
Supplementary Material

A Omitted Proofs from Section 2

In the following, we provide all omitted proofs from Section 2.

A.1 Proof of Lemma 2.1

We apply Theorem 1.5 and Proposition 2.7 of (1) to derive Lemma 2.1. (1) uses a generalized
notion of radial isotropy where vectors {x1, . . . ,xn} ⇢ S

d�1 lie in radial c-isotropic position ifPn
i=1 cixix>

i = Id for c 2 Rn such that kck1 = d. Here we are only interested in the case where
c = d

n1 which represents radial isotropy as defined in Definition 1.4.

The algorithm of Theorem 1.5, by definition, outputs a positive definite and symmetric matrix
A :=

�Pd
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tixixT
i

��1/2 where t 2 Rd, see, e.g., Section 2 of (1). Thus, we focus on whether
this transformation indeed yields a �-approximate radial-isotropic transformation in polynomial
time. For their algorithm to find a linear transformation A that puts the vectors in �-approximate
radial-isotropic position, we need to set " from Theorem 1.5 to be sufficiently small. We set

p
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Therefore, their algorithm yields a �-approximate radial-isotropic transformation. It remains to show
that kt⇤k1 is at most poly(n, d, b): if so, Theorem 1.5 shows that we can efficiently compute an
invertible linear transformation that puts general position points in �-approximate radial-isotropic
position in poly(n, d, b, 1/�)-time.

We have the following bound on kt⇤k1 from Lemma 4.6 and Lemma 4.7 of (1).

kt
⇤
k1  log
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d
+ (d� 1) log

✓
32nd2
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◆

where �S = det((xi)i2S)2 is the square determinant of a d-tuple of unit vectors (|S| = d) and
�min

S is the smallest positive value of �S . Any positive determinant of d-tuple of vectors supported
on b-bits must be at least 1, assuming each coordinate must be represented by an integer from 0 to
2b � 1. Then, after normalizing vectors so that we only consider unit vectors on S

d�1, we have
that �min

S �
1

(
p
d2b)d

. Thus, kt⇤k1 = O(d log n+ d
2 log d+ d

2
b) so we can get 1/2-approximate

radial-isotropic position in poly(n, d, b)-time.

By Lemma 4.3 of (1), the ratio between the largest and smallest eigenvalue of A is at most�
8n
�2

�(d�1)/2 where � =
p
�min

S /2d. Thus the logarithm of the condition number of A is
O(d log n + d

2 log d + d
2
b) so it is poly(n, d, b). This concludes the proof of Lemma 2.1 for

finding a �-approximate radial-isotropic transformation in polynomial time for general position
points.
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A.2 Proof of Lemma 2.2

Let w⇤ be the parameter corresponding to the `0-minimizer. Denote the `1-loss L̂(w) =
1
m

Pm
i=1 |yi � f(w · xi)|. Given the strict inequality in (?), for non-zero r 2 Rd, we have that

m
�
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�

=
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Therefore, the `0-minimizer w⇤ is also the `1-minimizer argminw2Rd
1
m

Pm
i=1 |yi � h(xi)|.

A.3 Proof of Theorem 1.2

Given Lemma 2.1 and 2.2, we now prove the main theorem for robust linear regression based on
Algorithm 1.

Proof of Theorem 1.2. Without loss of generality, assume xi’s are unit vectors. The linear function
can be written as follows.

y = w⇤
· x = (A�1w⇤) · (Ax)

where A denotes the �-approximate radial-isotropic transformation where � = 1/2. This means that
the solution to the LP in Algorithm 1 returns ŵ = A�1w⇤ given Lemma 2.2 is satisfied. Therefore,
we output Aŵ as the true direction of the original dataset.

The rest of the proof proves that the structural condition holds. By radial isotropy, for r 2 Rd
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Then we get a lower bound for the uncorrupted samples.
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We similarly obtain an upper bound for the corrupted samples of yi 6= w⇤
· xi, so by setting

✏ = O( 1�2⌘
d ), with m = Õ( d3

(1�2⌘)2 ) samples, the structural condition of Lemma 2.2 is satisfied for
any non-zero r 2 Rd with high probability. Thus, with Lemma 2.1, this proves Theorem 1.2.

B Omitted Proofs from Section 3

In the following, we provide all omitted proofs from Section 3.

B.1 Proof of Lemma 3.1

We establish that we can find a separating hyperplane that separates w sufficiently far from w⇤. This
makes sure the Ellipsoid method shrinks in volume while always containing a small ball around w⇤

that is never cut by a separating hyperplane.

Proof of Lemma 3.1. Define the empirical loss L̂(w) = 1
m

Pm
i=1 |yi � f(w · xi)|.
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where the third equality follows from monotonicity of f and the last inequality follows from the
inequality condition (†) on the set of samples.

C Full Algorithms and Extended Results

In this section, we provide linear and ReLU regression algorithms that can handle distributions that
have non-zero measure on a subspace. Since a non-trivial fraction of samples may concentrate on
a particular subspace, there may not exist a transformation that puts the points into radial-isotropic
position. In fact, the following condition is necessary and sufficient for the existence of such a
transformation.
Lemma C.1 (Lemma 4.19 of (53)). Given a set of points S ✓ Rd, the following conditions are
equivalent:
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1. For any � > 0, there exists an invertible linear transformation A such that A puts S in
�-approximate radial-isotropic position.

2. For every 1  k  d, every k-dimensional subspace contains at most k/d-fraction of S.

Given the condition above, there does not exist a radial-isotropic transformation for all non-zero
points if there exists a k-dimensional subspace V that contains more than k/d-fraction of the non-zero
points. In this case, we use the following algorithmic result from (52) that efficiently computes a
radial-isotropic transformation for the points that lie on the subspace V .
Lemma C.2 (Theorem 1.4 of (52)). There exists an algorithm that, given a set S of n points in Zd

\

{0} of bit complexity at most b and � > 0, runs in poly(n, d, b, log(1/�)) time, and returns a subspace
V of Rd containing at least a dim(V )/d-fraction of the points in S and a linear transformation
A : V ! V such that 1

|S\V |
P

x2S\V (
Ax

kAxk2
)( Ax

kAxk2
)T = (1/ dim(V ))IV + O(�), where the

error is in spectral norm.

This algorithmic result relaxes the assumptions on the underlying distribution of Theorem 1.2 and 1.3
by allowing us to compute a radial-isotropic transformation for a set of points that may concentrate on
a particular subspace. Hence we can make stronger claims. We describe the details of the algorithm
and then state and prove our more generalized results (Theorem C.3 and C.4) below.

C.1 Linear Regression

In general, we assume that Dx is a distribution supported on b-bit integers such that Prx⇠Dx [r · x =
0]  1� ⇢, for all non-zero r 2 Rd, where ⇢ 2 (0, 1] is a parameter.

Our ReLU learning algorithm leverages this algorithmic result. The main algorithmic idea is to apply
radial-isotropic transformation iteratively on any concentrated subspace. For example, if there exists
a subset of points lying in a k-dimensional subspace V , so that there does not exist a radial-isotropic
transformation for the whole set of points, i.e., more than k/d-fraction of the points lie on V , then
we can efficiently find such a subspace V with a corresponding radial-isotropic transformation in
its lower-dimensional space, using Lemma C.2. With this ingredient, we can compute projV w⇤

using Algorithm 1 in k-dimensions. Similarly, we compute the orthogonal component of w⇤ on the
orthogononal subspace V

?. Here it is important that we have enough points from the original set of
samples that do not project to zero in V

?, since a significant portion lies on V .

The pseudocode of our learner is presented below, followed by a statement and proof of its properties.
We denote by FORSTERTRANSFORM the algorithm that achieves Theorem 1.4 of (52).

Algorithm 3 Linear function recovery via radial isotropy
1: procedure RECOVERLINEAR((xi, yi)mi=1 ⇢ Rd

⇥ R)
2: Run FORSTERTRANSFORM to find subspace V and radial-isotropic transformation A
3: if dim(V ) = d then

4: S̃  {( Axi
kAxik2

,
yi

kAxik2
) : i 2 [m] for xi 6= 0}

5: w̃ argminw2Rd

P
(x̃,ỹ)2S̃ |ỹ �w · x̃| by solving the LP.

6: return Aw̃
7: SV  {(xi, yi) : i 2 [m] where xi 2 V }

8: Rotate SV into Rk and run Algorithm 1 with transformation A.
9: Let w be the output from the previous step, rotated back into Rd.

10: Let V ? be the orthogonal subspace to V in Rd.
11: S

?
V  {(projV ? xi, yi �w · projV xi) : i 2 [m] where xi /2 V }

12: Rotate S
?
V into Rd�k and run RECOVERLINEAR and rotate back to compute w?

2 Rd.
13: return w +w?

14: m Õ( d3

⇢(1�2⌘)2 )

15: Draw m i.i.d. samples (xi, yi)mi=1 with ⌘-Massart noise
16: RECOVERLINEAR((xi, yi)mi=1)

Theorem C.3. Let Dx be a distribution on Rd such that Prx⇠Dx [r · x = 0]  1 � ⇢ for all non-
zero r 2 Rd. Let ⌘ < 1/2 be the upper bound on the Massart noise rate. Denote w⇤ the vector
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representing the true linear function. There is an algorithm that draws Õ( d3

⇢(1�2⌘)2 ) samples, runs
in poly(d, b, ⇢�1

, (1� 2⌘)�1) time, where b is an upper bound on the bit complexity of the samples
and parameters, and outputs w⇤ with probability at least 9/10.

Proof. Assume, for the sake of simplicity, that ⇢ = 1 so that the distribution does not concentrate on
any lower-dimensional subspace. Then there always exists a radial-isotropic transformation A for
any set of samples, as long as it has at least d points, since all points are in general position. As we
have shown in the proof of Theorem 1.2, when ⇢ = 1, the algorithm correctly returns w⇤ with high
probability using Õ( d3

(1�2⌘)2 ) samples.

For 0 < ⇢ < 1, the correctness of the algorithm follows from a standard divide-and-conquer argument,
as long as each call to the algorithm is supplied with a sufficient number of (non-zero) samples. Thus,
we only need to analyze the sample complexity and ensure each recursive call into k-dimensions
receives enough samples as an input.

For the first iteration of RECOVERLINEAR in Rd, if there exists A that puts the remaining non-zero
points into radial isotropy, we only need to sample Õ( d3

⇢(1�2⌘)2 ) points from Dx. The factor of ⇢�1

appears because in the worst case we have ⇢-fraction of the marginal distribution Dx concentrating
on 0, so that ⇢-fraction of the samples cannot be put into radial-isotropic position. Thus, we need
md := Õ( d3

⇢(1�2⌘)2 ) many samples for d dimensions if A exists. Then, similarly to Theorem 1.2, if
A exists, md many samples are sufficient for RECOVERLINEAR in Rd to find w⇤ with probability at
least 9/10. We now need to prove that the algorithm works with md samples with probability at least
9/10 even when A does not exist.

In the case that A does not exist, by Lemma C.1, there must exist a k-dimensional subspace V

that contains more than k/d-fraction of the points. Here, we apply the algorithm on the subset
SV := {(xi, yi) : i 2 [m] where xi 2 V } in Rk. In this subproblem, the number of samples is
|SV | � (k/d)md � mk, and thus is sufficient to accurately compute the projection of w⇤ on V .

What remains is ensuring that S?
V has enough non-zero samples, despite more than k/d-fraction of

the points projecting to zero on the orthogonal subspace V ?. In other words, we want to upper bound
the probability that SV simultaneously contains more than k/d-fraction of the points and more than
md � ⇢md�k points, for 1  k < d. By the union bound, we can simplify the following expression.

Pr
⇥�
|SV | � kmd/d

�
^
�
|SV | � md � ⇢md�k

�
for 1  k < d

⇤

 Pr[|SV | � (1� ⇢+ ⇢k/d)md for 1  k < d]



d�1X

k=1

Pr[|SV | � (1� ⇢+ ⇢k/d)md]  (d� 1)Pr[|SV | � (1� ⇢+ ⇢/d)md] .

If ⇢ � 1/2, Hoeffding’s inequality bounds from above this quantity by (d� 1) exp(�md
2d2 ). In the

case that 1� ⇢ � 1/2, we have that DKL(1� ⇢+ �||1� ⇢) � �2

2⇢(1�⇢) , so the Chernoff bound yields
the following inequality:

d�1X

k=1

Pr[|SV | � (1� ⇢+
⇢k

d
)md] 

d�1X

k=1

exp

✓
�

(⇢k/d)2

2⇢(1� ⇢)
md

◆

 (d� 1) exp
⇣
�

⇢

2d2
md

⌘
.

Thus, with md = Õ( d3

⇢(1�2⌘)2 ), we can guarantee that any heavy subspace V with more than k/d-

fraction of the points will not contain too many samples, meaning that there will be Õ( d3

(1�2⌘)2 )

non-zero points in S
?
V to compute a radial-isotropic transformation if one exists. Furthermore, the

error probability we calculated above may accumulate over at most d recursive calls. Since the error
we have above is bounded in terms of exp(� d3

(1�2⌘)2 ), after applying the union bound, we can still
ensure that the algorithm finds w⇤ with high probability.
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C.2 ReLU Regression

In this subsection, we provide generalized results for ReLUs. The main idea remains similar to
that of linear regression of Theorem C.3. If there exists a concentrated subspace V , we work in the
lower-dimensional subspace to obtain a separation oracle between projV w⇤ and the query projV w0.
In the case that projV w⇤ = projV w0, we look at the orthogonal subspace V

? to find a separating
hyperplane there. We describe this procedure and theoretical guarantee in full detail below.

Algorithm 4 Separation oracle sub-procedure
1: Input: {(xi, yi)}mi=1 with Massart noise and query w0.
2: Output: If w0 2 B(w⇤

,�), return “Yes”.
3: If not, return a separating hyperplane between w0 and B(w⇤

,�/2).
4: procedure SEP((xi, yi)mi=1,w0)
5: if ReLU(w0 · x) fits at least m

2 points then

6: return “Yes”
7: Define S = {(xi, yi) : w0 · xi � 0,xi 6= 0 for i 2 [m]}.
8: Run FORSTERTRANSFORM on Sx to find subspace V and radial-isotropic transformation A
9: if dim(V ) = d then

10: r = 1
|S|
P

(xi,yi)2S
Axi

kAxik2
· sgn(w0 · xi � yi)

11: return separating hyperplane A�1r · (w0 �w) = 0

12: Rotate {(x, y) 2 S : x 2 V } and the query projV w0 into Rk and run SEP on them
13: if SEP returns a hyperplane in Rk

then

14: return the hyperplane rotated back and extended into Rd so that it is orthogonal to V

15: Let V ? be the orthogonal subspace to V in Rd.
16: Define S

?
V = {(projV ? x, y � projV w0 · projV x) : (x, y) 2 S \ V }.

17: Rotate S
?
V and the query projV ? w0 into Rd�k and run SEP on them

18: if SEP returns a hyperplane in Rd�k
then

19: return the hyperplane rotated back and extended into Rd so that it is orthogonal to V
?

20: return “Yes”

Theorem C.4. Let Dx be a distribution on Rd such that Prx⇠Dx [r · x = 0|w · x � 0]  1 � ⇢

and Prx⇠Dx [w · x � 0] � � for all non-zero r,w 2 Rd. Let ⌘ < 1/2 be the upper bound on the
Massart noise rate. Denote w⇤ the parameter vector of the target ReLU. There is an algorithm that
draws Õ( d3

⇢�2(1�2⌘)2 ) samples, runs in time poly(d, b, ⇢�1
,�

�1
, (1� 2⌘)�1), and outputs w⇤ with

probability at least 9/10.

Proof. Let S = {(xi, yi) : w0 ·xi � 0,xi 6= 0 for i 2 [m]} and denote Sx to be the set of covariates
xi’s of S. Given w0 6= w⇤, we have proved that there exists a separating hyperplane for the case
when a radial-isotropic transformation A exists for Sx in the proof of Theorem 1.3. If such A does
not exist, this necessarily means that there exists a k-dimensional subspace V that contains at least
k
d -fraction of Sx.

Given V , the points on V are not affected by the orthogonal component of w⇤, but only projV w⇤.
This provides a basis for a divide-and-conquer approach, where we run the separation oracle on this
smaller subspace of dimension k < d. So, with appropriate rotation and rescaling, we can represent
the points of Sx on V and all projections onto V in k-dimensions using b-bits.

The base case of d = 1 has a trivial radial-isotropic transformation, which can be any non-zero scalar,
so the previous theorem we proved applies. Using strong induction, we assume that the separation
oracle returns a correct output for the points on V and projV w0. If SEP returns “Yes”, then it must
be that projV w⇤ = projV w0. To find a separating hyperplane, we can then find one with respect to
the orthogonal subspace V ?. Since yi = w⇤

· xi = projV w⇤
· projV xi + projV ? w⇤

· projV ? xi,
we can reduce this d dimensions into d� k and run SEP in a smaller subspace. The recursive call
returns a correct separating hyperplane for the projections by strong induction, because if it returns
“Yes”, then w⇤ = w0; but this cannot happen by our first if statement that checks majority.

When our recursive call does return a separating hyperplane in V , that means that the k-dimensional
hyperplane separates projV w0 and B(projV w⇤

,�/2). Then the d-dimensional hyperplane, which
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contains k-dimensional hyperplane and is orthogonal to V , separates w0 and B(w⇤
,�/2). Sim-

ilarly, the separating hyperplane in V
? yields a d-dimensional hyperplane that separates w0 and

B(w⇤
,�/2).

The sample complexity to guarantee a correct separation oracle at all iterations follows similarly to that
of Theorem C.3, and the number of iterations of the ellipsoid method is bounded by poly(d, b, (1�
2⌘)�1), as the condition number of the linear transformations is bounded by poly(d, b, (1� 2⌘)�1)
by Proposition 2.2 of (52). This completes the proof of Theorem C.4.

D PAC Learning Linear Functions

In this section, we provide an algorithm for PAC learning linear functions in the presence of Massart
noise.

For linear functions, if Dx lies within a subspace of Rd, then w⇤ would not information-theoretically
idenitifiable. Thus, it is required that Prx⇠Dx [r · x = 0]  1� � < 1 for our exact recovery results.
However, even when these assumptions are violated and the problem is non-identifiable, we provide
a PAC learning guarantee for the linear case. Specifically, Theorem D.1 allows us to avoid any
assumptions on the underlying distribution and output a function arbitrarily close the true function,
even when exact recovery is information-theoretically impossible.

Theorem D.1 (PAC Learning Linear Functions). Let Dx be a distribution on Rd with bit complexity
b and let ⌘ < 1/2 be the upper bound on the Massart noise rate. Denote by w⇤ the true target vector.
There is an algorithm that draws Õ( d4b3

✏3(1�2⌘)2 ) samples, runs in poly(d, b, ✏�1
, (1 � 2⌘)�1) time,

and outputs ŵ such that Prx⇠Dx [ŵ · x 6= w⇤
· x]  ✏ with probability at least 9/10.

The PAC learning algorithm is similar to Algorithm 1, except instead of a radial-isotropic transfor-
mation, we run a spectral outlier removal procedure on the m samples and solve the LP with the
remaining inlier points only. This procedure, similarly to radial-isotropic transformations, minimizes
the influence of points that are abnormally far from other points and thus nullifies the adversarial
noise added to such points. We use the following definition of an outlier.

Definition D.2 (Outlier). We call a point x in the support of the distribution Dx a �-outlier, if there
exists a vector w 2 Rd such that hw,xi2 > �Ex⇠Dx [hw,xi2].

Theorem D.1 makes use of the following spectral outlier removal procedure by (24).

Lemma D.3 (Theorem 3 of (24)). Using Õ(d
2b
↵ ) samples from Dx where ↵ > 0, one can identify with

high probability an ellipsoid E such that Prx⇠Dx [x 2 E] � 1� ↵ and Dx|E has no Õ(db↵ )-outliers.

Lemma D.3 shows that there is an efficient algorithm that can preprocess any distribution supported
on b-bit integers so that no large outliers exist. With this subroutine, we can achieve the same result
of radial-isotropic transformation in Algorithm 1 with an arbitrary distribution, albeit with a sample
complexity dependent on the bit complexity. So instead of radial isotropy, we run the outlier removal
procedure with ↵ ✏/2.

Proof of Theorem D.1. Let Dx be a distribution on Rd such that Prx⇠Dx [r · x = 0]  1� � for all
non-zero vector r 2 Rd. Although � is not a quantity we know in the PAC learning setting, we will
act as if we know what � is, as we will later replace it with ✏.

First, we prove that there is a poly(d, b,��1
, (1� 2⌘)�1)-time algorithm that draws Õ( d4b3

�3(1�2⌘)2 )
samples and learns linear functions exactly with high probability.

By applying the outlier removal procedure with ↵ = �/2 from Lemma D.3, with high probability,
the new ellipsoid-truncated distribution D

E
x has no Õ(db� )-outliers. Since the outputted ellipsoid E

has mass at least 1� �/2, D0
x|E remains fully d-dimensional.
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We then use the VC inequality as in the proof for Theorem 1.2. Assume the m samples here are the
number of samples remaining after outlier removal.

1

m

mX

i=1

|r · xi|1{yi = w⇤
· xi} =

Z 1

0

 
1

m

mX

i=1

1{|r · x| > t ^ y = w⇤
· x}

!
dt

� EDE
x
[|r · x|1{y = w⇤

· x}]� ✏max
x2E

|r · x|

� (1� ⌘ � ✏(2�)1.5)EDE
x
[|r · x|]

The last inequality comes from following lemma. Let x be a point in the support of a one-dimensional
distribution D and let X be the random variable defined by D. If x

2
 �E[X2], then |x| 

(2�)1.5E[|X|]. This is because, wlog, we can assume x  1 by normalizing since X is bounded above.
Then E[X2] > 1/� so we have that Pr[X2

>
1
2� ] >

1
2� . In other words, Pr[|X| >

1p
2�

] > 1
2� , so

E[|X|] > ( 1
2� )

1.5. Therefore, |x|  (2�)1.5E[|X|].

Ultimately, we want the RHS 1 � ⌘ � ✏(2�)1.5 to be greater than 1
2 . Similarly, we can guarantee

1
m

Pm
i=1 |r ·xi|1{yi 6= w⇤

·xi} to be less than 1
2EDE

x
[|r ·x|]. For this to hold, we need ✏ <

1�2⌘
2(2�)1.5 .

Therefore, 1/✏2 = O( �3

(1�2⌘)2 ) and � = Õ(db� ), so we need at least m = Õ( d4b3

�3(1�2⌘)2 ) samples for
exact recovery.

Finally, we can replace the anti-concentration parameter � with ✏. This concludes the proof for PAC
learning.

E Oblivious Noise and Massart Noise

In this section, we provide a formal comparison between the oblivious noise model and the Massart
noise model for regression. We first define oblivious noise as defined in previous works.
Definition E.1 (Oblivious Noise). Given 0  ⌘ < 1, the oblivious adversary operates as follows.
The algorithm specifies m and the adversary corrupts the clean labels by adding sparse additive
noise b = [b1, b2, . . . , bm]T with no knowledge of the covariates xi such that

yi = w⇤
· xi + bi

where xi ⇠ Dx, kbk0  ⌘m, and b is independent of xi’s and w⇤.

Note that the breakdown point of a Massart adversary is 1/2, yet the breakdown point of an oblivious
adversary is not necessarily so. For instance, (47; 22) recover w⇤ even when the noise rate ⌘ is
arbitrarily close to 1.

We now establish the relationship between this model and the Massart noise model for regression.
Lemma E.2. Given m clean samples (xi, f(xi))ni=1 to corrupt, an Massart adversary of noise rate

⌘ +
q

log(1/�)
2m can simulate an oblivious adversary of noise rate ⌘ with probability at least 1� �.

Proof. Since xi is sampled i.i.d. from Dx and the oblivious adversary chooses b without any
knowledge of xi—hence the independence—adding the corruption vector b to the labels is equivalent
to adding the corruption vector Ub where U 2 Rm⇥m is a permutation matrix chosen uniformly at
random and independently of xi and w⇤. Therefore, for each fixed sample (xi, f(xi)), the label is
corrupted by a random non-zero entry of b with probability at most ⌘.

Given the above alternative description of oblivious noise, we can directly compare Massart noise
with oblivious noise. Intuitively it is not difficult to see that an ⌘-Massart adversary can simulate an
⌘-oblivious adversary in expectation. After inspecting which of the m samples can be corrupted after
randomness, on average, there will be ⌘m labels that can be corrupted and the Massart adversary
can add non-zero entries of b uniformly at random to these labels. This simulates the ⌘-oblivious
adversary as long as the Massart adversary can corrupt at least ⌘m samples which is determined
probabilistically.

Because the oblivious adversary has the ability to deterministically choose how many labels to corrupt,
an ⌘-Massart adversary would not be able to simulate an ⌘-oblivious adversary with high probability.
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However, this is easily bounded by Hoeffding’s inequality such that an
�
⌘ +

q
log(1/�)

2m

�
-Massart

adversary can corrupt at least ⌘m samples with probability at least 1� � and therefore can simulate
an oblivious adversary of noise rate ⌘. This means that, with more samples, an (⌘ + o(1))-Massart
adversary is stronger than an ⌘-oblivious adversary with high probability

F Comparison to Chen et al.

First, we note that our work focuses on robust ReLU regression while the concurrent work of (10)
focuses on robust linear regression and contextual bandits in the online setting. Yet even with different
goals and directions, there is noticeable overlap between our results in robust linear regression from
Section 2 and their results of robust linear regression in the offline setting from Section 5 and 6 of
(10). In an online fashion, the adversary of (10) is allowed to corrupt the label yi arbitrarily with
probability ⌘ based on xi and the previous samples (x1, y1), . . . , (xi�1, yi�1). Furthermore, the
covariates xi do not necessarily have to come from a distribution and may be chosen adversarially at
each round and hence the “distribution-free” robustness. Without random observation noise in the
clean labels, the setting is similar to the Massart noise model in our work. In fact, the offline version
of their adversary is identical to the Massart adversary, except the assumption on the covariates xi.
We compare their algorithmic results and analysis for the realizable (offline) setting considered in
this work below.

We first state their offline regression result adapted to the realizable setting considered in this paper.
Refer to Theorem 6.11 from Section 6 of (10) for the following result achieved through using one of
the two approaches, depending on the value of ⌘.
Theorem F.1 (Theorem 6.11 of (10) for the realizable setting). Suppose kxik2  1, kw⇤

k2  R for
all rounds i 2 [n] and n = ⌦(log(min(n, d)/�)). Define ⇢

2 = 1�2⌘
2⌘ , ⌃n = (1/n)

Pn
i=1 xixT

i , and
kxk⌃ := hx,⌃xi. There is a poly(n, d) time algorithm which takes as input (x1, y1), . . . , (xn, yn)
where the labels are only corrupted by ⌘-Massart noise and outputs a vector ŵ which achieves

kŵ �w⇤
k⌃n  O

 
R

min(1, ⇢2)
4

r
⌘ log(min(n, d)/�)

n

!

with probability at least 1� �.

For the realizable setting where there is no observation noise, the result above yields a significantly
weaker guarantee. Efficient exact recovery must output a vector ŵ such that kŵ �w⇤

k  ✏ in time
polynomial in log(1/✏), not 1/✏. However, they do not achieve efficient exact recovery since it takes
poly(1/✏) many samples to achieve error ✏. Futhermore, its guarantee depends on concentration
properties of the covariates as denoted by ⌃n. Another major difference is that their algorithm incurs
a polynomial dependence on R which is unnecessary under our problem setting.
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