
1 Appendix1

1.1 Intuitively Understanding Individual Rewards as Individual Costs2

Task Reward represents the task objective. Human Individual Reward represents the human3

partner’s collaborative preferences. And Robot Individual Reward represents the robot’s soft con-4

straints. The individual rewards are based on the actions each agent individually takes. We can5

interpret these as negative costs, where an action with lower rewards is straining on the agent per-6

forming it. In the dishwasher loading example, picking up an object, like a bowl or glass cup, are7

determined to be especially costly for the robot because of the difficulty in picking up objects with8

smooth surfaces with a two finger gripper, and the risk of the dropping and shattering the object.9

These high cost actions involved in picking up those objects would give low Robot Individual10

Reward.11

1.2 Bayesian Inverse Reinforcement Learning: Implementation Details12

We model the human as a noisily rational actor who selects actions based on the assumption that13

the robot will take the optimal complementary action to maximize the team’s reward. The human14

implicitly sets expectations for the robot by assuming the robot will take the optimal action. For15

example, the predicted robot action is optimal under RθT ,θr,θh , which the human has full knowl-16

edge of. By understanding these expectations, the robot is able to deduce which human individual17

reward function Rθh would lead to such expectations. We also adopt the Boltzmann rational model18

of human behavior [1, 2], which models that human decisions are exponentially likely with respect19

to reward. According to this model, the probability of choosing a particular option increases expo-20

nentially as its utility, or reward, increases compared to other available options.21

Over t timesteps, the robot observes the human perform some trajectory of actions, τt =22

{(s1, ah1 , s2), (s2, ah2 , s3), ..., (st, aht , st+1)}. Since the human has full knowledge of the composite23

reward, we assume the human’s policy is a stationary expert policy. Thus, we can make the following24

independence assumption for all candidate human reward functions θ̂h ∈ Θh (Equation 1).25

P (θ̂h|τt) ∝ P ((s1, a
h
1 )|θ̂h)P ((s2, a

h
2 )|θ̂h)...P ((st, a

h
t )|θ̂h)P (θ̂h) (1)

26

We intuit that since the human has full knowledge of all three reward functions: task, human individ-27

ual, and robot individual reward, and in absence of a model of the robot’s behavior, the human will28

try to achieve the task objective while acting pedagogically by taking actions that seek to demon-29

strate a complementary action the human expected the robot to have performed. This best-case30

reward, rbc, is the reward the team would receive from the composite function RθT ,θr,θ̂h if the31

robot had taken the action ar ∈ Ar that would maximize the composite reward (Equation ??). The32

composite function under candidate θ̂h uses θ̂h to parameterize the human individual reward term.33

rbc(st, a
h
t |θ̂h) = max

ar∈Ar

∑
st+1

RθT ,θr,θ̂h(st, a
h
t , st+1)T (st+1|s, aht , art )

P ((st, a
h
t )|θ̂h) ∝ exp(β · rbc(st, aht |θ̂h))

Consider a state in which the human has two actions to choose from a, and b. The robot’s evaluates
its best-case reward for two hypotheses: (1) best-case reward 1 to a, 3 to b, and (2) rbc = 2 to a and
3 to b. The human chooses action b; however, we do not want to necessarily update based on a dis-
tribution derived from the reward values themselves. Since our robot models the human is a reward
maximizer, the human views no effective differences between the two strategies. Thus, we want
to ensure the probabilities reflect equal probability for selecting b by thresholding the Boltzmann
potential if the action yields a best-case reward equal to the maximum.

r(st, a
h
t |θ̂h) =

{
λ, if rbc(st, aht |θ̂h) = max

ah∈Ah
rbc(st, a

h|θ̂h)

1− λ, otherwise
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Algorithm 1 (BIRL) Bayesian Inverse Reinforcement Learning: Online Update

Input: State st, Human Action aht , Belief prior b0(θ̂h) ∀θ̂h ∈ Θh

Parameter: Rationality threshold λ, Hypothesis space Θh, Temperature β
Output: Updated beliefs b, Predicted human policy π̂h

1: for θ̂h ∈ Θh do
2: rbc(st, a

h
t |θ̂h) = max

ar∈Ar

∑
st+1

RθT ,θr,θ̂h(st, a
h
t , st+1)T (st+1|s, aht , art )

3: r(st, a
h
t |θ̂h) =

{
λ, if rbc(st, aht |θ̂h) = max

ah∈Ah
rbc(st, a

h|θ̂h)

1− λ, otherwise
4: Zt =

∑
θ∈Θh

eβ·r(st,a
h
t |θ)

5: P ((st, a
h
t )|θ̂h) = 1

Zt
eβ·r(st,a

h
t |θ̂

h)

6: b(θ̂h)← P (θ̂h|st, aht ) =
P ((st,a

h
t )|θ̂

h))b0(θ̂
h)

P (st,ah
t )

7: end for
8: π̂h(ah|s; θ̂h) ∝ eβ·r(st,a

h
t |θ̂

h)

9: π̂h(ah|s) =
∑̂
θh

b(θ̂h)π̂h(ah|s; θ̂h)

Algorithm 1 below describes the Bayesian inverse reinforcement learning approach. The predicted34

human policy is the expected policy under the updated beliefs of the robot. We use λ = 0.9 in our35

agents for all simulated and human study experiments.36

1.2.1 Optimistic Information Gain: Implementation Details37

In updating its beliefs, the robot assumes that the human will optimistically choose the action that38

would achieve maximum reward given that the robot takes the ideal action which would facilitate39

achieving the maximum reward. The robot updates its beliefs b over the possible values of the hu-40

man’s individual reward, θh using a likelihood function P ((st, a
h
t )|θ̂h) built on this assumption. [3]41

examines a solution to the CIRL problem in which the human teacher is expected to act pedaogi-42

cally, while the robot learner, aware and expecting this pedagogy, acts practically under its learned43

beliefs. Research on human pedagogical reasoning demonstrates that when teaching, humans en-44

gage in actions aimed at influencing or altering the beliefs of learners [4]. Our assumption that45

humans will take actions expecting the optimal, complementary robot action interprets the expected46

human pedagogy as being through setting expectations of the robot.47

While the robot uses the composite reward RθT ,θr,θ̂h to learn from the human’s actions, the robot48

can seek out states that will give the human the opportunity to demonstrate its true composite reward49

RθT ,θr,θh . Our key idea is that the robot’s actions affect the state, and in turn affect the human’s next50

actions, the robot can leverage this to actively take actions that will lead the team to states in which51

the human can provide more informative demonstrations. For example, consider the dishwasher52

unloading task, where the robot and human must collaboratively unload 3 bowls and 1 cup (see53

Figure 1). If the robot reaches for the cup, it leaves the human with no choice but to unload one of54

the three remaining bowls. Had the robot reached first for one of the bowls, the human would have55

the option of choosing between the cup or one of the three bowls. Opting for this more informative56

state would have given the robot more information about the human’s preference between bowls and57

cups, since the human would have made a decision between the two objects. We will next formalize58

this desire to maneuver the team into informative state using an information gain metric.59

Algorithm 2 represents the planning algorithm which seeks out next states with high potential infor-
mation gain. In line 5, we perform a Bellman backup to compute a task-based Q given the current
beliefs b (Equation ??). Q(s, ar, ah, b) represents expected discounted future composite team re-
wards given b. The robot’s information gain

I(b, s, ar) = H(b)− Eπ̂h,T [H(b|s, ar)]
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with expected entropy Eπ̂h,T [H(b|s, ar)] under the predicted human policy π̂h and the transition60

dynamics T , using Equation ??. In line 11 of Algorithm 2, the information gain of ar in state s is61

added to the Q-value as a boost to actions that would guide the team towards most informative states62

(Equation ??). If the next state is not informative given any human action, then there will be no63

information gain boost given to any action. The α term (Equation ??) is a switch that turns on and64

off the information gain boost. The information gain objective seeks to reduce uncertainty over the65

human individual reward functions in Θh. However, multiple reward functions can lead to the same66

predicted human action. When the beliefs begin converging on the same predicted human action, the67

robot will deprioritize seeking information gain. α measures the intersection of the shared predicted68

human actions by the top probability human individual reward functions in the beliefs b.69

α = |
⋂

θ̂h∈Θh

{a | πh(a|s; θ̂h) = max
b

π̂h(b|s; θ̂h) ∧ b(θ̂h) = max
θ̄h

b(θ̄h)}| (2)

The robot thus replans under updated beliefs, while seeking informative states in which the human70

has opportunity to provide informative decision. If the next state is not informative given any human71

action, then there will be no information gain boost.72

Upon observing the action of the human, current state, and next state, the robot updates its beliefs73

(b) over the hypothesis space (Θh) and produces a predicted policy for the human (π̂h). The robot74

then replans its actions seeking information gain. This online decision process comprises our full75

algorithm: Bayesian Information Seeking Learner (BaISL). See Algorithm 3. BaISL is an approach76

to the ICPL task. While the task is not complete, in each timestep, the robot updates its beliefs based77

on the previous human action and state using Algorithm 1. Then, the robot replans seeking potential78

information gain using Algorithm 2 (line 8). The robot samples an action from its computed policy79

(line 9), while the human chooses an action as well. The environment transitions to the next state.80

Once the task is complete, the taem receives the total composite reward obtained over the interaction81

(line 14).82

1.3 Simulated Evaluation83

1.3.1 Simulated Human Models84

We experiment with three types of simulated humans. For each agent type, we experiment with85

temperatures β →∞ (rational), and the other with β = 1.86

Algorithm 2 (PSIG) Plan Seeking Information Gain
Input: Beliefs over human reward functions b, Predicted human policy π̂h

Parameter: θr, θT
Output: πr

1: V (s)← Initialize V (s) randomly
2: while not converged do
3: for s ∈ S do
4: for (ar, ah) ∈ Ar ×Ah do

5: Q(s, ar, ah, b) =
∑̂
θh

b(θ̂h)
∑
s′∈S

T (s′|s, ar, ah)
(
Rθ̂h,θr,θT (s, ar, ah, s′) + γV (s′)

)
6: end for
7: V (s)← max

(ar,ah)∈Ar×Ah
Q(s, ar, ah, b)

8: end for
9: end while

10: α = |
⋂

θ̂h∈Θh{a | πh(a|s; θ̂h) = max
b

π̂h(b|s; θ̂h) ∧ b(θ̂h) = max
θ̄h

b(θ̄h)}|

11: πr(s)← argmax
ar∈Ar

∑
ah∈Ah

∑̂
θh

b(θ̂h)π̂h(ah|s; θ̂h)
(
Q(s, ar, ah, b) + αI(b, s, ar)

)
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Figure 1: This toy example demonstrates an example of the effect of the information gain measure
on the behavior of the robot. The robot and human must collaborate to load a dishwasher with 3
bowls and 1 cup; the team gets +1 reward for loading any object. The robot’s individual reward is
+7 for the cup, and +4 for the bowl. The human’s individual reward is +10 for the cup, and +4 for
the bowl. The robot’s hypothesis space is two options: (1) +10 for the cup and +4 for the bowl, or
(2) +4 for the cup and +10 for the bowl. Without information gain (A), the robot reaches for the cup,
but it leaves the human with no choice but to unload one of the three remaining bowls, achieving a
reward of 8 + 9 + 5 = 22. With information gain (B), the robot opts for a more informative next
state, where the robot is able to learn the human’s preference of cups over bowls, achieving higher
reward of 16 + 9 = 25.
Algorithm 3 (BaISL) Bayesian Information Seeking Learner: An approach to ICPL
Input: s0, θT , θr, θh
Output: Updated beliefs b, Predictive model of human action f

1: b← Initialize uniform prior over θh ∈ Θh

2: for task not over do
3: Human observes θT , θr, θh
4: Robot observes θT , θr, and Θh, but not θh
5: s← s0
6: while game n not over do
7: b, f ← BIRL(s, ah, b) {update beliefs about human utility}
8: πr ← PSIG(b, f) {plan seeking info gain using updated beliefs}
9: ar ∼ πr(·|s) {sample robot action ar from policy}

10: ah ← Human decides ah based on s {human takes ah}
11: s← s′ ∼ T (s′|s, ah, ar) {environment transitions to state s′}
12: end while
13: end for
14: Return RF =

∑
t
RθT ,θr,θh(st, a

r
t , a

h
t , st+1) {team observes final reward once task complete}

1. The optimistic reward human selects actions that maximize composite reward assuming the
human takes the optimal complementary action. This model is the one used in our BIRL
likelihood function, making it easier for Ours and Ours wo IG to perform well with. The
simulated human model selects action ah with probability proportional to the reward, with a
best-case prediction for ar.

ar ∼ πh(ah|st) ∝ exp

(
β max

ar∈Ar

∑
st+1

RθT ,θr,θ̂h(st, a
h
t , st+1)T (st+1|s, aht , art )

)
2. The optimistic reward human selects actions that maximize expected composite reward under

a uniform probability over all robot actions. This human decision making function does not
reflect Prag-Ped nor Ours, making this human model out of distribution for both. The human
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model computes its reward by marginalizing out ar.

πh(ah|st) ∝ exp

(
β

∑
ar∈Ar

∑
st+1

RθT ,θr,θ̂h(st, a
h
t , st+1)T (st+1|s, aht , art )

)
3. The pedagogic human uses the Pragmatic-Pedagogic Value Alignment [3] Q-value correspond-

ing to the true human individual reward. Since the human computes the expected Q-value for
its own actions by marginalizing over robot actions. This model is the one used in the Prag-Ped
robot’s likelihood function, making it easier for Prag-Ped to work well with. The Pragmatic-
Pedagogic Value Alignment solution to CIRL leverages the assumption that the human can
observe the robot’s action at the current timestep before selecting its own action. The human
policy maximizes the best expected outcome for each available action:

πh(ah|s, b, ar, θ̂h) ∝ exp(βQ(s, b, ah, ar; θ̂h)

In order to compute Q, the human considers the belief update of the robot, where the update of
the robot’s belief is determine given by the Bayesian update:

b′(θ̂h|s, b, ar, ah) ∝ πh(ah|s, b, ar, θ̂h)b(θ̂h)

The robot’s policy under the new beliefs maximizes the expected Q under the new beliefs.

πr∗(s′, b′) = argmax
ar

∑
ah,θ̂h

Q(s, b, ah, ar; θ̂h)b(θ̂h)

The Bellman equation for the human is as follows:

Q(s, b, ah, ar; θ̂h) = RθT ,θr,θ̂h(s, a
r, ah) + Es′,ah′

[
γQ′(s′, b′, ah

′
, πr∗(s′, b′); θ̂h)

]
The human is pedagogic because the Bellman equation takes into account how the robot’s
beliefs will change based on the actions of the human. Since the human cannot actually see the
robot’s action ahead of time during this collaborative decluttering task, the human marginalizes
out ar:

πh(ah|s, b, ar, θ̂h) ∝ exp(
∑

ar∈Ar

βQ(s, b, ah, ar; θh))

and acts according this policy.87

1.3.2 Baselines88

1. BaISL: Bayesian Information Seeking Learner The robot acts according to πr (Eq. ??),89

modeling the human as an optimistic reward teacher and planning towards informative90

states. The robot selects the action ar, according to Algorithm 3, maximizing the expected-91

reward-based Q-values and information gain boost.92

πr(s)← max
ar∈Ar

∑
ah∈Ah

∑
θ̂h

b(θ̂h)π̂h(ah|s; θ̂h)
(
Q(s, ar, ah, b) + αI(b, s, ar)

)
2. BaL: Bayesian Learner In this baseline, we ablate the information gain term. The robot93

policy πr is defined by Equation ??, but without the information gain term. The robot94

models an optimistic reward human and plans using expected reward under current beliefs.95

The robot selects the action ar maximizing the expected-reward-based Q-values only.96

πr(s)← max
ar∈Ar

∑
ah∈Ah

∑
θ̂h

b(θ̂h)π̂h(ah|s; θ̂h)
(
Q(s, ar, ah, b)

)
3. Prag-Ped: Pragmatic-Pedagogic Value Alignment [3] As a baseline, we compare the

performance of our agent against a solution to the CIRL [5] problem in which the human
acts pedagogically while the robot reasons practically. The robot policy assumes that the
human will act pedagogically with a Q value function that accounts for the robot’s beliefs.

5



The Pragmatic-Pedagogic value alignment solution further assumes the human observes
the robot’s action before selecting their own action. The human policy maximizes the best
expected outcome for each available action:

πh(ah|s, b, ar, θ̂h) ∝ exp(βQ(s, b, ah, ar; θ̂h)

Consider a state in which the human has only one action. an incorrect hypothesize reward
achieved will be higher for , since under Thus, we want to ensure the probabilities reflect
equal probability for selecting b by thresholding the Boltzmann potential if the action yields
a best-case reward equal to the maximum.

r(st, a
h
t |θ̂h) =

{
λ, if rbc(st, aht |θ̂h) = max

ah∈Ah
rbc(st, a

h|θ̂h)

1− λ, otherwise

In order to compute Q, the human considers the belief update of the robot, where the update
of the robot’s belief is determine given by the Bayesian update:

b′(θ̂h|s, b, ar, ah) ∝ πh(ah|s, b, ar, θ̂h)b(θ̂h)
The robot’s policy under the new beliefs maximizes the expected Q under the new beliefs.

πr∗(s′, b′) = argmax
ar

∑
ah,θ̂h

Q(s, b, ah, ar; θ̂h)b(θ̂h)

The Bellman equation for the human is as follows:

Q(s, b, ah, ar; θ̂h) = RθT ,θr,θ̂h(s, a
r, ah) + Es′,ah′

[
γQ′(s′, b′, ah

′
, πr∗(s′, b′); θ̂h)

]
While the Prag-Ped solution computes both a policy for the human and robot, we take97

and execute the policy of the robot for this robot baseline. The robot takes the action98

maximizing expected reward under the beliefs, using πr∗(s′, b′). The pedagogic human99

simulated model acts according to the human policy part of the Prag-Ped solution.100

4. MaxEnt Our second baseline is Maximum Entropy Invese Reinforcement Learning [6],
followed by replanning using the learned reward. The robot learns a reward function
f(s, ar, ah) representing RθT ,θr,θ̂h(s, ar, ah) using the demonstrated states and joint ac-
tions previously seen. The robot evaluates Q-values based on the learned reward function
f :

Q(s, ar, ah; f) = f(s, ar, ah, s′) + γ
∑
s′∈S

T (s′|s, ar, ah) max
ar′ ,ah′

Q(s′, ar
′
, ah

′
; f)

πr∗(s) = argmax
ar

∑
ah

Q(s, ar, ah; f)

1.3.3 Simulated Human Evaluation Results101

Ours performs comparably to Ours wo IG when paired with the fully rational human partners. Both102

models utilize the optimistic reward human in the BIRL likelihood function, and thus reach optimal103

performance quickly by the second round. The information gain objective causes Ours to perform104

more exploratory actions, which do not contribute to task reward in the first round. When paired105

with the β = 1 human, Ours outperforms Ours wo IG on all three human models. With the rational106

pedagogic human, Prag-Ped outperforms the other three methods in the first round. However, Ours107

outperforms the other three baselines when paired with the β = 1 pedagogic human.108

Table 1: Simulated ICPL: β = 1 Human. Entries in the table represent (mean, standard deviation)
of the percent of optimal composite reward achieved by the team.

Optimistic Reward Human Expected Reward Human Pedagogic Human

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
BaISL 0.92,0.01 0.96,0.1 0.97,0.1 0.95,0.1 0.96,0.1 0.97,0.1 0.83,0.2 0.88,0.1 0.91,0.1
BaL 0.95,0.1 0.97,0.1 0.96,0.1 0.95,0.1 0.97,0.1 0.96,0.1 0.85,0.2 0.87,0.1 0.89,0.2
Prag-Ped 0.91,0.1 0.92,0.1 0.92,0.1 0.89,0.2 0.91,0.2 0.92,0.1 0.94,0.1 0.90,0.2 0.90,0.2
MaxEnt IRL 0.92,0.1 0.91,0.1 0.91,0.1 0.85,0.1 0.91,0.1 0.91,0.1 0.77,0.2 0.85,0.2 0.85,0.2
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Figure 2: Performance evaluation of our models across different values of our λ hyperparameter
used in BIRL (line 3, Algorithm 1) shows that the BaISL, BaL methods are unaffected by λ when
partnering with the β = 1 optimistic reward human.

109

Table 2: Simulated ICPL: β = inf Human. Entries in the table represent (mean, standard deviation)
of the percent of optimal composite reward achieved by the team.

Optimistic Reward Human Expected Reward Human Pedagogic Human

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
BaISL 0.97,0.1 1.0,0.0 1.0,0.0 0.91,0.3 1.0,0.0 1.0,0.0 0.86,0.1 0.91,0.1 0.93,0.1
BaL 0.99,0.0 1.0,0.0 1.0,0.0 0.91,0.3 1.0,0.0 1.0,0.0 0.90,0.1 0.91,0.1 0.92,0.1
Prag-Ped 0.92,0.2 0.91,0.2 0.91,0.2 0.88,0.2 0.88,0.2 0.89,0.2 0.93,0.2 0.93,0.2 0.95,0.2
MaxEnt IRL 0.81,0.2 0.92,0.1 0.93,0.1 0.83,0.1 0.91,0.1 0.92,0.1 0.78,0.2 0.88,0.1 0.85,0.2

110
1.3.4 Hyperparameter Analysis111

We analyze the performance of our models across the λ hyperparameter used in BIRL (line 3, Algo-112

rithm 1). We test λ from 0.6 to 1.0 in 0.1 intervals, using the β = 1 optimistic reward human with113

robots BaISL, BaL, Prag-Ped, using 50 random game configurations. We find that performance114

of our algorithm BaISL is not affected by the choice of λ value. The Prag-Ped robot is mostly115

unaffected as well, but performance drops slightly with λ = 1.0. We use λ = 0.9 in our agents for116

all other simulated experiments. Additionally, we analyze the performance of our models across the117

β hyperparameter used in the simulated human model for the optimistic reward human with robots118

BaISL, BaL, Prag-Ped, using 50 random game configurations. The robots update their beliefs us-119

ing a beta of 1, while the TRUE β values for the simulated human are plotted on the x-axis in Figure120

3. We find that performances of BaISL, BaL, and Prag-Ped are not affected by true β value for the121

simulated human.122
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Figure 3: We find that performances of BaISL, BaL, and Prag-Ped are not affected by true β value
for the simulated human.
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