
A Label model reparametarization and illustrations

A.1 Majority Voting

The Majority Voting (MV) is the most intuitive algorithm for aggregate LFs’ annotations. The MV
methods can be formalize as

ŷ(i)
c =

∑M
j=1 1{Lij = c}∑C

k=1

∑M
j=1 1{Lij = k}

(16)

By letting Wj,k,c = 1{k = c}, we re-formulate the above as

∀c ∈ [C], ŷ(i)
c =

∑M
j=1 Wj,Lij ,c∑C

k=1

∑M
j=1 Wj,Lij ,k

. (17)

A.2 Dawid-Skene model

The parameters of the Dawid-Skene(DS) [9] model are given by

π
(j)
c,l =

number of times the j-th LF votes for l when true label is c
number of data voted by j-th LF whose true label is c

, (18)

and pc, which is prior of p(y = c). Let n(j)
i,l be the number of times j-th LF assigns l for data x(i)

and Ti,c be the indicator variables: if the true label of data x(i) is c, then Ti,c = 1, otherwise 0. When
the true label for all data are available, the likelihood is given by

N∏
i=1

C∏
c=1

pc

M∏
j=1

C+1∏
l=1

(
π
(j)
c,l

)n(j)
i,l


Ti,c

(19)

By the Bayes’ theorem:

ŷ(i)
c = p(y(i) = c | Li) = p(Ti,c = 1 | Li) =

∏M
j=1

∏C+1
l=1 pc

(
π
(j)
c,l

)n(j)
i,l

∑C
k=1

(∏M
j=1

∏C+1
l=1 pk

(
π
(j)
k,l

)n(j)
i,l

) . (20)

We can re-write Eq. 21 as

ŷ(i)
c =

σexp

(∑M
j=1

∑C+1
l=1

(
n
(j)
i,l log π

(j)
c,l

)
+ log pc

)
∑C

k=1

(
σexp

(∑M
j=1

∑C+1
l=1

(
n
(j)
i,l log π

(j)
k,l

)
+ log pk

)) , (21)

By omitting the last log pc term and letting Wj,Lij ,c =
∑C+1

l=1

(
n
(j)
i,l log π

(j)
c,l

)
, we have

∀c ∈ [C], ŷ(i)
c =

σexp(
∑M

j=1 Wj,Lij ,c)∑C
k=1 σexp(

∑M
j=1 Wj,Lij ,k)

. (22)

The additional log pc term can be absorbed in the summation by introducing an additional LF
whose label space consists of only one element and the corresponding parameter in W is p =
[log (p(y = 1)), log (p(y = 2)), · · · , log (p(y = C))]⊤. We omit this case for simplicity.

A.3 Snorkel MeTaL

The parameters µ of Snorkel MeTaL [31] are given by

µj,c,m(j) = p(y = c, λ(j) = m(j)) = E
[
Tj,c,m(j)

]
, (23)

15

where Tj,c,m(j) is the indicator, Tj,c,m(j) = 1{y = c, λ(j) = m(j)}. Given the prior of p(y), by the
Bayes’ theorem we have:

pµ(y = c,λ = m) = pµ(λ = m | y = c)p(y = c) =

∏M
j=1 pµ(y = c, λ(j) = m(j))

p(y = c)
M−1

. (24)

We can further infer that

pµ(y = c | λ = m) =
pµ(y = c,λ = m)∑C

k=1 pµ(y = k,λ = m)

=

∏M
j=1 pµ(y = c, λ(j) = m(j))

p(y = c)
M−1

/

C∑
k=1

∏M
j=1 pµ(y = k, λ(j) = m(j))

p(y = k)
M−1

=
pc
∏M

j=1(
µ
j,c,m(j)

pc
)∑C

k=1 pk
∏M

j=1(
µ
j,k,m(j)

pk
)
. (25)

By letting Wj,k,c = log
µj,c,k

pc
and, again, omitting the log pc term similar to the above derivation for

the DS model, we re-formulate the above as

∀c ∈ [C], ŷ(i)
c =

σexp

(∑M
j=1 Wj,Lij ,c

)
∑C

k=1 σexp

(∑M
j=1 Wj,Lij ,k

) . (26)

A.4 More complicated label model

For more complicated label models that we cannot formulate the inferred label as Eq. 6, we can still
use the approximation described in Section 3.4. Consider a label model g(L(x), x) ∈ F in arbitrary
functional class F , e.g., neural network, and having additional dependency on data feature x4, we can
still approximate such complicated function with identity function-based label model ḡW̄(x)(L(x))

similar to the aforementioned one except that W̄(x) : X → RM×(C+1)×C is a similarly complicated
function, e.g., neural network, that maps each data x ∈ X to a unique label model parameter W̄(x).
We leave the exploration of more complicated form of label models into future work.

B Influence Function derivation: the reweighting method

Fellow the derivation of [22], we can directly compute the influence of fine-grained sample
(x(i), 1

si
Wj,Lij ,c) through up-weighting its corresponding fine-grained level loss with ϵi,j,c. In

the following, we explicitly define the reweighted loss function with different σ(·) function.

B.1 Case 1: identity function

We define the loss with reweighted sample as,

L̂ϵi,j,c(D̂; θ) =
1

N

N∑
i′=1

M∑
j′=1

C∑
c′=1

ℓ̄i′,j′,c′(θ) + ϵi,j,c · ℓ̄i,j,c(θ), (27)

and the corresponding risk minimizer as θ⋆ϵi,j,c . According to the Equation (4), the influence on

the loss of one test sample (xk, yk) ∈ Dv is −∇θ ℓ̂ (yk, fθ⋆(xk))
⊤ H−1

θ⋆ ∇θ ℓ̄i,j,c(θ
⋆) · ϵi,j,c, where

H−1
θ⋆ = 1

N

∑
i,j,c ∇2

θ ℓ̄i,j,c(θ
⋆).

The influence score on the loss of z′ = (x′, y′) by discarding the loss term ℓ̄i,j,c(θ) is,

ϕ̄rw
i,j,c(z

′) = ∇θ ℓ̂ (yk, fθ⋆(xk))
⊤ H−1

θ⋆ ∇θ ℓ̄i,j,c(θ
⋆). (28)

And the influence on the loss on the set Dv can be defined as,

ϕ̄rw
i,j,c(Dv) = − 1

|Dv|
∑

z′∈Dv

ϕ̄rw
i,j,c(z

′). (29)

4Several recent neural network-based label models roughly follow this functional form [34, 21].

16

B.2 Case 2: exponential function

With exponential function, the label for sample x(i) can be presented as,

ŷ(i)
c =

exp(
∑M

j=1 Wj,Lij ,c)∑C
k=1 exp(

∑M
j=1 Wj,Lij ,k)

,

where c ∈ [C]. For the sample x(i), if the value of j-th label function on c-th class is upweighted
with ϵi,j,c, then the corresponding label can be written as,

ŷ(i)
c,ϵi,j,c =

exp(
∑M

j′=1 Wj′,Lij′ ,c + ϵi,j,cWj,Lij ,c)∑C
k′=1 exp(

∑M
j′=1 Wj′,Lij′ ,k

′ + ϵi,j,cWj,Lij ,c)

=
exp(

∑M
j′=1 Wj′,Lij′ ,c + ϵi,j,cWj,Lij ,c)∑C

k′=1 exp(
∑M

j′=1 Wj′,Lij′ ,k
′) + exp(Wj,Lij ,c) · (exp(ϵi,j,cWj,Lij ,c)− 1)

.

We assume that
∑C

k′=1 exp(
∑M

j′=1 Wj′,Lij′ ,k
′) ≫ exp(Wj,Lij ,c) · (exp(ϵi,j,cWj,Lij ,c)− 1). Note,

this assumption holds in general, because ϵi,j,c is close to zero as we discussed in the Section 2. Then
we have,

ŷ(i)
c,ϵi,j,c =

exp(
∑M

j′=1 Wj′,Lij′ ,c + ϵi,j,cWj,Lij ,c)∑C
k′=1 exp(

∑M
j′=1 Wj′,Lij′ ,k

′)

= ŷ(i)
c + exp(ϵi,j,cWj,Lij ,c − 1) · ŷ(i)

c .

Then, the reweighted risk over the whole training set becomes

L̂ϵi,j,c(D̂; θ) = − 1

N

(
N∑

i′=1

C∑
c′=1

ŷ
(i′)
c′ log (fθ(x

(i′))c′) + exp(ϵi,j,cWj,Lij ,c − 1) · ŷ(i)
c log (fθ(x

(i))c)

)
.

(30)

We denote the minimizer of the reweighted risk L̂ϵi,j,c(D̂; θ) as θrw
⋆

ϵi,j,c . Then the change of parameters
can be presented as,

θrw
⋆

ϵi,j,c − θ⋆ = −H−1
θ⋆ ∇θ

(
ŷ(i)
c log (fθ⋆(x(i))c)

)
· exp(ϵi,j,cWj,Lij ,c − 1). (31)

And the change with respect to ϵi,j,c is,

d(θrw
⋆

ϵi,j,c − θ⋆)

dϵi,j,c
=

dθrw
⋆

ϵi,j,c

dϵi,j,c
= −H−1

θ⋆ ∇θ

(
ŷ(i)
c log (fθ⋆(x(i))c)

)
·
dexp(ϵi,j,cWj,Lij ,c − 1)

dϵi,j,c
(32)

According to the Talyor expansion, we have exp(x) = 1 + x+O(x). Then, we can obtain,

d(θrw
⋆

ϵi,j,c − θ⋆)

dϵi,j,c
=

dθrw
⋆

ϵi,j,c

dϵi,j,c
= −H−1

θ⋆ ∇θ

(
ŷ(i)
c log (fθ⋆(x(i))c)

)
·Wj,Lij ,c. (33)

The influence score on the loss of z′ = (x′, y′) by discarding the loss term ℓ̄i,j,c(θ) is,

ϕ̄rw
i,j,c(z

′) = ∇θ ℓ̂ (yk, fθ⋆(xk))
⊤ H−1

θ⋆ ∇θ

(
ŷ(i)
c log (fθ⋆(x(i))c)

)
·Wj,Lij ,c. (34)

C Influence Function derivation: the weight-moving method

Instead of employing the decomposing loss function, we introduce a more general influence estimation
method - weight-moving Influence, which get ride of the loss decomposition and approximation and
is agnostic to the selection of σ(·) function. As we introduced previously, the label of sample x(i) for
each class c can be defined as:

∀c ∈ [C], ŷ(i)
c =

σ(
∑M

j=1 Wj,Lij ,c)∑C
k=1 σ(

∑M
j=1 Wj,Lij ,k)

. (35)

17

Further, we define the label after removing the output value of j′-th label function on the c′-th class
for sample i as:

∀c ∈ [C], ŷ
(i)
−j′c′,c =

σ(
∑M

j=1 1[c ̸= c′ ∨ j ̸= j′] ·Wj,Lij ,c)∑C
k=1 σ(

∑M
j=1 1[k ̸= c′ ∧ j ̸= j′] ·Wj,Lij ,k)

. (36)

Similarly, we can also define the label vector ŷ
(i)
−j′c′ for the sample x(i). Then, we define the

minimizer of the weight-moving loss as:

θwm⋆

ϵi,j,c = argmin
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c · ℓ̂(ŷ(i), fθ(x

(i)))− ϵi,j,c · ℓ̂(ŷ(i)
−jc, fθ(x

(i))).

(37)
The change of parameters with respect to ϵi,j,c can be written as,

d(θwm⋆

ϵijc − θ⋆)

dϵi,j,c
=

dθwm⋆

ϵijc

dϵi,j,c
(38)

= −H−1
θ⋆

[
∇θ

C∑
c′=1

ŷ
(i)
c′ log (fθ⋆(x(i)))−∇θ

C∑
c′=1

ŷ
(i)
−jc,c′ log (fθ⋆(x(i)))

]
(39)

= −H−1
θ⋆ ∇θ ℓ̂(ŷ

(i) − ŷ
(i)
−jc, fθ⋆(x(i))) (40)

With ϵi,j,c = − 1
N , the weight for the sample (x(i), ŷ(i)) is moved to the the sample (x(i), ŷ

(i)
−jc).

Then, the influence of the loss on sample z′ = (x′, y′) by removing the output value of j-th label
function on the c-th class for sample i is,

ϕ̄wm
i,j,c(z

′) = −∇θℓ (y
′, fθ⋆(x′))

⊤ H−1
θ⋆ ∇θ ℓ̂(ŷ

(i) − ŷ
(i)
−jc, fθ⋆(x(i))). (41)

We then define the weight-moving influence over the set Dv as,

ϕ̄wm
i,j,c(Dv) =

1

|Dv|
∑

z′∈Dv

ϕ̄wm
i,j,c(z

′) (42)

D Connection between weight-moving and reweighting method

To show the connection between weight-moving influence (ϕ̄wm
i,j,c) and reweighting influence (ϕ̄rw

i,j,c),
we firstly decompose the weight-moving loss (37). For the identity function, we have:

Lwm =
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c · ℓ̂(ŷ(i), fθ(x

(i)))− ϵi,j,c · ℓ̂(ŷ(i)
−jc, fθ(x

(i))) (43)

=
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c

[
−

C∑
c′=1

∑M
j=1 Wj,Lij ,c′∑C

k=1

∑M
j=1 Wj,Lij ,k

log (fθ(x
(i))c′)

]
(44)

− ϵi,j,c

[
−

C∑
c′=1

∑M
j′=1 1[c ̸= c′ ∨ j ̸= j′] ·Wj′,Lij′ ,c

′∑C
k=1

∑M
j′=1 1[k ̸= c′ ∧ j ̸= j′] ·Wj′,Lij′ ,k

. log (fθ(x
(i))c′)

]
(45)

For simplicity, we denote Ci =
∑C

k=1

∑M
j=1 Wj,Lij ,k and C ′

i =
∑C

k=1

∑M
j′=1 1{k ̸= c′, j ̸=

j′} ·Wj′,Lij′ ,k. Note C′
i

Ci
→ 1, with j → ∞ or C → ∞. Further, we assume C′

i

Ci
≈ 1. Then, we

have,

Lwm =
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c

[
−

Wj,Lij ,c

Ci
log (fθ(x

(i))c)
]

(46)

≈ 1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c · ℓ̄i,j,c(θ). (47)

Note, the above loss function is same as the loss we defined in the Equation (27). Therefore, the
weight-moving influence, ϕ̄wm

i,j,c(Dv), is an approximation of the reweighting influence, ϕ̄rw
i,j,c(Dv),

especially in the setting with large number of labeling function M and large number of class C.

18

E Proofs for theoretical analysis

We first show the correctness of Theorem 1, in which we employ the reweighting influence as a proxy
to downweight or discard data samples. Then, we show that the similar conclusion can be obtained
with weight-moving influence as the proxy. We summarized the conclusion for weight-moving
influence into the Theorem 2.

E.1 Proofs for Theorem 1

Theorem 1. Discarding or downweighting the loss terms in S− = {ℓ̄i,j,c(·)|i ∈ [N], j ∈ [M], c ∈
[C], ϕ̄rw

i,j,c(Dt) > 0} from training could lead to a model with lower loss over a holdout set Dt:

L(Dt; θ
⋆
S−)− L(Dt; θ

⋆) ≈ − 1

N

∑
ℓ̄i,j,c(·)∈S−

ϕ̄rw
i,j,c(Dt) ≤ 0

where θ⋆S−
is the optimal model parameters obtained after the perturbation.

As we derived in Appendix B.1, the reweighting influence represent that the change of loss over the
set Dt through upweighting the fine-grained sample (x(i), 1

si
Wj,Lij ,c) by ϵi,j,c,

ϕ̄rw
i,j,c(Dv) = L(Dt; θ

⋆
S−

)− L(Dt; θ
⋆) = −

∑
(xk,yk)∈Dt

∇θ ℓ̂ (yk, fθ⋆(xk))
⊤ H−1

θ⋆ ∇θ ℓ̄i,j,c(θ
⋆).

Through downweighting or discarding (note, discarding a sample is equal to downweighting it with
ϵi,j,c = −1/N) the fine-grained samples with ϕ̄rw

i,j,c(Dv) > 0, the change of the loss is equal to
ϵi,j,c · ϕ̄rw

i,j,c < 0. As commonly assumed in the previous works [42, 24], the influence caused by
reweighting different samples is independent. Then, with ϵi,j,c = −1/N , we can get the conclusion
that L(Dt; θ

⋆
S−

)− L(Dt; θ
⋆) ≈ − 1

N

∑
ℓ̄i,j,c(·)∈S−

ϕ̄rw
i,j,c(Dt) ≤ 0.

E.2 Proofs for Theorem 2

Theorem 2. Discarding or downweighting the training loss term in S− = {ℓ̄i,j,c(θ)|i ∈ [N], j ∈
[M], c ∈ [C], ϕ̄wm

i,j,c(Dv) > α} from training could lead to a model with lower loss over a test set Dt:

L(Dt; θ
⋆
S−)− L(Dt; θ

⋆) ≤ 0

where α ∈ R+ is a positive number close to 0, and θ⋆S−
is the optimal model parameters obtained

after the perturbation.

We first decompose the weight-moving loss in the following form,

Lwm =
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c · ℓ̂(ŷ(i), fθ(x

(i)))− ϵi,j,c · ℓ̂(ŷ(i)
−jc, fθ(x

(i)))

=
1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c

[
−

C∑
c′=1

∑M
j=1 Wj,Lij ,c′∑C

k=1

∑M
j=1 Wj,Lij ,k

log (fθ(x
(i))c′)

]
− ϵi,j,c

[
−

C∑
c′=1

∑M
j′=1 1[c ̸= c′ ∨ j ̸= j′] ·Wj′,Lij′ ,c

′∑C
k=1

∑M
j′=1 1[k ̸= c′ ∧ j ̸= j′] ·Wj′,Lij′ ,k

. log (fθ(x
(i))c′)

]
=

1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c

[
−

Wj,Lij ,c

Ci
log (fθ(x

(i))c)
]

− ϵi,j,c(
1

c′i
− 1

ci
)

M∑
j′=1

C∑
c′=1

1[c ̸= c′ ∨ j ̸= j′]
(
−Wj′,Lij′ ,c

′ log (fθ(x
(i))c′)

)
=

1

N

N∑
i′=1

ℓ̂(ŷ(i′), fθ(x
(i′))) + ϵi,j,c · ℓ̄i,j,c(θ)− ϵi,j,c · L̃i,j,c

19

where, we denote L̃i,j,c = (1
c′i
− 1

ci
)
∑M

j′=1

∑C
c′=1 1[c ̸= c′∨j ̸= j′]

(
−Wj′,Lij′ ,c

′ log (fθ(x
(i))c′)

)
and Ci =

∑C
k=1

∑M
j=1 Wj,Lij ,k and C ′

i =
∑C

k=1

∑M
j′=1 1[k ̸= c′, j ̸= j′] · Wj′,Lij′ ,k. Note, as

we discussed in the Appendix D, 1
c′i

− 1
ci

is a small positive value and close to 0. Therefore,

L̃i,j,c ≪ ℓ̄i,j,c.

ϕ̄wm
i,j,c(Dv) = Lwm(Dt; θ

⋆
ϵi,j,c)− Lwm(Dt; θ

⋆)

= ϕ̄rw
i,j,c(Dv) +

∑
(xk,yk)∈Dt

∇θ ℓ̂ (yk, fθ⋆(xk))
⊤ H−1

θ⋆ ∇θL̃i,j,c.

We assume
∑

(xk,yk)∈Dt
∇θ ℓ̂ (yk, fθ⋆(xk))

⊤ H−1
θ⋆ ∇θL̃i,j,c · ϵi,j,c ≤ α, where α > 0. Then, through

selecting the samples with ϕ̄wm
i,j,c(Dv) ≥ α, the reweighting influence term ϕ̄rw

i,j,c(Dv) ≥ 0. Then we
can get the conclusion that by reweighting the training loss term in S− = {ℓ̄i,j,c(θ)|i ∈ [N], j ∈
[M], c ∈ [C], ϕ̄rw

i,j,c(Dv) > α} from training, we have L(Dt; θ
⋆
ϵ)− L(Dt; θ

⋆) ≤ 0.

F Computation detail of inverse Hessian

The estimation of influence score requires the computation of the inverse hessian. The size of hessian
matrix is propotional to the number of model parameters, thus directly computing the inverse hessian
H−1

θ⋆ is very expensive. For the H−1
θ⋆ involved in the reweighting influence, Equation(11), and the

weight-moving influence Equation (14), we employed the LiSSA (Linear time Stochastic Second-
Order Algorithm) method [1], which provide an unbiased estimation of the Hessian-vector product
through implicitly computing it with a mini-batch of samples. As demonstrated in the previous
works [4, 41], the stochastic method is efficient and relatively accurate for sample-wise influence
estimation. The algorithm can be summarized as:

• Step 1. Let v :=
∑

(x′,y′)∈Dv
∇θℓ (y

′, fθ⋆(x′))
(∑

(x′,y′)∈Dv
∇θℓ (y

′, fθ⋆(x′)) for weight-
moving method

)
, and initialize the inverse HVP estimation H−1

0,θ⋆v = v.

• Step 2. For i ∈ {1, 2, . . . , J}, recursively compute the inverse HVP estimation us-
ing a batch size B of randomly sampled a data point (xi′ , yi

′
), H−1

i,θ⋆v = v +(
I −∇2

θℓ(y
(i′), fθ⋆(x(i′))

)
H−1

i−1,θ⋆v, where J is a sufficiently large integer so that the above
quantity converges.

• Step 3. Repeat Step 1-2 T times independently, and return the averaged inverse HVP estimations.

For the computation of self-influence, the influence estimation is required for each training sample.
For real-world dataset, estimating each sample separately using the LiSSA method is intolerable.
Instead of applying the stochastic method for each training sample, we leverage the relation between
Hessian matrix and Fisher matrix, and use the K-FAC method [27] directly compute the inverse
Hessian matrix. We refer interested readers to Barshan et al. [3] for details regarding the K-FAC
approximation for the computation of inverse Hessian.

G Experimental details and additional results

G.1 Dataset statistics and implementation details

We summarize the dataset statistics in Table 6. All of the involved datasets are either publicly
available or will be released upon the acceptance of this paper.

All experiments ran on a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 with a 126G memory
and a GeForce GTX 1080Ti-11GB GPU.

All the code was implemented in Python and largely based on the WRENCH [50] codebase.

G.2 Estimate actual effect of LF via source-aware IF

As described in Section 3.3, we can use the source-aware IF calculated by the reweighting method to
estimate the influence score of each LF (ϕλ(j) =

∑N
i=1

∑C
c=1 ϕ̄i,j,c, the 2nd row in Table 1). Here,

20

Table 6: Dataset statistics.
Domain (↓) Dataset (↓) #Label #LF #Train Data #Valid Data #Test Data

Tabular

Census 2 83 10,083 5,561 16,281
Mushroom 2 20 6481 812 813
PW 2 15 8654 1105 1106
spambase 2 15 3595 460 461

Text
IMDb 2 5 20,000 2,500 2,500
Yelp 2 8 30,400 3,800 3,800
Youtube 2 10 1,586 120 250

Image

DN-real 5 5 2,587 323 324
DN-sketch 5 5 1,777 222 223
DN-quickdraw 5 5 2,000 250 250
DN-painting 5 5 2,462 308 308
DN-infograph 5 5 1,213 152 152
DN-clipart 5 5 773 97 97

we study how well these influence scores reflect the actual effect of each LF. In Table 7, we again
report the Spearman’s ranking correlation coefficient (≤ 1). Please note that the estimated influence
of each LF is more likely to be prone to noise since it involves more terms in summation than that
of a training data. Also note that here we compare the estimated influence against the actual effect,
which is calculated by removing the loss terms associated with each LF and retraining the end model.
From the results, we can see that although there do exists cases where the results do not pass the
significance test, the averaged ranking correlations are good (from 0.675-0.766). Such observations
indicate that source-aware IF could be useful when estimating the influence of each IF.

Table 7: Spearman’s ranking correlation coefficient (≤ 1) between actual effect of each LF and
that estimated from source-aware IF. We highlight results that do not pass the significance test in
underline.

Dataset Census Mushroom PW Spambase IMDb Yelp Youtube DN-real DN-sketch DN-quickdraw DN-painting DN-infograph DN-clipart Avg.
MV 0.968 0.883 0.929 0.939 -0.700 0.262 0.842 1.000 0.300 0.900 1.000 1.000 1.000 0.717

DS 0.801 0.534 0.950 0.939 1.000 0.810 0.830 0.800 0.400 0.400 1.000 0.700 0.800 0.766

Snorkel 0.884 0.974 0.907 1.000 1.000 0.833 0.370 0.900 1.000 0.600 1.000 -0.600 -0.100 0.675

G.3 Additional experiments on neural network

Although when the end model is neural network, the theory of IF breaks down [22], we are curious
about whether the proposed source-aware IF is still effective. Thus, we conduct the experiments of
identifying mislabeling of LFs (see Table 8) and improving test loss (see Table 9) using two-layer
neural network with the ReLU activation function as end model in this section. For simplicity,
we do not include the methods based on RelatIF. From the results, we can see that, similar to the
experimental results in the main body of this paper, source-aware IF outperforms baselines with a
large margin. This indicates that source-aware IF is still effective even when the theory does not hold.

G.4 The study of label model approximation

In this study, we take a close look at the label model approximation. Specifically, we present the
Mean Squared Error (MSE) and expected disagreement (DE) between the output of label model
DS/Snorkel and their approximated version in Table 10. The MSE is evaluated against the predicted
label posterior of models, and the ED is the expectation of Y1 ̸= Y2 over the training samples, where
Y1 and Y2 is the predicted label of the label model and its approximated version. From the results, we
can see that both metrics have quite low value across datasets for binary classification, while they are
relatively larger for multi-class classification, which is because label model for binary classification
is much easier to approximate. Even for multi-class classification, all the EDs are still less then 22%,
which indicates the approximated label model could replicate most of the predicted labels of original
label model.

21

Table 8: Performance comparison results on identifying mislabeling of LFs. We report the average
precision (AP) score averaged over LFs for each dataset. The larger the AP is, the better the method
identify mislabeling of LFs.

MV DS Snorkel
Dataset KNN LM EM RW WM LM EM RW WM LM EM RW WM
Census 0.810 0.809 0.787 0.854 0.824 0.787 0.787 0.789 0.788 0.787 0.787 0.805 0.803

Mushroom 0.975 0.923 0.828 0.956 0.954 0.828 0.828 0.908 0.893 0.828 0.828 0.895 0.861

PW 0.822 0.863 0.766 0.887 0.865 0.766 0.766 0.887 0.884 0.766 0.766 0.880 0.873

Spambase 0.782 0.772 0.738 0.871 0.801 0.738 0.738 0.784 0.789 0.738 0.738 0.799 0.809
IMDb 0.702 0.767 0.699 0.786 0.773 0.699 0.699 0.771 0.761 0.699 0.699 0.732 0.732
Yelp 0.752 0.792 0.731 0.836 0.813 0.731 0.731 0.761 0.775 0.731 0.731 0.836 0.839
Youtube 0.831 0.949 0.826 0.859 0.872 0.826 0.826 0.889 0.885 0.826 0.826 0.909 0.905

DN-real 0.711 0.447 0.417 0.906 0.878 0.417 0.417 0.573 0.536 0.445 0.417 0.746 0.651

DN-sketch 0.321 0.339 0.316 0.730 0.665 0.316 0.316 0.490 0.465 0.316 0.316 0.424 0.421

DN-quickdraw 0.362 0.256 0.255 0.713 0.675 0.255 0.255 0.437 0.389 0.255 0.255 0.507 0.494

DN-painting 0.454 0.416 0.360 0.736 0.697 0.360 0.360 0.615 0.557 0.360 0.360 0.650 0.598

DN-infograph 0.361 0.385 0.356 0.621 0.606 0.356 0.356 0.538 0.516 0.356 0.356 0.416 0.418
DN-clipart 0.437 0.487 0.434 0.844 0.822 0.434 0.434 0.556 0.545 0.434 0.434 0.630 0.644

Avg. 0.640 0.631 0.578 0.815 0.788 0.578 0.578 0.692 0.676 0.580 0.578 0.710 0.696

Table 9: Performance comparison results on the test loss of end models.

MV DS Snorkel
Dataset ERM IF GIF RW WM ERM IF RW WM ERM IF RW WM
Census 0.484 0.382 0.368 0.368 0.381 0.663 0.432 0.414 0.432 0.580 0.391 0.407 0.453

Mushroom 0.220 0.161 0.168 0.144 0.152 0.370 0.216 0.212 0.242 0.336 0.190 0.168 0.284

PW 0.394 0.309 0.372 0.334 0.338 0.477 0.318 0.316 0.322 0.487 0.333 0.358 0.333

Spambase 0.529 0.336 0.370 0.307 0.349 0.663 0.345 0.336 0.364 0.411 0.283 0.299 0.295

IMDb 0.496 0.481 0.494 0.498 0.498 0.652 0.605 0.613 0.586 0.585 0.576 0.582 0.580

Yelp 0.524 0.352 0.463 0.394 0.344 0.460 0.373 0.447 0.452 0.513 0.406 0.497 0.490

Youtube 0.332 0.215 0.230 0.291 0.272 0.337 0.265 0.302 0.312 0.326 0.269 0.288 0.291

DN-real 1.053 0.618 0.547 0.395 0.469 0.860 0.482 0.214 0.190 0.918 0.545 0.431 0.409
DN-sketch 1.263 0.926 1.245 0.869 0.894 1.579 1.058 1.093 1.065 1.502 1.089 0.993 0.989
DN-quickdraw 1.626 1.106 1.492 0.757 0.768 1.345 0.840 0.683 0.769 1.620 1.444 1.188 1.158
DN-painting 1.242 0.876 0.947 0.755 0.797 1.043 0.680 0.615 0.654 1.210 0.872 0.915 0.857
DN-infograp 1.477 1.251 1.169 1.238 1.180 1.207 1.198 1.282 1.269 1.504 1.490 1.418 1.336
DN-clipart 1.084 0.913 0.830 0.741 0.779 1.000 0.901 1.042 0.993 0.944 0.676 0.729 0.624

Avg. 0.825 0.610 0.669 0.545 0.555 0.820 0.593 0.582 0.589 0.841 0.659 0.636 0.623

G.5 How many mislabelings should be removed to have positive impact on test loss?

Here, we would like to answer the question of how many mislabeling to remove to have positive
impact on the test loss. Concretely, this could be reflected by a quantity β we call maximal removing
portion (MRP). That is, if we remove more than β% top-ranked negatively influential labelings, the
resultant test loss after re-training will be larger than original test loss without any removing. In other
words, removing any portion of labelings between 0% and β% has a positive impact on the test loss.
We take label model MV and our RW method as an example for this study. We found that the MRP β
is closely correlated to the accuracy of training labels produced by label model (see Figure 3). This is
quite intuitive- for high-quality training set, the MRP would be low since we do not have to remove
many labelings when training labels are already accurate, while for low-accuracy cases, the MRP
would be high since most of the training labels are incorrect so we could remove a large portion of
labelings but still be able to improve the test loss.

22

Table 10: .

Dataset Metric Census Mushroom PW Spambase IMDb Yelp Youtube DN-real DN-sketch DN-quickdraw DN-painting DN-infograph DN-clipart Avg.

DS MSE 0.00041 0.00000 0.00015 0.00003 0.00033 0.00004 0.00094 0.02127 0.02910 0.01689 0.01620 0.01735 0.02620 0.00992
ED 0.00130 0.00000 0.00150 0.00000 0.00000 0.00000 0.00398 0.14766 0.21159 0.18400 0.14866 0.12861 0.15912 0.07588

Snorkel MSE 0.00097 0.00003 0.00111 0.00011 0.00005 0.00050 0.00024 0.00995 0.00729 0.00370 0.01250 0.00749 0.00992 0.00414
ED 0.00400 0.00031 0.00300 0.00056 0.00011 0.00322 0.00066 0.13993 0.10692 0.09100 0.19659 0.04369 0.12807 0.05524

Figure 3: The correlation between maximal removing portion β and the accuracy of synthesized
training labels.

G.6 Additional experiments on improving test accuracy / F1

In the main body of the paper, we leverage the proposed method to improve test loss; in this study,
we instead present the improved model performance in terms of standard classification metrics, i.e.,
F1 score and accuracy. Specifically, for binary classification, we adopt F1 score, while for multi-class
classification, we use accuracy. For simplicity, we do not include the methods based on RelatIF. From
the results, we can draw similar conclusion as Table 4 in the main body, i.e., our methods outperform
baselines in most of cases and achieve better averaged performance.

Table 11: Performance comparison results on the classification metrics of end models.

MV DS Snorkel
Dataset ERM IF GIF RW WM ERM IF RW WM ERM IF RW WM
Census 0.579 0.642 0.653 0.649 0.648 0.516 0.605 0.596 0.590 0.554 0.610 0.624 0.630
Mushroom 0.893 0.913 0.952 0.952 0.958 0.853 0.896 0.899 0.850 0.863 0.929 0.936 0.928

PW 0.844 0.876 0.873 0.877 0.878 0.799 0.866 0.863 0.870 0.807 0.867 0.867 0.875
Spambase 0.783 0.881 0.867 0.872 0.883 0.690 0.867 0.870 0.865 0.842 0.870 0.901 0.901

IMDb 0.789 0.789 0.740 0.790 0.793 0.626 0.612 0.626 0.626 0.786 0.786 0.786 0.786

Yelp 0.839 0.839 0.847 0.842 0.833 0.853 0.853 0.862 0.850 0.850 0.850 0.852 0.845

Youtube 0.790 0.810 0.887 0.861 0.870 0.824 0.888 0.858 0.821 0.858 0.898 0.899 0.883

DN-real 0.892 0.944 0.917 0.966 0.957 0.685 0.920 0.966 0.948 0.849 0.954 0.960 0.966
DN-sketch 0.552 0.632 0.538 0.682 0.664 0.484 0.507 0.673 0.578 0.538 0.659 0.664 0.628

DN-quickdraw 0.420 0.764 0.400 0.780 0.724 0.544 0.700 0.740 0.736 0.360 0.720 0.668 0.560

DN-painting 0.656 0.821 0.763 0.818 0.860 0.695 0.847 0.831 0.847 0.614 0.815 0.854 0.834

DN-infograp 0.612 0.586 0.566 0.526 0.599 0.553 0.559 0.579 0.546 0.539 0.520 0.546 0.579
DN-clipart 0.691 0.711 0.691 0.742 0.732 0.639 0.691 0.711 0.670 0.701 0.804 0.794 0.784

Avg. 0.718 0.785 0.746 0.797 0.800 0.674 0.755 0.775 0.754 0.705 0.791 0.796 0.785

23

	Label model reparametarization and illustrations
	Majority Voting
	Dawid-Skene model
	Snorkel MeTaL
	More complicated label model

	Influence Function derivation: the reweighting method
	Case 1: identity function
	Case 2: exponential function

	Influence Function derivation: the weight-moving method
	Connection between weight-moving and reweighting method
	Proofs for theoretical analysis
	Proofs for Theorem 1
	Proofs for Theorem 2

	Computation detail of inverse Hessian
	Experimental details and additional results
	Dataset statistics and implementation details
	Estimate actual effect of LF via source-aware IF
	Additional experiments on neural network
	The study of label model approximation
	How many mislabelings should be removed to have positive impact on test loss?
	Additional experiments on improving test accuracy / F1

