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We provide more details about our work and results in the appendix. Below is the content of the
appendix:

• Appendix A: More detailed discussion of related work.

• Appendix B: More comparative experimental results and ablation experiments.

• Appendix C: Proof and discussion of the theoretical analysis of FLSS.

• Appendix D: The hyperparameters of baseline algorithms.

• Appendix E: Further discussion on our proposed strategy FLSS.

A RELATED WORK

A.1 FEDERATED LEARNING

Federated learning is a distributed machine learning framework through iterative communication
and computation between servers and clients. FedAvg McMahan et al. (2017) is a well-known FL
method and the basic framework of many FL methods. We first introduce its main steps: (1) Server
sends the current global model to clients; (2) The clients initialize the current global model as its own
local model; (3) The clients train the local model on its own private data and send the trained local
models to the server; (4) The server receives the client models and aggregates them to obtain the
global model, and then resends it to the clients. However, the above solutions often face the problems
of high communication and poor performance in heterogeneous scenarios. Therefore, a lot of work
have been carried out to solve the above problems.

Traditional Federated Learning. Federated learning algorithms designed to enhance perfor-
mance in heterogeneous environments can be divided into four different types Zhang et al. (2023):
regularization-based FL Li et al. (2020); Acar et al. (2021); Kim et al. (2022), update correction-based
FL Karimireddy et al. (2020); Gao et al. (2022); Niu & Deng (2022), model split-based FL Li et al.
(2021); Jiang et al. (2022), and knowledge distillation-based FL Zhu et al. (2021); Lee et al. (2022);
Gong et al. (2022); Huang et al. (2022). In the field of regularization-based FL, FedProx Li et al.
(2020) introduces a proximal term to reduce the Euclidean distance between the global model and the
local model, while FedDyn Acar et al. (2021) adopts dynamic regularization to align the local optimal
point with the minimum value of the global empirical loss. For FL based on update correction,
methods such as SCAFFOLD Karimireddy et al. (2020) and FedDC Gao et al. (2022) employ global
gradient calibration to mitigate local model drift. However, these methods require the transmission
of twice the message size required by FedAvg McMahan et al. (2017). In model split-based FL,
MOON Li et al. (2021) enhances the consistency between local and global model representations by
adding a contrastive learning loss. Meanwhile, in knowledge distillation-based FL, FedGen Zhu et al.
(2021) utilizes a generator trained on the server to absorb local insights and utilizes the synthesized
knowledge as an inductive bias to guide the local training process. Furthermore, FedNTD Lee et al.
(2022) uses local non-true distillation to solve the problem of forgetting global information during
local training.

Communication-efficient Federated Learning. To address the challenge of communication over-
head in federated learning, many frameworks for gradient compression techniques have been proposed.
Fetchsgd Rothchild et al. (2020) utilizes sketching techniques to effectively compress local gradients.
Signsgd+EF Karimireddy et al. (2019) combines error feedback with 1-bit quantization, which
reduces communication costs and improves the generalization ability of Signsgd. Furthermore,
STC Sattler et al. (2019) is specifically designed for federated learning, combining top-k sparsity
and quantization techniques to optimize data transfer. Similarly, DGC Lin et al. (2018) utilizes
sparsification to preserve important gradients while minimizing bandwidth in distributed training

1
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environments. LBGM Azam et al. (2021) utilizes the low-rank characteristics of gradient space to
reduce communication requirements; however, it does not fully consider the relationship between
early global model information and local model updates. Although these methods have proven their
feasibility in reducing communication load, their effectiveness is often limited in heterogeneous
environments. This limitation is due to the stochastic nature of the compression framework and the
fact that the client does not have complete information about the global model.

A.2 TRAINING IN TINY SUBSPACE

Many studies have emphasized the inherent low-dimensional characteristics of neural networks
Tuddenham et al. (2020); Vinyals & Povey (2012); Gressmann et al. (2020). A seminal study in Li
et al. (2018); Gur-Ari et al. (2018) reveals that training a neural network within a randomly chosen
subspace helps to achieve parameter compression, though the final accuracy may not be as high as
that in the original space. The following work Gressmann et al. (2020) improved the training of fixed
random subspaces by considering different layers of the network and re-drawing the random subspace
at each step. Different from random subspaces, Li et al. Li et al. (2022a;b) successfully extracted
a subspace that approximates the entire parameter trajectory by performing principal component
analysis on a pre-trained neural network. Efficient dimensionality reduction is achieved by limiting
the training process to this subspace.

However, although the above subspace contains model information to a certain extent, it is essentially
limited to the early stage of pre-training. Often it takes multiple epochs to reach its full potential.
In contrast, streaming subspace adapts to data changes by continuously updating the subspace to
dynamically capture real-time model information.

B ADDITIONAL EXPERIMENTS

B.1 EFFECT OF PROJECTED OBJECTS

Table 1: We tested the impact of using streaming subspace on model updates or gradients respectively
on algorithm performance.

Method Proj(gk
t ) Proj(∇Fkw

k
t,i) Proj(gk

t ) + Proj(∇Fk(w
k
t,i))

sr = 1 sr = 3 sr = 1 sr = 3 sr = 10 sr = 1 sr = 3 sr = 10

FedAvg+FLSS 57.34 60.02 55.98 57.58 56.58 56.10 57.01 56.28

We apply the streaming subspace strategy to different locations of FedAvg McMahan et al. (2017),
including the model updates and gradients of the local model. Then we tested the performance
of using ResNet-18 at different scaled (sr) learning rates in Cifar10, as shown in Tab. 1. Using
the streaming subspace strategy for model updates can improve communication efficiency and
performance through little additional computational overhead.

B.2 HETEROGENEITY

To further demonstrate the performance of the FLSS-equipped algorithms on different datasets, we
conduct additional experiments in heterogeneous scenarios, as shown in Tab. 2. From the results, we
can see that the algorithms with FLSS outperform FedAvg McMahan et al. (2017) and Signsgd+EF
Karimireddy et al. (2019), which suggests that the FLSS strategy can effectively utilize the early
knowledge of the global model to achieve better performance.

B.3 CONVERGENCE

We present the loss throughout the training process in Fig. 1a. The experimental results confirm that
the FLSS-equipped FL algorithm converges. Notably, the FLSS loss slightly increases at 200 rounds
before continuing to decrease. This indicates that the model needs several rounds to adapt to the

2
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Table 2: Test accuracy on different datasets under Dirichlet distribution. Cifar100∗ represents using
ResNet-18 on Cifar100.

Method FMNIST Cifar100∗ TINY

β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1

FedAvg 85.06 91.02 91.18 23.04 26.42 27.43 14.26 15.61 18.47
FedProx 84.06 91.03 91.14 23.00 26.25 27.02 14.12 15.63 18.35

Moon 85.03 91.18 91.29 23.08 26.54 27.10 15.21 15.72 18.51
FedDyn 83.11 90.68 90.92 24.41 28.65 29.09 15.63 — 19.07
FedGen 84.27 91.17 91.25 23.42 26.24 27.85 15.44 15.80 18.72
FedNTD 84.96 91.15 91.36 22.84 26.51 27.15 15.43 15.77 18.39

FedAvg+FLSS 86.25 91.64 91.29 24.31 29.32 30.68 17.01 17.84 19.00

Fetchsgd 79.79 90.67 90.56 21.99 24.43 25.35 14.12 14.46 16.16
Signsgd+EF 80.79 90.76 90.37 22.57 25.99 26.01 14.02 14.20 16.86

STC 80.40 85.33 85.78 22.38 25.92 26.42 13.86 14.59 15.93
Sign+EF+FLSS 81.32 91.05 91.02 23.01 27.59 26.17 13.20 15.04 17.32

streaming subspace intervention. The loss reduction shows that constraining local model updates to
subspace can continue to train and converge.

To verify the low-rank characteristics of different network update spaces, we compute the Singular
Values (SV) of the other networks, as shown in Fig. 1b, Fig. 1c, and Fig. 1d. We observe that smaller
networks, with larger percentages of the first few principal components, require fewer subspace
degrees of freedom to approximate the update trajectory. In contrast, larger networks, such as
ResNet-50, need more orthogonal bases to approximate their update trajectory.
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Figure 1: (a) is the training loss curve of FedAvg+FLSS in FMNIST. (b) to (d) are the singular value
distributions of the global model update trajectory of CNN in Cifar10, ResNet-18 in Cifar10, and
ResNet-50 in Cifar100, respectively.

B.4 FEATURES VISUALIZATION

We visualize the feature representations of the different algorithms in FMNIST using t-SNE Van der
Maaten & Hinton (2008) in Fig. 2. The feature representations extracted by FedAvg+FLSS become
more and more distinct with iterative updates of the algorithm. Based on Fig. 2b and Fig. 2f, it can
be seen that the FL algorithm equipped with FLSS ends up with more distinguishable features than
those extracted by FedAvg.

B.5 DIFFERENT LOCAL EPOCHS

Increasing local epochs results in higher computational costs but reduces the number of communica-
tion rounds. We evaluate the performance of CNN and ResNet-18 over 400 rounds on Cifar10 with
β = 0.5, as shown in Tab. 3. Across different local epochs settings, FLSS performs better than most
baselines. Notably, FLSS shows more significant performance improvement with fewer local epochs.
Specifically, with 1 local epoch, FedAvg combined with FLSS achieves improvements of 2.43% and
3.41%, respectively.

3
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(a) Initial (b) FedAvg (c) FLSS T : 10 (d) FLSS T : 50 (e) FLSS T : 150 (f) FLSS Final

Figure 2: t-SNE visualization of features extracted by the CNN model at different times on FMNIST.
FLSS Final and FedAvg denote the final features with and without FLSS, respectively. T denotes
the number of communication rounds.

Table 3: The impact of different client local training epochs on the performance of different algo-
rithms.

Method CNN Local Epochs ResNet Local Epochs
Com.cost 1 5 10 Com.cost 1 5 10

FedAvg 0.17 G 59.88 65.29 65.31 2.23 G 48.51 56.17 58.88
FedProx 0.17 G 59.77 65.38 65.11 2.23 G 48.44 56.03 58.27

Moon 0.17 G 59.93 65.33 65.26 2.23 G 48.74 56.28 59.24
FedGen — 60.03 65.61 65.12 — 49.23 56.24 59.04
FedNTD 0.17 G 60.42 65.52 65.15 2.23 G 49.64 56.42 59.06

FedAvg+FLSS 35.14 M 62.31 67.19 65.53 0.45 G 51.92 57.34 58.93

Fetchsgd 43.92 M 52.20 59.83 58.57 0.56 G — 54.18 56.04
Signsgd+EF 5.49 M 59.21 64.27 63.95 69.88 M 47.22 54.23 55.68

STC 5.49 M 59.55 59.02 62.38 69.88 M 47.91 55.03 55.35
Sign+EF+FLSS 1.11 M 59.01 64.69 64.06 14.0 M 49.02 54.77 56.81

B.6 COMPARISON WITH OTHER BASELINES

Table 4: Average test accuracy and communication cost of different algorithms under varying degrees
of heterogeneity.

Method Cifar10 Cifar100

β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1

LBGM 56.37(0.21G)64.42(0.20G)65.15(0.20G) 27.70(0.27G)28.81(0.27G)30.01(0.26 G)

FedAvg+FLSS59.44(0.21G)67.19(0.21G)69.82(0.21G) 28.41(0.22G)31.47(0.22G) 31.61(0.22G)

We compared the performance and total communication cost of 400 rounds between LBGM and
FLSS, as shown in Tab. 4. LBGM is a low-rank method based on gradient space, focusing on local
training trajectories, while FLSS targets low-rank properties of the global model. FLSS projects local
updates onto the global subspace to filter out harmful components. Additionally, LBGM emphasizes
a single gradient direction early in training, while FLSS uses all early training information, unifying
them into a low-rank subspace.

C CONVERGENCE OF FLSS

C.1 NOTATION

We defined the local model update at device k as gk
t = wk

t+1 − wt, We define the low-
dimensional trajectory of the local model updated on device k within subspace P as ĝk

t ,
ĝk
t = ProjP(ProjPT(wk

t+1 − wt)). The global model parameters updated as wt+1 = wt +

4
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1
M

∑
k∈Mt

ĝk
t , we define the following auxiliary variable: vt+1 = wt +

1
N

∑N
k=1 ĝ

k
t . We have

∥wt+1 −w∗∥22 = ∥wt+1 − vt+1 + vt+1 −w∗∥22
= ∥wt+1 − vt+1∥22 + ∥vt+1 −w∗∥22 + 2⟨wt+1 − vt+1,vt+1 −w∗⟩.

(1)

In the following, we bound the average of the terms on the right hand side (RHS).

C.2 KEY LEMMAS

Lemma C.2.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the difference between wt+1 and vt+1

can be bounded

E
[
∥wt+1 − vt+1∥22

]
≤ 2η2t τ

2G2

M
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2.

P roof. See Appendix C.7.

Lemma C.2.2 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the upper bound of E
[
∥vt+1 −w∗∥22

]
is as follows

E
[
∥vt+1 −w∗∥22

]
≤ (1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2 + µ) η2tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ.

P roof. See Appendix C.8.

Lemma C.2.3 Let EMt
denote expectation over the device scheduling randomness at the global

iteration t. We have EMt
[wt+1] = vt+1, from which it follows that

EMt
[⟨wt+1 − vt+1,vt+1 −w∗⟩] = 0.

P roof . Due to the randomness of the device scheduling policy and the scheduling update of each
device appears

(
N−1
M−1

)
times, it follows that

EMt

[
1

M

∑
k∈Mt

ĝk
t

]
=

(
N−1
M−1

)
M
(
N
M

) N∑
k=1

ĝk
t =

1

N

N∑
k=1

ĝk
t . (2)

C.3 THEOREMS

Theorem C.3.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold and a learning rate ηt such that
0 < ηt ≤ min{ 1

µB , 1
L(τ+1)} is chose, we have

E
[
∥wt+1 −w∗∥22

]
≤ (1− µηtB)E

[
∥wt −w∗∥22

]
+ η2tC, (3)

where

B = τ − τ

L(τ + 1)
, C = (2 + µ)G2 2τ

3 + 3τ2 + τ

6
+ (2Lτ2 + 4Lτ)Γ +

2(1 + ρR)τ
2G2

M
. (4)

Proof. See Appendix C.9.

C.4 COROLLARIES

Corollary C.4.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold with µ ≥ 0, a constant learning rate
η > 0 such that η ≤ 1

L(τ+1) , we have

E[F (wT )]− F ∗ ≤ L

2
(1− µηB)TE

[
∥w0 −w∗∥22

]
+

L

2

T∑
t=1

η2(1− µηB)T−tC. (5)

Proof. See Appendix C.10.1.
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Corollary C.4.2 Let Assumptions 3.4.1 to 3.4.4 hold and L, µ,G, ρR be defined therein. Choose
κ = L

µ , γ = 2L2(τ+1)2

µτ(L(τ+1)−1) − 1, and the learning rate ηt =
2

µB(γ+t) . Then FLSS satisfies

E[F (wT )]− F ∗ ≤ κ

γ + T − 1

(
2C

µB2
+

µ(γ + 1)

2
E
[
∥w1 −w∗∥22

])
. (6)

Proof. See Appendix C.10.2.

C.5 DISCUSSION ON ASSUMPTION 3.4.4

We define G to be the set consisting of global model updates and G ∈ RD×J to be the matrix
consisting of the set of global model updates G. In the experiments, G ∈ RD×J can be obtained by
sampling the global updates. A truncated singular value decomposition of G of rank R yields P,
whose singular values are σ1, ..., σD. Based on the linearity property of expectation, we have

E [Proj(gt)] = E[PPTgt] = PPTE[gt] = Proj(E[gt]). (7)

Due to the low-rank character of the global model update space, the last few singular values are small
and the corresponding dimensions are almost null space. In Eq. (7), it is assumed that the expectation
of the global model update E [gt] will be contained within the subspace P, so E [Proj(gt)] = E [gt].

C.6 PROOFS OF PROPOSITION 3.4.1

For the global update gt ∈ G, we compute the expectation of the squared projection error:

Egt∈G(∥gt − Proj(gt)∥2) =
1

J

J∑
j=1

∥Gj −PPTGj∥2. (8)

Using trace properties, we have

1

J

J∑
i=1

∥Gj −PPTGj∥2 =
1

J
tr(GT(ID −PPT)G) =

1

J
tr((ID −PPT)GGT). (9)

Since ID −PPT projected GGT to a space orthogonal to the columns of P, we have

E(∥gt − Proj(gt)∥2) =
1

J

D∑
r=R+1

σ2
r ≤

∑D
r=R+1 σ

2
r∑D

r=1 σ
2
r

η2t τ
2G2. (10)

The last inequality is due to Assumption 3.4.3, E
[
∥∇Fk

(
wk

t , ξ
k
t

)
∥22
]
≤ G2, so that E

[
∥gt∥22

]
≤

η2t τ
2G2 and ∥G∥22 ≤ Jη2t τ

2G2.

C.7 PROOF OF LEMMA C.2.1

According to the definitions, wt+1 = wt +
1
M

∑
k∈Mt

ĝk
t , vt+1 = wt +

1
N

∑N
k=1 ĝ

k
t , im ∈ Mt,

and ĝt ≜ 1
N

∑N
k=1 ĝ

k
t . Taking the expectation of the first term of Eq. (1), we have

EMt

[
∥wt+1 − vt+1∥22

]
= EMt

∥∥∥∥∥ 1

M

M∑
m=1

(
ĝim
t − ĝt

)∥∥∥∥∥
2

2


=

1

M2
EMt

 M∑
m=1

∥∥ĝim
t − ĝt

∥∥2
2
+

M∑
m=1

M∑
m′=1,m′ ̸=m

⟨ĝim
t − ĝt, ĝ

im′
t − ĝt⟩

 .

(11)

Due to the symmetry, it follows that

EMt

[
M∑

m=1

∥∥ĝim
t − ĝt

∥∥2
2

]
=

(
N−1
M−1

)(
N
M

) N∑
k=1

∥ĝk
t − ĝt∥22 =

M

N

N∑
k=1

∥∥ĝk
t − ĝt

∥∥2
2
, (12)
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where the first equality is because there are
(
N
M

)
choices in selecting M from N clients. For each

index k, k ∈ [N ], the number of times is selected is
(
N−1
M−1

)
.

EMt

[ M∑
m=1

M∑
m′=1,m′ ̸=m

⟨ĝim
t − ĝt, ĝ

im′
t − ĝt⟩

]
=

(
N−2
M−2

)(
N
M

) K∑
k=1

N∑
k′=1
k′ ̸=k

⟨ĝk
t − ĝt, ĝ

k′

t − ĝt⟩

= −
(
N−2
M−2

)(
N
M

) N∑
k=1

∥∥ĝk
t − ĝt

∥∥2
2
≤ 0.

(13)

where the first equality is because, for each particular index pair (k, k′) , k′ ∈ [N ] , k ̸= k′, the

number of times is selected is
(
N−2
M−2

)
, and the second equality is because

∥∥∥∑N
k=1

(
ĝk
t − ĝt

)∥∥∥2
2
= 0.

Substituting Eq. (12) and Eq. (13) into Eq. (11) yields

E
[
∥wt+1 − vt+1∥22

]
=

1

NM

N∑
k=1

E
[∥∥ĝk

t − ĝt

∥∥2
2

]
+

(
N−2
M−2

)
M2
(
N
M

) N∑
k=1

N∑
k′=1
k′ ̸=k

⟨ĝk
t − ĝt, ĝ

k′

t − ĝt⟩ ≤
1

NM

N∑
k=1

E
[∥∥ĝk

t − ĝt

∥∥2
2

]

=
1

NM

(
N∑

k=1

E
[∥∥ĝk

t

∥∥2
2

]
− E

[
∥ĝt∥22

])
≤ 1

NM

N∑
k=1

E
[∥∥ĝk

t

∥∥2
2

]
≤ 1

NM

N∑
k=1

E
[∥∥gk

t + ekt
∥∥2
2

]
≤2η2t τ

2G2

M
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2.

(14)

C.8 PROOF OF LEMMA C.2.2

According to the definition of vt+1, vt+1 = wt+
1
N

∑N
k=1 ĝ

k
t , taking the expectation and expanding

the second term of the Eq. (1), we have

E
[
∥vt+1 −w∗∥22

]
= E

[
∥wt −w∗∥22

]
︸ ︷︷ ︸

A1

+E

∥∥∥∥∥ 1

N

N∑
k=1

ĝk
t

∥∥∥∥∥
2

2


︸ ︷︷ ︸

A2

+2E

[〈
wt −w∗,

1

N

N∑
k=1

ĝk
t

〉]
︸ ︷︷ ︸

A3

.

(15)
For A2, due to the convexity of ∥ · ∥22 and the L-smoothness of Fk(·),

∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2 ≤
2L
(
Fk(w

k
t,i)− F ∗

k

)
, we have

A2 ≤ 1

N

N∑
k=1

E
[
∥ĝk

t ∥22
]
≤ 1

N

N∑
k=1

E
[
∥gk

t ∥22
]
=

η2t
N

N∑
k=1

E

∥∥∥∥∥
τ∑

i=1

∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥∥∥∥
2

2


≤ η2t τ

N

N∑
k=1

τ∑
i=1

E
[∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2
2

]
≤ 2Lη2t τ

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
.

(16)

For A3, according to Assumption 3.4.4 and the definition of ĝk
t , we can know that ĝk

t =
ProjP(ProjPT(gk

t )), and ProjP(ProjPT(wt −w∗) = wt −w∗ + ϵt. We have

2E

[
⟨wt −w∗,

1

N

N∑
k=1

ĝk
t ⟩

]
=

2ηt
N

N∑
k=1

E

[
⟨w∗ −wt,

τ∑
i=1

∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩

]
︸ ︷︷ ︸

B1

. (17)

For B1, we split w∗ − wt into w∗ − wk
t,i and wk

t,i − wt, so B1 can be split
into two items: C1 = 2ηt

K

∑N
k=1

∑τ
i=1 E

[
⟨wk

t,i −wt,∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩
]
, C2 =

7
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2ηt

K

∑N
k=1

∑τ
i=1 E

[
⟨w∗ −wk

t,i,∇Fk

(
wk

t,i, ξ
k
t,i

)
⟩
]
. So next we calculate the upper bounds

of these two terms respectively. To bound C1, we have

C1 ≤ ηt
N

N∑
k=1

τ∑
i=1

E
[
1

ηt

∥∥wk
t,i −wt

∥∥2
2
+ ηt

∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2
2

]

≤ 1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
,

(18)

where the first inequality is by Cauchy-Schwarz inequality, and the second inequality is by the
L-smoothness of Fk(·),

∥∥∇Fk

(
wk

t,i, ξ
k
t,i

)∥∥2 ≤ 2L
(
Fk(w

k
t,i)− F ∗

k

)
. To bound C2, we have

C2 =
2ηt
N

N∑
k=1

τ∑
i=1

E
[
⟨w∗ −wk

t,i,∇Fk

(
wk

t,i

)
⟩
]

≤ 2ηt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

∗)− Fk(w
k
t,i)−

µ

2

∥∥wk
t,i −w∗∥∥2

2

]
,

(19)

where the first equality is by Eξ

[
∇Fk

(
wt, ξ

k
t,i

)]
= ∇Fk (wt) ,∀i, k, t and the first inequality is by

the fact that Fk is µ-strongly convex.

For A3, substituting Eq. (18) and Eq. (19) into Eq. (17), we have

2E

[
⟨wt −w∗,

1

N

N∑
k=1

ĝk
t ⟩

]
≤ 1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

2ηt
N

N∑
k=1

τ∑
i=1

E
(
Fk(w

∗)− Fk(w
k
t,i)
)
− µηt

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
.

(20)
For E

[
∥vt+1 −w∗∥22

]
, substituting Eq. (20) and Eq. (16) into Eq. (15), we have

E
[
∥vt+1 −w∗∥22

]
≤E

[
∥wt −w∗∥22

]
+

2Lη2t τ

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
+

2Lη2t
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
+

2ηt
N

N∑
k=1

τ∑
i=1

E
(
Fk(w

∗)− Fk(w
k
t,i)
)

− µηt
N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
=E

[
∥wt −w∗∥22

]
− µηt

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −w∗∥∥2
2

]
︸ ︷︷ ︸

D1

+
1

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]

+
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
− 2ηt

N

N∑
k=1

τ∑
i=1

E
(
Fk(w

k
t,i − Fk(w

∗))
)

︸ ︷︷ ︸
D2

.

(21)

To bound D1, we first calculate the upper bound of −
∥∥wk

t,i −w∗
∥∥2
2

−
∥∥wk

t,i −w∗∥∥2
2
= −

∥∥wk
t,i −wt

∥∥2
2
− ∥wt −w∗∥22 − 2⟨wk

t,i −wt,wt −w∗⟩

≤ −
∥∥wk

t,i −wt

∥∥2
2
− ∥wt −w∗∥22 +

1

ηt

∥∥wk
t,i −wt

∥∥2
2
+ ηt ∥wt −w∗∥22

8
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= −(1− ηt) ∥wt −w∗∥22 +
(

1

ηt
− 1

)∥∥wk
t,i −wt

∥∥2
2
, (22)

where the first inequality is by Cauchy-Schwarz inequality. We next aim to bound D2. We define γt =
2ηt(1−Lηtτ−Lηt). Let γt ≥ 0, we have ηt ≤ 1

L(τ+1) , γt ≤ 2ηt. We define Γ = F ∗− 1
N

∑N
k=1 F

∗
k ,

which is a measure of non-IID degree. Then we have

D2 =
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗

k

]
− 2ηt

N

N∑
k=1

τ∑
i=1

E
(
Fk(w

k
t,i − Fk(w

∗))
)

= −γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]

︸ ︷︷ ︸
E

+
2Lη2t (τ + 1)

N

N∑
k=1

τ∑
i=1

E [F ∗ − F ∗
k ] .

(23)

To bound E, considering γt ≥ 0, we need to obtain the lower bound of
1
N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− F ∗]. Then, we split Fk(w

k
t,i) − F ∗ into Fk(w

k
t,i) − Fk(wt)

and Fk(wt)− F ∗, and take the expectations of them respectively. We first calculate the lower bound
of 1

N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− Fk(wt)

]
:

1

N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− Fk(wt)

]
≥ 1

N

N∑
k=1

τ∑
i=1

E
[
⟨∇Fk(wt),w

k
t,i −wt⟩

]
≥− 1

2N

N∑
k=1

τ∑
i=1

E
[
ηt∥∇Fk(wt)∥2 +

1

ηt
∥wk

t,i −wt∥2
]

≥− 1

N

N∑
k=1

τ∑
i=1

E
[
ηtL [Fk(wt)− F ∗

k ] +
1

2ηt
∥wk

t,i −wt∥2
]
.

(24)
Where the first inequality is by the convexity of Fk(·), the second inequality is by Cauchy-
Schwarz inequality, and the third inequality is by the L-smoothness of Fk(·), ∥∇Fk (wt)∥2 ≤
2L (Fk(wt)− F ∗

k ).

According to the above formula, we can obtain the bounds of −γt

N

∑N
k=1

∑τ
i=1 E

[
Fk(w

k
t,i)− F ∗]

− γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]

≤γt
N

N∑
k=1

τ∑
i=1

E
[
ηtL (Fk(wt)− F ∗

k ) +
1

2ηt
∥wk

t,i −wt∥2 − (F (wt)− F ∗)

]
.

(25)

For D2, recall the property of γt in Eq. (23) , 0 ≤ γt ≤ 2ηt, substituting Eq. (25) into Eq. (23), we
have

− γt
N

N∑
k=1

τ∑
i=1

E
[
Fk(w

k
t,i)− F ∗]+ 2Lη2t τ(τ + 1)Γ

≤γt
N

N∑
k=1

τ∑
i=1

E
[
ηtL (Fk(wt)− F ∗

k ) +
1

2ηt
∥wk

t,i −wt∥2 − (F (wt)− F ∗)

]
+ 2Lη2t τ(τ + 1)Γ

=
γt(ηtL− 1)

N

N∑
k=1

τ∑
i=1

E [F (wt)− F ∗] + (2Lη2t τ
2 + 2Lη2t τ + γtηtLτ)Γ

+
γt

2Nηt

N∑
k=1

τ∑
i=1

E
[
∥wk

t,i −wt∥2
]

≤(2Lη2t τ
2 + 4Lη2t τ)Γ +

1

N

N∑
k=1

τ∑
i=1

E
[
∥wk

t,i −wt∥2
]
. (26)

9
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So, for E
[
∥vt+1 −w∗∥22

]
, substituting Eq. (26) and Eq. (22) into Eq. (21), we have

E
[
∥vt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2Lη2t τ

2 + 4Lη2t τ)Γ +
(2 + µ(1− ηt))

N

N∑
k=1

τ∑
i=1

E
[∥∥wk

t,i −wt

∥∥2
2

]
︸ ︷︷ ︸

F

.

(27)
For F , according to the fact wk

t,i − wt =
∑i

j=1 ηt∇Fk

(
wk

t,j , ξ
k
t,j

)
, and Assumption 3.4.3, the

expected squared l2-norm of the stochastic gradients is bounded. We have

(2 + µ(1− ηt))η
2
t

N

N∑
k=1

τ∑
i=1

E


∥∥∥∥∥∥

i∑
j=1

∇Fk

(
wk

t,j , ξ
k
t,j

)∥∥∥∥∥∥
2

2

 ≤ (2 + µ− µηt))η
2
tG

2 τ(τ + 1)(2τ + 1)

6
.

(28)
So, for the upper bound of E

[
∥vt+1 −w∗∥22

]
, due to 1 − ηt < 1 , substituting Eq. (28) into Eq.

(27), we have

E
[
∥vt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+ (2 + µ(1− ηt)) η

2
tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ

≤(1− µηtτ(1− ηt))E
[
∥wt −w∗∥22

]
+ (2 + µ) η2tG

2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ.

(29)

C.9 PROOFS OF THEOREM C.3.1

According to Lemma C.2.1 to C.2.3, and a learning rate ηt such that 0 < ηt ≤ min{ 1
µB , 1

L(2τ+1)}, it
can be concluded:

E
[
∥wt+1 −w∗∥22

]
≤(1− µηtτ(1− ηt))E

[
∥wt −w∗∥22

]
+

2
∑D

r=R+1 σ
2
r

M
∑D

r=1 σ
2
r

η2t τ
2G2

+ (2 + µ) η2tG
2 τ(τ + 1)(2τ + 1)

6
+ (2Lη2t τ

2 + 4Lη2t τ)Γ +
2η2t τ

2G2

M

≤(1− µηtB)E
[
∥wt −w∗∥22

]
+ η2tC,

(30)
where

B = τ − τ

L(τ + 1)
, C = (2 + µ)G2 2τ

3 + 3τ2 + τ

6
+ (2Lτ2 + 4Lτ)Γ +

2(1 + ρR)τ
2G2

M
. (31)

C.10 PROOFS OF COROLLARIES

C.10.1 PROOF OF COROLLARY C.4.1

Assuming that Assumptions 3.4.1 to 3.4.4 hold with µ ≥ 0, we consider a constant learning rate η

such that 0 < η ≤ min
{

1
µB , 1

L(τ+1)

}
. According to Theorem C.3.1, we have

E
[
∥wT −w∗∥22

]
≤ (1− µηB)TE

[
∥w0 −w∗∥22

]
+

T∑
t=1

η2(1− µηB)T−tC. (32)

10
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From the L-smoothness of function F (·), E[F (wT )] − F ∗ ≤ L
2E
[
∥wT −w∗∥22

]
, after T global

iterations, we have

E[F (wT )]− F ∗ ≤ L

2
(1− µηB)TE

[
∥w0 −w∗∥22

]
+

L

2

T∑
t=1

η2(1− µηB)T−tC. (33)

C.10.2 PROOF OF COROLLARY C.4.2

Let ∆t = E
[
∥wt −w∗∥22

]
and consider a diminishing learning rate, ηt = β

t+γ for some β > 1
µB

and γ > 0 such that η1 ≤ min{ 1
µB , 1

L(τ+1)} = 1
L(τ+1) . We will prove ∆t ≤ v

γ+t where v =

max
{

β2C
βµB−1 , (γ + 1)∆1

}
. We prove it by induction. The definition of v ensures that it holds for

t = 1. Assuming that it also holds for ∆t, we draw the conclusion

∆t+1 ≤ (1− ηtµB)∆t + η2tC ≤
(
1− βµB

t+ γ

)
v

t+ γ
+

β2C

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2C

(t+ γ)2
− βµB − 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

(34)

Then by the L-smoothness of F (·), we have E[F (wt)]− F ∗ ≤ L
2∆t ≤ L

2
v

γ+t . We choose β = 2
µB ,

γ = 2L2(τ+1)2

µτ(L(τ+1)−1) − 1, and denote κ = L
µ . Therefore, ηt can be further expressed as ηt = 2

µB(γ+t) .
we have

ν = max

{
β2C

βµB − 1
, (γ + 1)∆1

}
≤ β2C

βµB − 1
+ (γ + 1)∆1 =

4C

µ2B2
+ (γ + 1)∆1, (35)

and

E[F (wT )]− F ∗ ≤ L

2

v

γ + t
≤ κ

γ + t

(
2C

µB2
+

µ(γ + 1)

2
∆1

)
. (36)

D HYPERPARAMETERS USED IN BASELINE ALGORITHMS

Besides the hyperparameter setting provided in the main body, the other hyperparameters are as
follows: For FedProx, we set µ = 0.01; for MOON, we set τ = 1, µ = 0.01; for FedGen, the server
epoch is 1000 and the generator learning rate is 0.005; for FedDC, we set α = 0.5; for FedDyn, we
set α = 0.5; for FedNTD, we set β = 0.001, τ = 1. For communication-efficient algorithms, we set
δ = 0.05 in LBGM; for signSGD and STC, we set their compression ratios as 1/32. Besides, We use
the SGD optimizer in all experiments with momentum set to 0.

E FURTHER DISCUSSION

We found that the global model space of federated learning has low rank properties. In fact, due to
the scarcity of client data, federated learning algorithms face the risk of overfitting. By restricting
the local model to a low dimensional subspace, the degree of freedom in model updates is reduced.
This can be used as a basis for many federated learning algorithms to improve their generalization
capabilities.

In addition, since the global model update of federated learning can be represented with fewer orthog-
onal bases, FLSS can also be widely integrated as a compression strategy into various compression
frameworks to further reduce the compression rate. Compared with traditional compression schemes,
FLSS pays more attention to the distribution of model parameters or gradient space. FLSS can
adaptively select appropriate orthogonal bases to represent model updates for different networks and
different scenarios. In other words, the compression of FLSS is data-driven and task-relevant.

In fact, many algorithms address the heterogeneity problem by considering local and global consis-
tency. For instance, model parameter consistency is tackled by FedProx, representation consistency
by Moon, and logit consistency by FedNTD. In contrast to these approaches, our method emphasizes

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

the directional consistency between global and local updates, constraining the update direction by
applying a projection to limit the angle.
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