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We provide more details about our work and results in the appendix. Below is the content of the
appendix:

* Appendix [A} More detailed discussion of related work.

* Appendix B} More comparative experimental results and ablation experiments.
* Appendix [C} Proof and discussion of the theoretical analysis of FL.SS.

* Appendix [D} The hyperparameters of baseline algorithms.

* Appendix[E} Further discussion on our proposed strategy FLSS.

A RELATED WORK

A.1 FEDERATED LEARNING

Federated learning is a distributed machine learning framework through iterative communication
and computation between servers and clients. FedAvg McMahan et al.|(2017) is a well-known FL
method and the basic framework of many FL. methods. We first introduce its main steps: (1) Server
sends the current global model to clients; (2) The clients initialize the current global model as its own
local model; (3) The clients train the local model on its own private data and send the trained local
models to the server; (4) The server receives the client models and aggregates them to obtain the
global model, and then resends it to the clients. However, the above solutions often face the problems
of high communication and poor performance in heterogeneous scenarios. Therefore, a lot of work
have been carried out to solve the above problems.

Traditional Federated Learning. Federated learning algorithms designed to enhance perfor-
mance in heterogeneous environments can be divided into four different types|Zhang et al.| (2023)):
regularization-based FL|L1 et al.|(2020); |Acar et al.| (2021); Kim et al.|(2022), update correction-based
FL Karimireddy et al.|(2020); \Gao et al.| (2022); [Niu & Deng|(2022)), model split-based FL Li et al.
(2021)); Jiang et al.| (2022)), and knowledge distillation-based FL Zhu et al.| (2021)); Lee et al.| (2022);
Gong et al.| (2022); Huang et al.| (2022). In the field of regularization-based FL, FedProx |Li et al.
(2020)) introduces a proximal term to reduce the Euclidean distance between the global model and the
local model, while FedDyn|Acar et al.|(2021)) adopts dynamic regularization to align the local optimal
point with the minimum value of the global empirical loss. For FL based on update correction,
methods such as SCAFFOLD [Karimireddy et al.[(2020) and FedDC |Gao et al.|(2022) employ global
gradient calibration to mitigate local model drift. However, these methods require the transmission
of twice the message size required by FedAvg [McMahan et al.| (2017). In model split-based FL,
MOON [Li et al.| (2021)) enhances the consistency between local and global model representations by
adding a contrastive learning loss. Meanwhile, in knowledge distillation-based FL, FedGen|Zhu et al.
(2021) utilizes a generator trained on the server to absorb local insights and utilizes the synthesized
knowledge as an inductive bias to guide the local training process. Furthermore, FedNTD [Lee et al.
(2022)) uses local non-true distillation to solve the problem of forgetting global information during
local training.

Communication-efficient Federated Learning. To address the challenge of communication over-
head in federated learning, many frameworks for gradient compression techniques have been proposed.
Fetchsgd |Rothchild et al.| (2020) utilizes sketching techniques to effectively compress local gradients.
Signsgd+EF |[Karimireddy et al.| (2019) combines error feedback with 1-bit quantization, which
reduces communication costs and improves the generalization ability of Signsgd. Furthermore,
STC Sattler et al.| (2019) is specifically designed for federated learning, combining top-k sparsity
and quantization techniques to optimize data transfer. Similarly, DGC [Lin et al.| (2018) utilizes
sparsification to preserve important gradients while minimizing bandwidth in distributed training
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environments. LBGM |Azam et al.|(2021) utilizes the low-rank characteristics of gradient space to
reduce communication requirements; however, it does not fully consider the relationship between
early global model information and local model updates. Although these methods have proven their
feasibility in reducing communication load, their effectiveness is often limited in heterogeneous
environments. This limitation is due to the stochastic nature of the compression framework and the
fact that the client does not have complete information about the global model.

A.2 TRAINING IN TINY SUBSPACE

Many studies have emphasized the inherent low-dimensional characteristics of neural networks
Tuddenham et al.| (2020); |[Vinyals & Povey| (2012); |Gressmann et al.|(2020). A seminal study in |Li
et al.[(2018)); \Gur-Ari et al.| (2018) reveals that training a neural network within a randomly chosen
subspace helps to achieve parameter compression, though the final accuracy may not be as high as
that in the original space. The following work (Gressmann et al.| (2020) improved the training of fixed
random subspaces by considering different layers of the network and re-drawing the random subspace
at each step. Different from random subspaces, Li et al. |Li et al.| (2022ajb) successfully extracted
a subspace that approximates the entire parameter trajectory by performing principal component
analysis on a pre-trained neural network. Efficient dimensionality reduction is achieved by limiting
the training process to this subspace.

However, although the above subspace contains model information to a certain extent, it is essentially
limited to the early stage of pre-training. Often it takes multiple epochs to reach its full potential.
In contrast, streaming subspace adapts to data changes by continuously updating the subspace to
dynamically capture real-time model information.

B ADDITIONAL EXPERIMENTS

B.1 EFFECT OF PROJECTED OBIJECTS

Table 1: We tested the impact of using streaming subspace on model updates or gradients respectively
on algorithm performance.

Method Proij(gl) Proj(Vkaﬁi) Proij(gl) +Proj(VFk(wf’i))
sr=1 sr=3|sr=1 sr=3 sr=10|sr=1 sr=3 sr =10
FedAvg+FLSS \ 57.34  60.02 \ 55.98 57.58 56.58 \ 56.10 57.01 56.28

We apply the streaming subspace strategy to different locations of FedAvgMcMahan et al.| (2017)),
including the model updates and gradients of the local model. Then we tested the performance
of using ResNet-18 at different scaled (sr) learning rates in Cifarl10, as shown in Tab. [I] Using
the streaming subspace strategy for model updates can improve communication efficiency and
performance through little additional computational overhead.

B.2 HETEROGENEITY

To further demonstrate the performance of the FLSS-equipped algorithms on different datasets, we
conduct additional experiments in heterogeneous scenarios, as shown in Tab. [2| From the results, we
can see that the algorithms with FLSS outperform FedAvg|McMahan et al.|(2017) and Signsgd+EF
Karimireddy et al.|(2019), which suggests that the FLSS strategy can effectively utilize the early
knowledge of the global model to achieve better performance.

B.3 CONVERGENCE

We present the loss throughout the training process in Fig. [Ta] The experimental results confirm that
the FLSS-equipped FL algorithm converges. Notably, the FLSS loss slightly increases at 200 rounds
before continuing to decrease. This indicates that the model needs several rounds to adapt to the
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Table 2: Test accuracy on different datasets under Dirichlet distribution. Cifar100™ represents using
ResNet-18 on Cifar100.

M \ FMNIST \ Cifar100* \ TINY
ethod

| =0.1 =05 p=1 | f=0.1 pB=0.5 p=1 | B=0.1 p=0.5 pS=1
FedAvg 85.06 91.02 91.18 | 23.04 26.42 2743 ]| 1426 1561 1847
FedProx 84.06 91.03 91.14 | 23.00 26.25 27.02| 14.12 15.63 18.35
Moon 85.03 91.18 91.29 | 23.08 26.54 27.10| 15.21 1572 18.51
FedDyn 83.11 90.68 90.92 | 24.41 28.65 29.09 | 15.63 —  19.07
FedGen 84.27 91.17 91.25| 2342 2624 2785|1544 1580 18.72

FedNTD 8496 91.15 91.36 | 22.84 26.51 27.15| 1543 15.77 18.39
FedAvg+FLSS | 86.25 91.64 91.29 | 2431 29.32 30.68 | 17.01 17.84 19.00

Fetchsgd 79.79 90.67 90.56 | 21.99 24.43 2535 | 1412 14.46 16.16
Signsgd+EF 80.79 90.76 90.37 | 22.57 2599 26.01 | 14.02 14.20 16.86
STC 80.40 8533 85.78 | 22.38 2592 2642 | 13.86 1459 1593
Sign+EF+FLSS | 81.32 91.05 91.02 | 23.01 27.59 26.17 | 13.20 15.04 17.32

streaming subspace intervention. The loss reduction shows that constraining local model updates to
subspace can continue to train and converge.

To verify the low-rank characteristics of different network update spaces, we compute the Singular
Values (SV) of the other networks, as shown in Fig. [Ib} Fig. [Ic| and Fig. [Id] We observe that smaller
networks, with larger percentages of the first few principal components, require fewer subspace
degrees of freedom to approximate the update trajectory. In contrast, larger networks, such as
ResNet-50, need more orthogonal bases to approximate their update trajectory.
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Figure 1: (a) is the training loss curve of FedAvg+FLSS in FMNIST. (b) to (d) are the singular value
distributions of the global model update trajectory of CNN in Cifar10, ResNet-18 in Cifar10, and
ResNet-50 in Cifar100, respectively.

B.4 FEATURES VISUALIZATION

We visualize the feature representations of the different algorithms in FMNIST using t-SNE |Van der|
Maaten & Hinton| (2008)) in Fig. 2| The feature representations extracted by FedAvg+FLSS become
more and more distinct with iterative updates of the algorithm. Based on Fig. [2b]and Fig. 2] it can
be seen that the FL algorithm equipped with FLSS ends up with more distinguishable features than
those extracted by FedAvg.

B.5 DIFFERENT LOCAL EPOCHS

Increasing local epochs results in higher computational costs but reduces the number of communica-
tion rounds. We evaluate the performance of CNN and ResNet-18 over 400 rounds on Cifar10 with
B = 0.5, as shown in Tab. [3| Across different local epochs settings, F1.SS performs better than most
baselines. Notably, F1.SS shows more significant performance improvement with fewer local epochs.
Specifically, with 1 local epoch, FedAvg combined with F1.SS achieves improvements of 2.43% and
3.41%, respectively.
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(a) Initial (b) FedAvg (c)FLSST :10 (d)FLSST :50 (e) FLSST : 150 (f) FLSS Final

Figure 2: t-SNE visualization of features extracted by the CNN model at different times on FMNIST.
FLSS Final and FedAvg denote the final features with and without FLSS, respectively. 1" denotes
the number of communication rounds.

Table 3: The impact of different client local training epochs on the performance of different algo-
rithms.

Method | CNN | Local Epochs | ResNet | Local Epochs
| Com.cost | 1 5 10 | Com.cost | 1 5 10
FedAvg 0.17G 59.88 6529 65.31 223G 48.51 56.17 58.88
FedProx 0.17G 59.77 65.38 65.11 223G 48.44 56.03 58.27
Moon 0.17G 59.93 65.33 65.26 223G 48.74 56.28 59.24
FedGen — 60.03 65.61 65.12 — 49.23 56.24 59.04
FedNTD 0.17G 60.42 65.52 65.15 223G 49.64 56.42 59.06

FedAvg+FLSS | 35.14M | 62.31 67.19 6553 | 045G | 51.92 57.34 58.93

Fetchsgd 43.92M | 5220 59.83 58.57| 056G — 5418 56.04
Signsgd+EF 549M |59.21 6427 6395 | 69.88M | 47.22 54.23 55.68
STC 549M |59.55 59.02 6238 | 69.88M | 4791 55.03 55.35
Sign+EF+FLSS | 1.11M | 59.01 64.69 64.06 | 14.0M | 49.02 54.77 56.81

B.6 COMPARISON WITH OTHER BASELINES

Table 4: Average test accuracy and communication cost of different algorithms under varying degrees
of heterogeneity.

\ Cifar10 \ Cifar100

| B=0.1 8=0.5 g=1 | p=0.1 8=0.5 B=1
LBGM  [56.37(0.21G)64.42(0.20G) 65.15(0.20G)[27.70(0.27G) 28.81(0.27G) 30.01(0.26 G)

FedAvg+FLS5|59.44(0.21G)67.19(0.21G) 69.82(0.21G)[28.41(0.22G) 31.47(0.22G) 31.61(0.22G)

Method

We compared the performance and total communication cost of 400 rounds between LBGM and
FLSS, as shown in Tab. ] LBGM is a low-rank method based on gradient space, focusing on local
training trajectories, while FLSS targets low-rank properties of the global model. FLSS projects local
updates onto the global subspace to filter out harmful components. Additionally, LBGM emphasizes
a single gradient direction early in training, while FLSS uses all early training information, unifying
them into a low-rank subspace.

C CONVERGENCE OF FLSS

C.1 NOTATION

We defined the local model update at device k as gF = Wfﬂ — w¢, We define the low-

dimensional trajectory of the local model updated on device k within subspace P as gF,
gf = Projp(Projp:(wf,; — wy)). The global model parameters updated as wy11 = Wy +
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LS e, EF, we define the following auxiliary variable: Vi1 = Wy + & S o, gF. We have

[Wepr — W5 = [Wes1 — Vesr + Verr — w5 1)

= |lwi1 — Vt+1||§ +[vir1 — W*Hg +2(Wiy1 — Vi1, Vigr — W),

In the following, we bound the average of the terms on the right hand side (RHS).

C.2 KEY LEMMAS

Lemma C.2.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the difference between w1 and v
can be bounded

D
E U\Wtﬂ - Vt+1||2} 2RTG? 2 rn or
2 — D
M M Zr:l U%

i G
Proof. See Appendix|C.7}

Lemma C.2.2 Suppose that Assumptions 3.4.1 to 3.4.4 hold, the upper bound of E [||Vt+1 —w* Hg}

is as follows

E [Ilvm — w*ué] < (1= pner(1—ne))E [IIWt - W*llg}

(r+1)(27+1)

-
+ (24 p)niG? G + (2Lnir? + 4Ln?T)T.

Proof. See Appendix|C.8|

Lemma C.2.3 Let E 4, denote expectation over the device scheduling randomness at the global
iteration t. We have E nq, [Wii1] = Vi1, from which it follows that

]EMt [<Wt+1 — Vi1, Vi1 — W*>] =0.

Proof. Due to the randomness of the device scheduling policy and the scheduling update of each
device appears (AJ\/; 1) times, it follows that

l > g ] ﬁ{jiig?z&ig? )

keM;

C.3 THEOREMS

Theorem C.3.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold and a learning rate n; such that
0 <mn <min{-% BT T+1)} is chose, we have

E[Jlwi1 = wI3] < (1= g B)E [we — w3 + 57, 3
where

o T _ 2
B=r L(T+1)’C 24+ u)G

Proof. See Appendix|C.9|

273 + 312 + 1 2(1+ pr)T2G?

G + (2072 + 4L7)T + i )

C.4 COROLLARIES

Corollary C.4.1 Suppose that Assumptions 3.4.1 to 3.4.4 hold with . > 0, a constant learning rate

1 > 0 such that n < ﬁ, we have

L
ElF(wr)] - F" < 5(1- pnB)"E [lwo — w*|3] Zn (1—pnB)T'C. ®)

Proof. See Appendix|C.10.1
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Corollary C4.2 Let Assumptions 3.4.1 to 3.4.4 hold and L, i, G, pr be defined therein. Choose

K== % 1, and the learning rate n; = m. Then FLSS satisfies
K 20 py+1) 2
E|F —F* < E —w" . 6

Proof. See Appendix|C.10.2

C.5 DISCUSSION ON ASSUMPTION 3.4.4

We define G to be the set consisting of global model updates and G € RP*/ to be the matrix
consisting of the set of global model updates G. In the experiments, G € R”*“ can be obtained by
sampling the global updates. A truncated singular value decomposition of G of rank R yields P,
whose singular values are o1, ..., 0p. Based on the linearity property of expectation, we have

E[Proj(g:)] = E[PP"g] = PP"E[g] = Proj(E[g:]). )

Due to the low-rank character of the global model update space, the last few singular values are small
and the corresponding dimensions are almost null space. In Eq. (7), it is assumed that the expectation
of the global model update E [g;] will be contained within the subspace P, so E [Proj(g:)] = E [g:].

C.6 PROOFS OF PROPOSITION 3.4.1

For the global update g; € G, we compute the expectation of the squared projection error:

Eg.eq(llg: — Proie)l) = 5 Z IG; —PPTGy|*. ®)
j=1
Using trace properties, we have
J
1 1 1
5 > IG; - PPTG,|* = Su(G(Ip - PPNG) = Su((Ip - PPT)GGY). )
i=1
Since Ip — PPT projected GG to a space orthogonal to the columns of P, we have
1 D ZD, 0_2
E(llge - Proj(e)l) =5 > of < S5 tniriG (10)
r=R+1 Zr:l Oy

The last inequality is due to Assumption 3.4.3, E [[|[VF}, (w7}, &) [13] < G2, so that E [||g[|3] <
n27T?G? and ||G3 < Jn2T?G2.
C.7 PROOF OF LEMMA[C.ZT]

According to the definitions, w1 = w; + ﬁ Zker, gF, Vi1 =w + % ZkN:l gF, i, € My,
and g, £ % Eszl gF. Taking the expectation of the first term of Eq. , we have

M 2
1 A ~
B et —veesld) =B || 3 (6 - )
m=1

2

(11
Z & — &I, + Z Z (& — &g — &)
m=1m/=1,m'#m
Due to the symmetry, it follows that
M ' ) (N—l) N X
Eum, [Z & — & |2] = 2= —&l3==% (12)
m=1 (M) = k=
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where the first equality is because there are ( Aj\é) choices in selecting M from N clients. For each
index k, k € [IN], the number of times is selected is (3 _1).

M
Mt[z S (@ —gng gt}mzz Cgnat — g

m=1m’=1,m’'#m k=1k'=1

k' sk (13)
(N72> N ,
M-—2 ~ Lk ~
e CEl =
M) k=1
where the first equality is because, for each particular index pair (k, k') , k' € [N], k # k', the
2
number of times is selected is ( M 22) and the second equality is because Hzgﬂ (gf - gt) ‘ =0.
2

Substituting Eq. (I2) and Eq. (I3) into Eq. yields

E [||Wt+1 — Vi1 Hg}

1 N
:NMI;E[ &

&l

N N 1 X
} I;Z _gt;gt - 7Mkz [
Kk -

s (el - [Hgtl}) i 22 [l

2G| 20 e O
SoM Myl

1 N
) < s 2 [+ ot

nfTZGz.
(14)

C.8 PROOF OF LEMMA|C,2.2|

According to the definition of vy, vi11 = w; + % Z,ivzl &F, taking the expectation and expanding
the second term of the Eq. (EI), we have

NP N
%12 %12 1 5k * 1 &k

E [[Ivee = w'lly] = B {llwe — w'[l3] +E N [Py )

— -

Ay
Ay As
(15)

For A, due to the convexity of | - ||3 and the L-smoothness of F(-), (WEa &8s H2 <

2L (Fy(wf;) — F}), we have

N N
SE OCIHES REHH _ ZE Zm whoct|
k=1 2
(16)
,52 M 2L77t27‘ ~ & .
= Z {HVFIC Wtw&tt)” } N ZZE[F’C(WQZ’)_FI@]~

k=11i=1

For As, accordlng to Assumption 3.4.4 and the definition of g,’f, we can know that gf =
Projp(Projp:(gF)), and Proip(Projp: (wt —w*) = w; — w* + ¢;. We have

N
* 1 ~ 27715
2E l(wt—w ,Nk_lgf ] = ZE w* —wt,ZIVFk w“,ftz»] . (17)
B,
For B;, we split w* — w; into w* — wf’i and wf)i — w;, so Bj can be split
into two items: C; = %Zgzlz;lﬂi[(wfyi—wt,VFk (Wi &b, Co =
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s ST E [(w - wi, VE (W), €F,))].  So next we calculate the upper bounds
of these two terms respectlvely To bound C7, we have

¢ < ZZIE [ ks — w2 + e | V (wgi,gf’i)nj}

klzl

A 21  2Ln? N T A .
SNZZE[HWM_WtHQ}"F N ZZ]E[Fk(Wt,i)_Fk]v

k=11i=1 k=11i=1

(18)

where the first inequality is by Cauchy-Schwarz inequality, and the second inequality is by the
L-smoothness of Fj(-), (wrs &) ||2 < 2L (Fy(wyf,;) — F};). To bound Cs, we have

_ 2 ZZE —wi, VF; (wr,))]

k=11=1

9 N T
< % ZZE [Fk(w*) — Fk(wfz) — % wafZ —w*

k=11i=1

(19)

2
)
where the first equality is by [E, [VFk (wt, fﬁi)] = VF} (w;),Vi, k,t and the first inequality is by
the fact that Fy, is pu-strongly convex.

For As, substituting Eq. (I8)) and Eq. into Eq. (I7), we have

i} 1 N " 1 N T . 5 2L7]t2 N T . i}
2E | (wi —w', = Y88 | < = Y DB [k —wilfy] + Y Y E[Fuwhy) - F]
k=1 k=1 i=1 k=11i=1
2?7 N T 'u,’f] N T
+ Y E(Fulw) = Fu(why) — BE TSR [k — w3 -
k=1 =1 k=1i=1
(20)
For E |:|Vt+1 w*| } substituting Eq. and Eq. into Eq. , we have
E[lIvia — w3}
2LN2T e & 1
<E [”Wt }—i— N ZZE Fi( wtZ Fk —&—NZZE{HW“ th }
k=11i=1 k=1i=1
2L77 T 9 N T
el 13 ZZ]E Fy(wk,) — F}) %ZZE Fi(w*) = F(wf,))
k=1i=1 k=1 i=1
M
: ZZE[HWM—W | } @21)
k=1 1i=1
1 N T
=E [lw, - w[3] - &% Sy e [lwks = o [15] 57 D2 D [t = wal 3]
k=1 i=1 k=1i=1
Dy
2L77 N T 9 N T
t ZZE katl Fk *%ZZE katiiFk( )))
k=1 1i=1 k=11=1
Do
To bound D1, we first calculate the upper bound of — wal - W ;

k

2 2
*| == wa,i - Wt”g —flwe — W*Hg - 2<Wt,i — W, Wy — W)

2

k
- HWt,i -w

1
< —|lwpi — Wt||z —[lwe = w5 + " |wi; — Wt||z e lwe — w3



Under review as a conference paper at ICLR 2025

1
== w (1) - w

T}t

(22)

where the first inequality is by Cauchy-Schwarz inequality We next aim to bound Ds. We deﬁne Ve =
2ny(1— Lngr — Ly ). Let v, > 0, we have 1y < (T+1) e < 2. Wedefine I’ = F* — N k 1 Fr
which is a measure of non-IID degree. Then we have

p, = 2D ZZE [Fu(w QntZZE Filwei = F(w"))

=1 1i=1 =11i=1
(23)
—%zzmwm—m CLARDIE o SIS
k=1 1=1 k=1 1=1
E

To bound F, considering - > 0, we need to obtain the lower bound of
%Zszl i E [Fk(wfl) — F*]. Then, we split Fi(wf,) — F* into Fk(wfl) — Fi(wy)
and Fj, (wt) F*, and take the expectations of them respectively. We first calculate the lower bound
of % \ Zk IZZ IE[Fk(Wt1) Fk(wt)]

N T N
3 2 DB (et = Fulw)] 25 3 S (T s = w
k=1 i=1 1 el
1 ¢ 2 1 k 2
>y L3 E HITFL I + k= ]
N T 1
PO () = B+ 5wk wil?]

(24)
Where the first inequality is by the convexity of Fj(-), the second inequality is by Cauchy-
Schwarz inequality, and the third inequality is by the L-smoothness of Fy(-), |V F} (w¢)?
2L (Fi(we) — F).

According to the above formula, we can obtain the bounds of — Z o1 2oy B [Fr(wh ) = F*]
N T
XYY B[R - F)
k=11i=1 (25)

N T
S% ZZE |:"7tL (Fr(w:) — F) + QLmHWfl _ WtH2 — (F(ws) — F*)}

k=1 i=1
For D, recall the property of 7; in Eq. , 0 < ¢ < 2m, substituting Eq. into Eq. (23)), we
have

N
S Z E [Fk(sz) — F*} + 2Lnt27(7 + 1)

N T
5 . 1 x
SNt ZZE [ntL (Fp(wy) — FY) + TmHWfZ —wi|* = (F(w;) — F )} +2Ln27 (T + 1)T

k=11i=1
N T
_elml = 1) SN TE[F(we) — F*] + (2L + 2Ln2T + 3 L)T
= N t Un Un Y
k=11:=1
N T
= wil ]
2N77 k=1 i=1
N T
<(2Lnir* + 4Ln;T) Z Z [Iw; = well?]- (26)
k: =1



Under review as a conference paper at ICLR 2025

So, for E [||vt+1 —w* Hg} , substituting Eq. and Eq. into Eq. , we have

E[llvess — w13 <1 = pmer (1 = n))E [l — 3]

N T
QL + AL 4 WZZE [Ilwt; = well3]
k=11i=1

F
27)

For F, according to the fact wﬁi —wy = 23:1 7V F}, (wfﬂ-, §f,j), and Assumption 3.4.3, the
expected squared /5-norm of the stochastic gradients is bounded. We have
2

2+ (1 = 0))n? = : T(r+ 1)(27 + 1)
LR SV (k)| | < (6P

k=11i=1 9

(28)
So, for the upper bound of E [||vt+1 - W*Hg}, due to 1 —n; < 1, substituting Eq. into Eq.

(27), we have
E[llvers = wl13] <(1 = pmer (1 = n))E [l — 3]

+ (24 pul—n) U?GQW

<(1 = (1 = n))E [we — w|3]

Zo7(T+1)(27T + 1)
6

+ (2Lnir? + 4Ln?T)T
(29)

+ (24 p) NG + (2Ln?r% + ALn?T)T.

C.9 PROOFS OF THEOREM|C.3.1!

According to Lemma to , and a learning rate 7 such that 0 < n; < min{ ;%B’ ﬁ}, it
can be concluded:

2 QZD Ri10r
E [[lwiyr — w*[|3] <(1—pner(1 —n,))E {Hwt - W*||2} 4 =R T p2r2GR

MY o2
1)(27 +1 2271262
+(2+p) ntgG2—T(T + )6< T+1) + (2L 7% + ALn?T)T + 777’&]7\—4
<(1 - e B)E [ we - w'|[2] +1C,
(30
where
T 23 + 312 4+ 7 2(1 + pr)T2G?

B=17——— (C=(2 G = QLT + 4L D+ —~—— BV = (31
T O @) AT 4 o a4 2EEPUTE )

C.10 PROOFS OF COROLLARIES

C.10.1 PROOF OF COROLLARY[C.4.1]

Assuming that Assumptions 3.4.1 to 3.4.4 hold with iz > 0, we consider a constant learning rate 7

such that 0 < 7 < min {#%3, ﬁ } According to Theorem (C.3.1| we have
T
E[[lwr —w*|3] < (1= mB)"E [|wo —w*[3] + > _n*(1 —mmB)"'C.  (32)
t=1
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From the L-smoothness of function F(-), E[F(wr)] — F* < £E [|[wr — w*||3], after T' global
iterations, we have
T

E[F(wr)] — F* < (1~ pnB)"E [|[wo — w*I3] + 5 > _n*(1—upB)TIC. (33)
t=1

~
Do |t~

C.10.2 PROOF OF COROLLARY

Let A; = E [|[w; — w*||3] and consider a diminishing learning rate, n, = % for some § >

and v > 0 such that 77 < min{l%B7 L(7-1+1)} = L(Tl+1). We will prove A; < # where v =

max {%, (v+ 1A } We prove it by induction. The definition of v ensures that it holds for
t = 1. Assuming that it also holds for A;, we draw the conclusion

BuB\ v p*C
- t+7> t+y )

At—&-l

IN

(1 —muB)A + 7 C < (1

(34)
t+~v-—1 { B2C B,LLB—I]< v
= v — v —_—.
(t+7)? t+7)? (47?2 |7 t+y+1
Then by the L-smoothness of F'(-), we have E[F(w;)] — F* < %At < éfit‘ We choose 5 = ;%B’
2 2
v = % — 1, and denote kK = % Therefore, 7, can be further expressed as 7, = W.
we have
B2 > ac
= S DA p < ——— DA = — DA 35
v max{ﬁuB_l,(W—&- )A; _5MB_1+(’Y+ )AL Msz—l-(’y-i- )AL, (35)
and
L v K 2C  py+1)
E[F —Fr< = < A . 36
[ (wr)] _27+t_7+t(uB2+ 2 G0

D HYPERPARAMETERS USED IN BASELINE ALGORITHMS

Besides the hyperparameter setting provided in the main body, the other hyperparameters are as
follows: For FedProx, we set ;x = 0.01; for MOON, we set 7 = 1, u = 0.01; for FedGen, the server
epoch is 1000 and the generator learning rate is 0.005; for FedDC, we set a = 0.5; for FedDyn, we
set a = 0.5; for FedNTD, we set 5 = 0.001, 7 = 1. For communication-efficient algorithms, we set
0 = 0.05 in LBGM,; for signSGD and STC, we set their compression ratios as 1/32. Besides, We use
the SGD optimizer in all experiments with momentum set to 0.

E FURTHER DISCUSSION

We found that the global model space of federated learning has low rank properties. In fact, due to
the scarcity of client data, federated learning algorithms face the risk of overfitting. By restricting
the local model to a low dimensional subspace, the degree of freedom in model updates is reduced.
This can be used as a basis for many federated learning algorithms to improve their generalization
capabilities.

In addition, since the global model update of federated learning can be represented with fewer orthog-
onal bases, FL.SS can also be widely integrated as a compression strategy into various compression
frameworks to further reduce the compression rate. Compared with traditional compression schemes,
FLSS pays more attention to the distribution of model parameters or gradient space. FLSS can
adaptively select appropriate orthogonal bases to represent model updates for different networks and
different scenarios. In other words, the compression of FLSS is data-driven and task-relevant.

In fact, many algorithms address the heterogeneity problem by considering local and global consis-
tency. For instance, model parameter consistency is tackled by FedProx, representation consistency
by Moon, and logit consistency by FedNTD. In contrast to these approaches, our method emphasizes
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the directional consistency between global and local updates, constraining the update direction by
applying a projection to limit the angle.
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