refinement level rl = 4,145

which leads to finer meshes compared to [2], who chose rl = 3.146

After the remeshing, all vertices that are newly created during the subdivision have six neighbors.147

Therefore, the resulting mesh is semi-regular or has subdivision connectivity.148

3 Spectral CoSMA149

The network handles the regional patches separately, which allows us to handle meshes of different150

sizes. We describe how the graph convolution is combined with the padding and the pooling of the151

patches. The building blocks are set together to define the spectral CoSMA (Spectral Convolutional152

Semi-Regular Mesh Autoencoder). Also, we introduce our surface-aware training loss to consider the153

patch-wise reconstructions as part of the entire mesh.154

4

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

3.1 Spectral Chebyshev Convolutional Filters155

We apply fast Chebyshev filters [3], as in [16], with the distinction that we are using them to perform156

spectral convolutions on the regional patches instead of the entire mesh. The approach in [3] performs157

spectral decomposition using spectral filters and applies convolutions directly in the frequency space.158

The spectral filters are approximated by truncated Chebyshev polynomials, which avoids explicitly159

computing the Laplacian eigenvectors and, by this means, reduces the computational complexity.160

We justify this different convolution on the patches, compared to [2], by the intuition that spectral161

filters encode information of a whole patch and the general characteristics of its deformations, whereas162

in comparison spatial convolution considers just the local neighborhood around a vertex. Additionally,163

this spectral approach uses only the first few Chebyshev polynomials of the lowest degree, that164

resemble the lowest frequencies [27]. This is convenient when reconstructing surfaces, especially165

densely meshed ones, which tend to be relatively smooth in the local neighborhoods and have few166

features of high frequency.167

The decomposition using spectral filters is dependent on the adjacency matrix, which restricts168

the transfer learning of learned spectral graph convolution to meshes of the same connectivity.169

Nevertheless, the adjacency matrix of the patches of our semi-regular meshes is always the same for170

one refinement level. This allows us to train the filters for all patches together and to apply them to171

unseen meshes.172

3.2 Pooling and Padding of the Regular Patches173

We apply the patch-wise average pooling and unpooling from [2] that takes advantage of the multi-174

scale structure of the semi-regular meshes. The subdivision connectivity guarantees that every 4175

faces can be uniformly pooled to 1. The remaining vertices take the average of their own value176

and the values of the neighboring vertices that are removed. The unpooling operator subdivides the177

faces and the newly created vertices are assigned the average value of neighboring vertices from the178

lower-resolution mesh patch. A similar pooling and unpooling operator is also applied by [13], where179

the information is saved on the faces.180

The padding is crucial for the network to consider the regional patches in a larger context. Since181

the network handles the patches separately, we consider the features of the neighboring patches in a182

padding of size 2 as in [2]. If the vertices are boundary vertices, we decide to pad the patch with the183

boundary vertices’ features.184

3.3 Network Architecture185

While using specialized pooling and convolution techniques for the regular patches, the general186

structure of our network architecture is inspired by [2, 16]. Our autoencoder architecture combines187

spectral Chebyshev convolutional filters with the described pooling technique to process the padded188

regular patches of a semi-regular mesh. The autoencoder compresses every padded patch, which189

corresponds to one face of the low-resolution mesh, from R276×3 (rl = 4) to an hr = 10 dimensional190

latent vector and reconstructs the original padded patch from the latent vector.191

The encoder consists of two blocks containing a Chebyshev convolutional layer followed by an192

average pooling layer and an exponential linear unit (ELU) as an activation function [28]. The output193

of the second encoding block is mapped to the latent space by a fully connected layer.194

The decoder mirrors the structure of the encoder by first applying a fully connected layer, which195

transforms the latent space vector back to a regular triangle representation with refinement level196

rl = 2. Afterward, two decoding blocks consisting of an unpooling layer followed by a convolutional197

layer transform the coarse triangle representation back to the original padded patch representation.198

Finally, another Chebyshev convolutional layer is applied without activation function to reconstruct199

the original patch coordinates by reducing the number of features to three dimensions.200

All Chebyshev convolutional layers use K = 6 Chebyshev polynomials. Table 3 in the supplementary201

material gives a detailed view of the structure of the network together with the parameter numbers202

per layer which sum up to 23,053. Figure 3 illustrates the patch sizes inside the autoencoder. Note203

that we are able to handle non-manifold edges of the coarse base mesh because the patches, whose204

interiors by construction have only manifold-edges, are fed separately. The code will be provided as205

supplementary material.206

5

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

This spectral CoSMA architecture can handle all surface meshes, that have been remeshed into a207

semi-regular mesh representation of the same refinement level. By handling the regional padded208

patches separately, this workflow is independent of the original irregular mesh connectivity thanks to209

the remeshing and patch-wise handling.210

3.4 Surface-Aware Loss Calculation211

The authors of the patch-based spatial CoSMA [2] employ a patch-wise mean squared error as the212

training loss. But, that loss calculation is not keeping track of multiple appearances of the vertices in213

the patch boundaries, whose errors are weighted higher than in the interior of the patches. Therefore,214

it is not surface-aware and not considering the patches as part of the entire mesh but separately.215

By weighting the vertex-wise error in the training loss with one divided by the vertices’ number of216

appearances in the different patches, we employ a surface-aware error for training, whose definition217

is provided in the supplementary material. This reduces the P2S error by avoiding artifacts and errors218

due to the overemphasis of the patch boundaries, as visible in the ablation study and Figure 6. Note219

that only due to the improvement quality of the spectral approach one notices these artifacts.220

4 Experiments221

We test our spectral CoSMA for semi-regular meshes using an experiment setup similar to [2] on four222

different datasets and compare our reconstruction errors to state-of-the-art surface mesh autoencoders.223

4.1 Datasets224

GALLOP: The dataset contains triangular meshes representing a motion sequence with 48 timesteps225

from a galloping horse, elephant, and camel [29]. The galloping movement is similar but the meshes226

representing the surfaces of the three animals are different in connectivity and the number of vertices.227

This is why the baseline autoencoders have to be trained three times. The surface approximations228

are remeshed to semi-regular meshes with refinement level rl = 4 for each animal. The new meshes229

are still of different connectivity, but all are made up of regional regular patches. Table 9 lists the230

resulting numbers of vertices. We normalize the semi-regular meshes to [−1, 1] as in [2]. Before231

inputting the data to the CoSMAs, every patch is translated to zero mean. We use the first 70% of the232

galloping sequence of the horse and camel for training. The architecture is tested on the remaining233

30% and the whole sequence of the elephant, which is never seen during the training for the CoSMAs.234

FAUST: The dataset contains 100 meshes [30], which are in correspondence to each other. The235

irregular surface meshes represent 10 different bodies in 10 different poses. For the experiments,236

we consider two unknown poses of all bodies (20% of the data) in the testing set. The meshes are237

remeshed and normalized in the same way as for the GALLOP dataset.238

TRUCK and YARIS: In a car crash simulation the car components, which are generally represented239

by surface meshes, often deform in different patterns. Every component is discretized by a surface240

mesh, while the local deformation is described by the same physical rules. Following [2], the241

TRUCK dataset contains 32 completed frontal crash simulations and 6 components, the YARIS242

dataset contains 10 simulations and 10 components. 30 simulations and 70% of the timesteps of the243

TRUCK dataset are included in the training set. The remaining samples from the TRUCK dataset244

and the entire YARIS dataset, representing a different car, are considered for testing. For this setup,245

the authors of [2, 31] detect patterns in the deformation of the TRUCK and YARIS components. We246

normalize the meshes that discretize car components to zero mean and range [−1, 1] relative to the247

coordinates’ ratio. Every patch is translated to zero mean.248

4.2 Training Details249

We train the network (implemented in Pytorch [32] and Pytorch Geometric [33]) with the adaptive250

learning rate optimization algorithm [34]. For the GALLOP and the FAUST dataset, we use a learning251

rate of 0.0001 and train for 150 epochs using a batch size of 100. For the TRUCK data, we choose a252

batch size of 100 combined with a learning rate of 0.001 for 300 epochs, since the variation inside253

the dataset is higher. We minimize the surface-aware loss between the original and reconstructed254

regional patches of the surface mesh without considering the padding. To augment the data in the255

case of the GALLOP and the FAUST dataset we rotate the regional patches by 0◦, 120◦, and 240◦.256

6

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Table 1: Point to surface (P2S) errors (×10−2) between reconstructed unseen semi-regular meshes
(rl = 4) and original irregular mesh and their standard deviations for three different training runs.
[4, 13, 16] have to be trained per mesh; we and [2] train one network for all three animals in the
GALLOP dataset. ∗: the elephant has not been seen by the network during training.

Mesh
Class CoMA [16] Neural3DMM

[4]
SubdivNet

[13]
Spatial

CoSMA [2] Ours

FAUST 0.7073 + 1.751 0.4064 + 0.921 2.8190 + 4.699 0.0224 + 0.045 0.0031 + 0.006

Horse 0.0053 + 0.017 0.0096 + 0.045 0.0113 + 0.025 0.0078 + 0.012 0.0022 + 0.005
Camel 0.0075 + 0.023 0.0145 + 0.056 0.0113 + 0.024 0.0091 + 0.014 0.0030 + 0.006
Elephant 0.0101 + 0.031 0.0147 + 0.057 0.0145 + 0.032 0.0316 + 0.068∗ 0.0054 + 0.012∗

Table 2: P2S errors (×10−2) for three different training runs. Additionally, the Euclidean P2S error
(in cm) is given. ∗: the entire YARIS dataset has not been seen by the network during training.

Dataset Component Lengths Spatial CoSMA [2] Ours

Test P2S Eucl. E. Test P2S Eucl. E.

TRUCK 135–370 cm 0.0660 + 0.117 2.76 cm 0.0013 + 0.003 0.26 cm
YARIS∗ 21–91 cm 0.2061 + 0.438 0.84 cm 0.0375 + 0.088 0.31 cm

Our architecture requires at least 50% fewer parameters than the CoMA, Neural3DMM, and Subdi-257

vNet networks, because for increasing rl and consequently finer meshes, the CoSMAs require only a258

few parameters more in the linear layers (compare Tables 9 and 10 in the supplementary material).259

This is because the patches and convolutional filters share the parameters. The spectral CoSMA260

approach requires 15% fewer parameters than the spatial CoSMA approach. The runtime analysis261

and ablation study justifying parameter choices are provided in the supplementary material.262

4.3 Reconstructions of the Meshes263

The mean squared error between true and reconstructed vertices of the semi-regular mesh allows264

a comparison of different methods only if the same remeshing result is used. In difference to [2],265

we compare the reconstructed semi-regular mesh directly to the original irregular surface mesh by266

calculating a point to surface error (P2S). We average the mean squared errors between the vertices of267

the semi-regular mesh and their orthogonal projections to the surface described by the irregular mesh.268

This allows us to compare the reconstruction errors when using different remeshings or refinements.269

Besides CoMA [16] and Neural3DMM [4], we use an additional baseline semi-regular mesh autoen-270

coder using our network’s architectures with the pooling and convolutional layers from SubdivNet271

[13] to process the entire meshes. In Table 1 we compare the autoencoders for the GALLOP and272

FAUST dataset in terms of the P2S errors of reconstructed test samples, whose 3D coordinates lie in273

the range [−1, 1]. Our network reduces the test reconstruction error for the GALLOP and FAUST274

dataset by more than 50% and 80% respectively, if the shape is presented to the autoencoder during275

the training. For unknown poses from the FAUST dataset, the limbs’ positions are reconstructed276

inaccurately by the CoMA, Neural3DMM, and SubdivNet autoencoders. Especially if the pose is not277

similar to training poses, their reconstruction fails, as Figure 4 illustrates.278

The spectral CoSMA’s reconstructions are generally smoother than the ones from the spatial CoSMA,279

which reduces the reconstruction errors. Figure 9 in the supplementary material shows that the280

reconstructed patch using spectral filters, which encode the connectivity of the whole patch in the281

Chebyshev polynomials, is smoother than the spatial reconstruction, where the convolutional kernels282

only consider the close neighborhood. Because the spatial CoSMA uses hr = 8 and no surface-aware283

loss, we also list our reconstruction errors using these parameters in the ablation study for comparison.284

Transfer Learning to Other Meshes: Our spectral CoSMA and the spatial CoSMA are the only285

networks that can reconstruct an unseen shape of different connectivity. The elephant’s mesh has286

never been presented to our network, nevertheless, our reconstruction error is lower. Even though287

trained on the elephant, the baselines’ reconstructions are worse and unstable in the legs, as Figure 4288

7

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

CoMA [16] Neural3DMM [4] SubdivNet [13] Spatial CoSMA [2] Our
Reconstruction

* *

0.0 0.00025 > 0.0005

Figure 4: Reconstructed unknown FAUST pose and elephant test sample at t = 43 by CoMA, Neu-
ral3DMM, SubdivNet Autoencoder, spatial CoSMA, and our network. P2S error of the reconstructed
faces is highlighted. More reconstruction examples are given in the supplementary material.
∗ The elephant’s mesh has not been presented during training to spatial CoSMA and our network.

illustrates. The spatial CoSMA’s reconstructions of the unseen elephant are inferior to all the other289

networks, although the reconstructions of the known camel and horse are of similar quality to the290

other baselines. This highlights the improved transfer learning capability of the spectral approach.291

Since the patch-wise deformations of the GALLOP and FAUST are both of natural origin, we292

test the out-of-distribution generalization of our spectral CoSMA. We train it on one and attempt293

reconstruction on the other dataset. The results are discussed in the supplementary material (Table 7).294

Since the TRUCK and YARIS datasets contain 16 different meshes, the reconstruction results are295

compared between the CoSMA architectures. In Table 2 we present the average P2S errors for the296

TRUCK and YARIS dataset between the components scaled to range [−1, 1] and in cm. The entire297

YARIS dataset has never been presented to the network during training. The results on the YARIS in298

Figure 5 also show that our network not only reconstructs smoother surfaces in comparison to the299

spatial CoSMA but also has higher generalization capacities.300

A comparison of the results for refinement levels rl = 3 and rl = 4 for the TRUCK and YARIS301

datasets (see Table 11 in the supplementary material) shows the stability of the results from our302

spectral CoSMA. For the spatial CoSMA on the other hand, the reconstruction quality decreases303

when increasing the refinement level. This is due to the fixed kernel size of 2. Since the mesh is finer,304

the considered neighborhoods by a spatial filter using kernel size 2 cover smaller areas of the surface.305

The spectral CoSMA considers the entire patches in spectral representation. Therefore, an increase in306

the refinement level does not impair the reconstruction quality.307

4.4 Low-dimensional Embedding308

We project the patch-wise hidden representations of size hr into the two-dimensional space using the309

linear dimensionality reduction method Principal Component Analysis (PCA) [35]. Then we compare310

these patch-wise results to the 2D embedding over time of the whole shape, by concatenating the311

hidden patch-wise representations and then applying PCA.312

The time-dependent embedding for the unseen elephant from the GALLOP dataset exhibits a periodic313

galloping sequence, visualized in Figure 2 (a). We compare how similar the 2D patch-wise embed-314

dings are to the 2D embedding for the entire shape, to determine how important the deformation315

of the patch is for the general deformation behavior of the whole shape. The patch-wise distance316

is visualized in Figure 2 (b) and its calculation detailed in the supplementary material. We notice317

that this distance is the lowest for the body and legs, which define the elephant’s gallop, whereas the318

movement of the head does not follow the periodic pattern.319

8

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

TRUCK: training dataset YARIS: unknown dataset

Spatial CoSMA Our Reconstruction Spatial CoSMA Our Reconstruction

0.0 cm 1.5 cm > 3.0 cm

Figure 5: Reconstructed front beams from the TRUCK (length of 150 cm) at time t = 24 (test
sample) from two crash simulations representing different deformation behavior and from the YARIS
(length of 65 cm) at t = 15. The average Euclidean P2S error (in cm) of the faces is highlighted.

For the TRUCK and YARIS datasets, the goal is the detection of clusters corresponding to different320

deformation patterns in the components’ embeddings. This speeds up the analysis of car crash321

simulations since relations between model parameters and the deformation behavior are discovered322

more easily [31, 36]. In the 2D visualizations for the TRUCK components, we detect two clusters323

corresponding to a different deformation behavior and our patch-based approach allows us to identify324

the patches that contribute most to this. For each patch, we define a score, which equals the accuracy325

of an SVM (between 0.5 and 1) that is classifying the observed two deformation patterns of the entire326

component from the patch’s embedding, see Figure 2 (c). The highlighted patches correlate to the327

left part of the beam, where the deformation is visibly different for two different TRUCK simulations328

in Figure 5. Note, that this comparison of patch- and shape-embeddings does not lead to significant329

results for the spatial CoSMA [2] because of the instability of its results.330

For the YARIS, which has never been seen by the network during training, we also visualize the331

low-dimensional representation for different components in 2D using PCA. We detect a deformation332

pattern in the front beams that splits up the simulation set into two clusters, see Figure 11 in the333

supplementary material, which is a result similar to [2] who used a nonlinear dimensionality reduction.334

4.5 Interpolation in the Embedding Space335

We interpolate in the low-dimensional shape space and reconstruct the shapes. Figure 10 in the336

supplementary material shows generated samples passing averaged embeddings of two known shapes337

to the decoder. The generated shapes are smooth, well-formed, and resemble an average position in338

between the two real samples. This shows that our model is not overfitting to the training shapes.339

5 Conclusion340

We have introduced a novel spectral mesh autoencoder pipeline for the analysis of deforming 3D341

semi-regular surface meshes with different connectivity. This allows us to generate high-quality342

reconstructions of unseen meshes, that have not been presented during training. In fact, the re-343

construction quality for unknown meshes with our spectral CoSMA is higher than with baseline344

autoencoders that have seen the meshes during training. Also, we identify and rectify artifacts due to345

the patch boundary handling in the surface-aware loss calculation. These improved transfer learning346

and generalization capabilities, the increased reconstruction quality, and the first results of using our347

model in a generative approach motivate the future analysis of generative models for the patch-based348

approach. For high-quality generative results, we also plan to improve the remeshing procedure to349

focus more on detailed structures. In addition, we provide an understanding and interpretation of350

which surface areas lead to the patterns in the embedding space. We assume that such information351

per patch can be used in further analysis.352

An open question is, how to build mesh-independent decoders or mesh-generative models. Our mesh353

autoencoder can be trained for different meshes at the same time, but still requires a given mesh354

topology, whose vertex coordinates are reconstructed. To the best of our knowledge, it is an open355

question, of how to reconstruct meshes, when no template mesh is given.356

9

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

References357

[1] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:358

Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021. 1, 2359

[2] Sara Hahner and Jochen Garcke. Mesh convolutional autoencoder for semi-regular meshes360

of different sizes. In Proceedings of the IEEE/CVF Winter Conference on Applications of361

Computer Vision (WACV), pages 885–894, 2022. 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 17, 18, 19362

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks363

on graphs with fast localized spectral filtering. In Advances in Neural Information Processing364

Systems, volume 29, pages 3844–3852, 2016. 2, 3, 5365

[4] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis, Stefanos Zafeiriou, and Michael366

Bronstein. Neural 3D morphable models: Spiral convolutional networks for 3D shape represen-367

tation learning and generation. Proceedings of the IEEE International Conference on Computer368

Vision, 2019-Octob:7212–7221, 2019. doi: 10.1109/ICCV.2019.00731. 2, 3, 7, 8, 15, 17, 18, 19369

[5] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.370

MeshCNN: A network with an edge. ACM Transactions on Graphics, 38(4):1–12, jul 2019.371

doi: 10.1145/3306346.3322959. 2, 3372

[6] Michael M. Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam, and Pierre Vandergheynst.373

Geometric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34374

(4):18–42, 2017. doi: 10.1109/MSP.2017.2693418. 2375

[7] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A376

comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and377

Learning Systems, 2020. doi: 10.1109/tnnls.2020.2978386. 2378

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.379

Neural message passing for quantum chemistry. 34th International Conference on Machine380

Learning, 3:2053–2070, 2017. 2381

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep lo-382

cally connected networks on graphs. 2nd International Conference on Learning Representations,383

ICLR 2014 - Conference Track Proceedings, pages 1–14, 2014. 2384

[10] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional385

networks. arXiv preprint arXiv:1609.02907, pages 1–14, 2016. 2, 13386

[11] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. DiffusionNet: Dis-387

cretization agnostic learning on surfaces. ACM Transactions on Graphics, 41(3):1–16, 2022.388

3389

[12] Dmitriy Smirnov and Justin Solomon. HodgeNet: Learning spectral geometry on triangle390

meshes. ACM Transactions on Graphics, 40(4):1–11, jul 2021. doi: 10.1145/3450626.3459797.391

3392

[13] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu,393

and Ralph R. Martin. Subdivision-based mesh convolution networks. ACM Transactions on394

Graphics, 41(3):1–16, 2022. 3, 4, 5, 7, 8, 15, 16, 17, 18395

[14] Aaron W.F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin. MAPS:396

Multiresolution adaptive parameterization of surfaces. Proceedings of the 25th Annual Con-397

ference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pages 95–104,398

1998. doi: 10.1145/280814.280828. 3, 4399

[15] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape400

completion with graph convolutional autoencoders. pages 1886–1895. IEEE, 6 2018. doi:401

10.1109/CVPR.2018.00202. 3402

[16] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. Generating 3D faces403

using convolutional mesh autoencoders. Proceedings of the European Conference on Computer404

Vision, pages 704–720, 2018. doi: 10.1007/978-3-030-01219-9_43. 3, 5, 7, 8, 15, 17, 18, 19405

[17] Yi Zhou, Chenglei Wu, Zimo Li, Chen Cao, Yuting Ye, Jason Saragih, Hao Li, and Yaser Sheikh.406

Fully convolutional mesh autoencoder using efficient spatially varying kernels. In Advances in407

Neural Information Processing Systems, volume 33, pages 9251–9262, 2020. 3408

10

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

[18] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.409

Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-410

ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 165–174,411

2019. 3412

[19] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric413

regularization for learning shapes. In International Conference on Machine Learning, pages414

3789–3799. PMLR, 2020. 3415

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 3416

[21] Yann LeCun, Lionel D. Jackel, Brian Boser, John S. Denker, Henry P. Graf, Isabelle Guyon,417

Don Henderson, Richard E. Howard, and William Hubbard. Handwritten digit recognition:418

applications of neural network chips and automatic learning. IEEE Communications Magazine,419

27(11):41–46, nov 1989. doi: 10.1109/35.41400. 3420

[22] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant421

convolutional networks and the icosahedral CNN. 36th International Conference on Machine422

Learning, 2019-June:2357–2371, 2019. 3423

[23] Luitzen Egbertus Jan Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische424

Annalen, 71(4), dec 1912. doi: 10.1007/BF01456812. 4425

[24] Hsueh Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec426

Jacobson. Neural subdivision. ACM Transactions on Graphics, 39(4):1–16, jul 2020. doi:427

10.1145/3386569.3392418. 4428

[25] Frédéric Payan, Céline Roudet, and Basile Sauvage. Semi-regular triangle remeshing: A429

comprehensive study. Computer Graphics Forum, 34(1):86–102, 2015. doi: 10.1111/cgf.12461.430

4431

[26] Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, The University432

of Utah, jan 1987. 4433

[27] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via434

spectral graph theory. Applied and Computational Harmonic Analysis, 30:129–150, 3 2011.435

doi: 10.1016/j.acha.2010.04.005. 5436

[28] Djork Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep net-437

work learning by exponential linear units (ELUs). 4th International Conference on Learning438

Representations, ICLR 2016 - Conference Track Proceedings, pages 1–14, 2016. 5439

[29] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes. ACM440

Transactions on Graphics, 23(3):399–405, 2004. doi: 10.1145/1186562.1015736. 6441

[30] Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and442

evaluation for 3D mesh registration. Proceedings of the IEEE Computer Society Conference on443

Computer Vision and Pattern Recognition, pages 3794–3801, 2014. doi: 10.1109/CVPR.2014.444

491. 6445

[31] Sara Hahner, Rodrigo Iza-Teran, and Jochen Garcke. Analysis and prediction of deforming 3D446

shapes using oriented bounding boxes and LSTM autoencoders. In Artificial Neural Networks447

and Machine Learning, pages 284–296. Springer International Publishing, 2020. 6, 9448

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,449

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas450

Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,451

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,452

high-performance deep learning library. In Advances in Neural Information Processing Systems,453

volume 32, pages 8026–8037, 2019. 6454

[33] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.455

arXiv preprint arXiv:1903.02428, mar 2019. 6456

[34] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 3rd Inter-457

national Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,458

pages 1–15, 2015. 6459

[35] Karl Pearson. On lines and planes of closest fit to systems of points in space. The London,460

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, nov461

1901. doi: 10.1080/14786440109462720. 8462

11

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

[36] Bastian Bohn, Jochen Garcke, Rodrigo Iza-Teran, Alexander Paprotny, Benjamin Peherstorfer,463

Ulf Schepsmeier, and Clemens August Thole. Analysis of car crash simulation data with464

nonlinear machine learning methods. Procedia Computer Science, 18:621–630, 2013. doi:465

10.1016/j.procs.2013.05.226. 9466

[37] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning represen-467

tations and generative models for 3D point clouds. 35th International Conference on Machine468

Learning, ICML 2018, 1:67–85, 2018. 16469

12

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

A Supplementary Material470

Code and Detailed Network Architecture471

As an addition to the architecture’s description in section 3 and visualization in Figure 3 we give a472

detailed distribution of parameters over the hexagonal convolutional, fully connected, and pooling473

layers in Table 3. We provide the code through an anonymized repository: https://anonymous.474

4open.science/r/spectralCoSMA-6156/README.md.475

Table 3: Structure of the autoencoder for refinement level rl = 4, number of Chebyshev polynomials
K = 6 and hidden representation of size hr = 10. The bullets • reference the corresponding batch
size. The data’s last dimension is the number of vertices considered for each padded patch.

Encoder Layer Output Shape Param. Decoder Layer Output Shape Param.

Input (•, 3, 267) 0 Fully Connected (•, 25, 15) 5280
ChebConv (•, 24, 267) 304 Unpooling (•, 25, 78) 0
Pooling (•, 24, 78) 0 ChebConv (•, 25, 78) 6176
ChebConv (•, 25, 78) 3104 Unpooling (•, 24, 267) 0
Pooling (•, 25, 15) 0 ChebConv (•, 24, 267) 3088
Fully Connected (•, 10) 4810 ChebConv (•, 3, 267) 291

Ablation Study476

We perform an ablation study to justify some of the design and parameter choices in our spectral477

CoSMA architecture. In Table 4, we report the P2S errors on the FAUST dataset and the elephant478

from the GALLOP dataset after 50 epochs of training. The accuracy degrades for at least one of the479

two datasets when we reduce the degree K of the Chebyshev polynomials, reduce the size of the480

hidden representation hr, reduce the number of output channels of the convolutional layers, or change481

the Chebyshev Graph Convolution to the Graph Convolution from [10], who use only first-order482

Chebyshev polynomials. For the latter change, the networks are trained for 100 epochs.483

We also list the P2S errors for a training without using the surface-aware training loss but instead, the484

patch-wise mean squared error and a hidden representation of size hr = 8 as in [2]. These networks485

are trained for 150 epochs as the main experiments. The last line in Table 4 in comparison to the486

Spatial CoSMA [2] results in Table 1 show the improvement by switching from spatial to spectral487

convolutional layers.488

In Table 5 we provide reconstruction errors when training our spectral autoencoder for semi-regular489

meshes for each animal separately. Notice that the reconstruction errors for horse and camel stay the490

same, but the reconstruction error for the elephant decreases once it is considered a training shape.491

Table 4: Ablation study of our parameter choices based on P2S errors (×10−2) for 2 training runs.

Model P2S Error

FAUST Elephant

full 0.0031 + 0.006 0.0054 + 0.012
hr = 8 0.0053 + 0.010 0.0083 + 0.016
K = 4 0.0031 + 0.006 0.0055 + 0.012

23 and 24 channels 0.0031 + 0.006 0.0060 + 0.013
GCN [10] 0.0032 + 0.006 0.0056 + 0.012

Patch-wise train MSE 0.0033 + 0.006 0.0074 + 0.015
hr = 8 and patch-wise train MSE as in [2] 0.0041 + 0.007 0.0085 + 0.016

13

https://anonymous.4open.science/r/spectralCoSMA-6156/README.md
https://anonymous.4open.science/r/spectralCoSMA-6156/README.md
https://anonymous.4open.science/r/spectralCoSMA-6156/README.md

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Table 5: Point to surface (P2S) errors (×10−2) between reconstructed unseen semi-regular meshes
(rl = 4) and original irregular mesh and their standard deviations for three different training runs.
Animals are considered as separate datasets as for the mesh dependent baselines.

Mesh Class P2S Error: Our Model

Horse 0.0022 + 0.005
Camel 0.0030 + 0.006
Elephant 0.0050 + 0.011

Surface-Aware Loss Calculation492

Given a semi-regular mesh with n vertices, that is made up of k patches, which have m vertices493

without considering the padding. For all vertices, Pi is the set of patches, in which vertex i appears.494

Then, we calculate the patch-wise surface-aware training loss between the ground truth 3D coordinates495

xp of the patch p and their reconstructions x∗
p as follows:496

MSESA(xp, x
∗
p) =

1

m

m∑
i=1

1

|Pi|
((xp)i − (x∗

p)i)
2

When considering the MSE for the whole mesh, it holds497

1

k

k∑
p=1

MSESA(xp, x
∗
p) =

1

k

k∑
p=1

1

m

m∑
i=1

1

|Pi|
((xp)i − (x∗

p)i)
2

=
1

km

k∑
p=1

m∑
i=1

1

|Pi|
((xp)i − (x∗

p)i)
2

=
1

km

n∑
i=1

∑
p∈Pi

1

|Pi|
((xp)i − (x∗

p)i)
2

and the reconstruction of all vertices have the same weight, taking the average if there are multiple498

reconstructions.499

Note in Figure 6 how a patch-wise training without using the surface-aware loss and therefore over-500

weighting the patch-boundaries leads to flat patches, whose curvature is not captured by the network.501

Table 4 contains the reconstruction errors when using the patch-wise train MSE in comparison to the502

surface-aware loss calculation during training.503

Location of the patch

Patch reconstructions
Patch-wise
train MSE

Surface-aware
loss calculation

0.0 0.0005 > 0.001

Elephant reconstruction
without surface-aware loss
calculation

0.0 0.00025 > 0.0005

Figure 6: Comparison of reconstructed patches of the spectral CoSMA networks without and with
using the surface-aware loss calculation during training. We highlight the face-wise reconstruction
errors for the highlighted patch, which are averaged over time. Additionally, we provide the elephant’s
reconstruction without using the surface-aware training loss.

14

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Vertex-to-Vertex Mean Squared Reconstruction Errors504

We provide the vertex-to-vertex mean squared reconstruction errors in Table 6.505

Table 6: Vertex-to-vertex reconstruction errors (×10−2) between reconstructed and original unseen
semi-regular meshes (rl = 4) and their standard deviations for three different training runs.
†: the elephant has not been seen by the network during training.

Mesh
Class CoMA [16] Neural3DMM

[4]
SubdivNet

[13]
Spatial

CoSMA [2] Ours

FAUST 14.126 + 28.20 5.974 + 11.87 11.376 + 15.90 0.088 + 0.14 0.011 + 0.06
Horse 0.031 + 0.11 0.055 + 0.28 0.047 + 0.07 0.029 + 0.04 0.009 + 0.02
Camel 0.037 + 0.11 0.071 + 0.33 0.043 + 0.06 0.034 + 0.04 0.010 + 0.02
Elephant 0.041 + 0.12 0.075 + 0.41 0.060 + 0.09 0.106 + 0.17 † 0.017 + 0.04 †

Out-of-Distribution Generalization506

Since the patch-wise deformations of the GALLOP and FAUST are both of natural origin, we test the507

out-of-distribution generalization of our spectral CoSMA. We train the model on one and attempt508

reconstruction on the other dataset. This experiment’s results are provided in Table 7. Generally, one509

can notice that the reconstruction errors are only slightly higher when applying the FAUST-trained510

network to the GALLOP testing samples. When training the network on the GALLOP dataset, the511

reconstructions on the FAUST test samples are as good as when trained on the dataset. This seems512

surprising and might be due to the increased size and variability of the patches in the GALLOP513

training dataset. Also, the patch-wise approach is convenient since it focuses on the local patch514

deformation, which is of natural origin for both datasets.515

Table 7: Vertex-to-vertex reconstruction errors (×10−2) between reconstructed and original unseen
semi-regular meshes (rl = 4) and their standard deviations for three different training runs.
†: the elephant has not been seen by the network during training.

Testing Dataset Training Dataset P2S Errors: Our Model

FAUST GALLOP 0.0030 + 0.005

Horse FAUST 0.0022 + 0.005
Camel FAUST 0.0033 + 0.006
Elephant FAUST 0.0055 + 0.012

Runtime Analysis516

Our spectral CoSMA has a similar runtime per epoch for rl = 4 when comparing it to the spatial517

CoSMA, see Table 8 for GALLOP and FAUST datasets. For rl = 3 the runtime is reduced by 50%518

because the spectral CoSMA’s runtime scales with the refinement level.519

For a more detailed comparison, we illustrate the validation error per epoch in Figure 7 when training520

both networks with the patch-wise training error. It shows, that the spectral CoSMA converges in six521

times fewer epochs in comparison to the spatial CoSMA. This means that the total training time of522

a spectral CoSMA on the GALLOP and FAUST datasets is in total reduced by more than 75% for523

rl = 4. The training has been conducted on an Nvidia Tesla V100.524

Additional Reconstructed Samples525

We provide additional reconstructed samples from the GALLOP and FAUST dataset in Figure 8.526

Additionally, Figure 9 compares reconstructed patches from the two CoSMA approaches. It is visible527

that the reconstruction from the novel spectral CoSMA is smoother.528

15

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Figure 7: Training error (Vertex-to-vertex mean squared error measured for each patch) per Epoch
for the GALLOP dataset and rl = 4 for the training of the CoSMA networks.

Table 8: Runtime of different CoSMAs per epoch when training on GALLOP and FAUST datasets
using a batch size of 100.

Mesh Spatial CoSMA Ours

Class rl=3 rl=4 rl=3 rl=4

FAUST 17.3 sec 18.7 sec 6.9 sec 11.8 sec
GALLOP 16.7 sec 17.8 sec 10.1 sec 17.2 sec

Interpolation in the Embedding Space529

Figure 10 shows some generated samples using the decoder of either the GALLOP or FAUST530

trained autoencoder. We interpolate some low-dimensional representations of the known samples531

and reconstruct the shapes. The generated shapes are smooth and resemble an average position in532

between the two real samples. Since the FAUST dataset contains no sequences but single shapes, the533

last interpolation has too short arms, since the arm-trajectory is not contained in the dataset.534

2D Visualizations of the Embeddings535

Figure 11 shows the embeddings in the low-dimensional space for two YARIS front beams. The536

beams deform in two different branches, which manifests in the embedding.537

For the GALLOP dataset, we calculate a distance between the patch-wise embeddings and the538

embedding of the entire shape, to determine how important the patch’s deformation is for the general539

deformation behavior of the whole shape. We interpolate and densely subsample the lines connecting540

the embedding points of consecutive timesteps. Between the sampled points psi describing the541

deformation of the entire shape over time and the sampled points ppj from the patch’s embedding,542

we calculate a chamfer distance, since the embedding shape is cyclic. The chamfer distance [37]543

measures the average squared distance between each point psi to its nearest neighbor from all points544

ppj and vice versa. Therefore the distance is the lowest for circle-like patch-wise embeddings.545

Model Parameters and Reconstruction Errors for Refinement Level 3546

For the baselines and our spectral CoSMA, we list the number of trainable parameters of the models547

for the different meshes in refinement level rl = 3 and rl = 4. Increasing the refinement level by548

one, increases the number of faces by a factor of four.549

SubdivNet Architecture550

We translated our spectral CoSMA architecture to the SubdivNet baseline by replacing the Chebyshev551

Convolutions with the Subdivision-Based Mesh Convolutions and the corresponding pooling and552

unpooling operators introduced in [13], see Table 12. All SubdivNet convolutions use stride and553

dilation equal to one, kernel size equal to three, and are followed by ReLU activations. As the554

SubdivNet convolutions operate on face features instead of vertex features, we used the coordinates of555

16

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

CoMA [16] Neural3DMM [4] SubdivNet [13] Spatial CoSMA [2] Our
Reconstruction

0.0 0.00025 > 0.0005

Figure 8: More reconstructed unknown FAUST pose and reconstructed horse test sample at t = 39 by
CoMA, Neural3DMM, SubdivNet Autoencoder, spatial CoSMA, and our network with highlighted
P2S error.

Location of the patch Original Patch Reconstructions
Spatial CoSMA Our Spectral CoSMA

Figure 9: Comparison of reconstructed patches of the CoSMA networks.

the three adjacent vertices per face as input features. The bullets • reference the corresponding batch556

size. The data’s second dimension is the number of features and the last dimension is the number of557

faces of the current mesh.558

17

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Real
Samples

t = 37 t = 38 t = 43 t = 44

Generated
Samples

Real
Samples

Generated
Samples

Figure 10: Generating new shapes by averaging the embeddings of the upper two shapes, visualized
by their reconstructions, and input these new patch-wise embeddings into the decoder only.

Figure 11: Spectral CoSMA embeddings of the YARIS front beams for 10 simulations, which deform
in two branches. Color encodes timestep and branch.

Table 9: Number of vertices per mesh and trainable parameters for the reconstruction of semi-regular
meshes using refinement level 4.

Mesh
Class

Vertices CoMA
[16]

Neural
3DMM [4]

SubdivNet
[13]

Spatial
CoSMA [2] Oursirregular semi-regular

FAUST 6890 12,772 46,379 426,195 879,857 26,888 23,053

Horse 8,431 14,745 50,731 459,987 1,010,417
Camel 21,887 12,802 46,923 430,419 879,857 26,888 23,053
Elephant 42,321 15,362 52,363 472,659 1,053,937

18

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Meshes

Table 10: Comparison of the number of parameters for meshes of refinement level 3 from [2].

Mesh CoMA Neural Spatial OursClass [16] 3DMM [4] CoSMA [2]

FAUST 26,795 276,275 18,184 16,235

Horse 27,339 280,499
Camel 26,795 292,659 18,184 16,235
Elephant 27,339 296,883

Table 11: Point to surface (P2S) errors (×10−2) between reconstructed unseen semi-regular meshes
(rl = 3) and original irregular mesh and their standard deviations for three different training runs.
Additionally, the average Euclidean vertex-wise error (in cm) is given.
∗: the entire YARIS dataset has not been seen by the network during training.

Dataset Component Lengths Spatial CoSMA [2] Ours

Test P2S Eucl. E. Test P2S Eucl. E.

TRUCK 135–370 cm 0.0443 + 0.071 2.23 cm 0.0043 + 0.009 0.43 cm
YARIS∗ 21–91 cm 0.1784 + 0.380 0.80 cm 0.0458 + 0.090 0.37 cm

Table 12: Structure of the autoencoder used for the SubdivNet Baseline.

Encoder Layer Output Shape Param. Decoder Layer Output Shape Param.

Input (•, 9, 25600) 0 Fully Connected (•, 25, 1600) 460800
MeshConv (•, 24, 25600) 592 MeshUnpool (•, 25, 6400) 0
MeshPool (•, 24, 6400) 0 MeshConv (•, 25, 6400) 4128
MeshConv (•, 25, 6400) 2080 MeshUnpool (•, 25, 25600) 0
MeshPool (•, 25, 1600) 0 MeshConv (•, 24, 25600) 2064
Fully Connected (•, 8) 409608 MeshConv (•, 9, 25600) 585

19

	1 Introduction
	2 Related Work: Handling Surface Meshes by Neural Networks
	2.1 Convolutional Networks for Surfaces
	2.2 Neural Networks for Semi-Regular Surface Meshes
	2.3 Mesh Convolutional Autoencoders
	2.4 Definition of Semi-Regular Meshes
	2.5 Semi-Regular Remeshing

	3 Spectral CoSMA
	3.1 Spectral Chebyshev Convolutional Filters
	3.2 Pooling and Padding of the Regular Patches
	3.3 Network Architecture
	3.4 Surface-Aware Loss Calculation

	4 Experiments
	4.1 Datasets
	4.2 Training Details
	4.3 Reconstructions of the Meshes
	4.4 Low-dimensional Embedding
	4.5 Interpolation in the Embedding Space

	5 Conclusion
	A Supplementary Material

