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ABSTRACT

Product bundling has been a prevailing marketing strategy that
is beneficial in the online shopping scenario. Effective product
bundling methods depend on high-quality item representations
capturing both the individual items’ semantics and cross-item re-
lations. However, previous item representation learning methods,
either feature fusion or graph learning, suffer from inadequate cross-
modal alignment and struggle to capture the cross-item relations for
cold-start items. Multimodal pre-train models could be the potential
solutions given their promising performance on various multimodal
downstream tasks. However, the cross-item relations have been
under-explored in the current multimodal pre-train models.

To bridge this gap, we propose a novel and simple framework
Cross-Item Relational Pre-training (CIRP) for item representation
learning in product bundling. Specifically, we employ a multimodal
encoder to generate image and text representations. Then we lever-
age both the cross-item contrastive loss (CIC) and individual item’s
image-text contrastive loss (ITC) as the pre-train objectives. Our
method seeks to integrate cross-item relation modeling capability
into the multimodal encoder. Therefore, even for cold-start items
without explicit relations, their representations are still relation-
aware. Furthermore, to eliminate the potential noise and reduce
the computational cost, we harness a relation pruning module
to remove the noisy and redundant relations. We apply the item
representations extracted by CIRP to the product bundling model
ItemKNN, and experiments on three e-commerce datasets demon-
strate that CIRP outperforms various leading representation learn-
ing methods. Our code and dataset will be released upon acceptance.

CCS CONCEPTS

« Information systems — Multimedia and multimodal re-
trieval; Recommender systems.

KEYWORDS

Multimodal Bundle Construction, Bundle Recommendation, Multi-
modal Pre-train, Vision Language Model

1 INTRODUCTION

Product bundling is a prevailing strategy in retail markets, which
aims to promote sales and improve consumer satisfaction by com-
bining a set of products into bundles. Especially in the era of online
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Figure 1: Comparison of three item representation learning
paradigms of incorporating semantic and relational data. Dif-
ferent from Feature Fusion and Graph Learning, our method
features at integrating the relational info into the multi-
modal encoder.
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shopping, an extensive array of products from diverse retail sectors
are gathered on a single platform, thereby boosting bundling op-
portunities. Albeit beneficial, the ever-growing number of products
poses challenges to the task of product bundling, which has also
attracted particular attention in the research community.

In order to develop an effective product bundling model, the
challenge is to learn high-quality representations of product items
from two aspects. (1) The representations need to capture the rich
semantic features of individual items. For instance, the textual de-
scription of an electronic device represents its brand and functions,
while the image of fashion apparel highlights intricate details, such
as print and texture. Such multimodal semantics are essential for
bundling items that are similar or compatible in terms of function-
ality or aesthetics. (2) The representations should be able to model
the diverse and implicit relationships among items. Such relations
(e.g., , co-purchasing or sequential interaction) imply auxiliary but
crucial information to bundle certain items. For example for the
famous beer and diaper case !, they can hardly be put together if
only semantic features are considered, while the co-purchase rela-
tionship implies that they could be a good bundling option. Given
the pervasive success of representation learning models pre-trained
on large-scale dataset [5, 12, 33], it is promising to pre-train an item
representation learning model based on large-scale e-commerce
data.

Considering the two aspects of semantic and relational modeling,
current pre-training methods can broadly be categorized into two
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streams: feature fusion and graph learning, as shown in Figure 1.
Specifically, feature fusion-based methods [11, 38] learn item repre-
sentations of each modality separately (e.g., , visual, textual, and
relational) and subsequently fuse them into a multimodal represen-
tation. Graph learning-based methods [19, 37] use pre-extracted
item semantic features as node attributes and apply graph learn-
ing algorithms to refine these features through graph propagation.
In spite of their wide usage, both of these methods suffer from
two main limitations. First, the features from multiple modalities
are learned separately, lacking in-depth cross-modal alignment or
enhancement. Second, they struggle with accurately capturing re-
lational patterns for cold-start items, which are new items that
have not yet established any relational data with other items. In the
light of these limitations, the powerful multimodal foundation mod-
els [22, 33] could be the potential solution given their outstanding
performance on various multimodal downstream tasks. However,
they focus mostly on the semantic modeling of image and text, with
limited exploration into cross-item relations.

To bridge this gap, we propose a novel but simple framework,
named Cross-Item Relational Pre-training (CIRP). Specifically, we
first construct an item-item relational graph based on the co-purchase
item pairs. From this graph, we sample a pair of items that are di-
rectly connected and adopt two unimodal encoders, i.e., , image
and text encoders [22], to generate each item’s multimodal repre-
sentations of image and text. Thereafter, we harness the cross-item
contrastive (CIC) loss to enforce the representations of related items
to be close to each other. Simultaneously, we keep the image-text
contrastive (ITC) loss of individual items to retain the cross-modal
alignment. This simple pre-training framework can naturally inte-
grate cross-item relations into the multimodal encoder (by the CIC
loss), while preserving the in-depth aligned multimodal semantics
(by the ITC loss). More importantly, even for cold-start items, CIRP
can generate relation-aware multimodal representations, which
could hardly be achieved by previous item representation learning
methods of feature fusion and graph learning. Furthermore, consid-
ering the potential noise and heavy computational cost brought by
the extensive amount of item-item relations, we propose a novel
relation pruning module to remove those noisy or redundant con-
nections. In the downstream task of product bundling, we use CIRP
to extract item representations, which are then fed to the prod-
uct bundling model ItemKNN. Experiments on three large-scale e-
commerce show that CIRP can significantly boost the performance
of product bundling compared with various leading methods for
item representation learning. More interestingly, when pruning
90% of the relations, our method only experiences a slight perfor-
mance drop, while just taking 1/10 of the pre-training time. The
main contributions of this work are summarized as follows:

o To the best of our knowledge, we are among the first to integrate
the cross-item relational information into a multimodal pre-train
model for product bundling.

e We develop a novel framework CIRP that can simultaneously
model both individual item’s semantics and cross-item relations.
We also propose a relation pruning module to improve pre-
training efficiency and efficacy.

Anonymous Authors

o Experimental results on three product bundling datasets demon-
strate the competitive performance of our method in terms of
both efficacy and efficiency.

2 RELATED WORK

We briefly review the works related to this paper from two streams:
1) multimodal pre-training, and 2) product bundling.

2.1 Multimodal Pre-training

Multimodal pre-training has experienced enormous progress in
recent years. CLIP [33] is the pioneering work that unleashes the
power of large-scale multimodal data by using a simple cross-modal
contrastive loss. Following this trend, a surge of multimodal pre-
training works emerge, such as BLIP [22] and BEiT-3 [42], which
achieve impressive performance on various downstream tasks. Es-
pecially after the breakthrough of Large Language Models (LLMs)
brought by ChatGPT, researchers swiftly grasp this opportunity by
integrating the language understanding capability of LMMs into the
multimodal models, such as BLIP-2 [21], LLaVA [26, 27], MiniGPT-
4[49], etc. These multimodal pre-trained models have demonstrated
impressive performance on various downstream vision-language
tasks. However, these models are not specifically designed to cap-
ture the relational data.

Multiple studies in the E-commerce domain consider both mul-
timodal semantic and relational pre-training, including K3M [50],
KnowledgeCLIP [32], KG-FLIP [17], FashionKLIP [44], etc. The main
objective of these works is to incorporate knowledge graph into the
pre-trained multimodal models. Nevertheless, the relations used
in these works are the triplet-formatted facts, while the cross-item
relations are not captured. Consequently, these models can only
be used for multimodal understanding-based tasks, such as classi-
fication, caption, cross-modal retrieval, etc., while the tasks (e.g.,
product bundling) that require the modeling of cross-item relations
cannot be tackled well.

2.2 Product Bundling

Product bundling aims to combine a list of individual products into
a bundle. It has been widely used in various business sections, such
as e-commerce [39, 40], fashion [30], music stream [31], games [4],
trips [25], and food [24], etc. Conventional product bundles are man-
ifested by retailers manually, which is applicable due to a relatively
small number of items. With the explosion of E-commerce, the num-
ber of items on a single platform boosts drastically, necessitating
automatic product bundling methods. There are multiple works that
are developed for personalized product bundling [1-3, 7, 14, 45].
However, most of them only rely on the relations between items,
thus they cannot deal with cold-start items. Therefore, it is neces-
sary to incorporate the multimodal semantic features of items and
build multimodal product bundling methods [31]. We deem that
the key of multimodal product bundling is to learn high-quality
relation-aware multimodal representation, which is reasonably to
be achieved by a pre-train model. To evaluate the performance of
pre-train model, we leverage a simple method, ItemKNN [36], which
is also adopted by the previous work [40] for product bundling.
Existing pre-train methods that can capture both cross-item rela-
tional and semantic data are the graph learning models, including
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Figure 2: Illustration of the overall pre-training framework (CIRP) and the downstream task of product bundling. CIRP takes
relational and multimodal semantic inputs, leverages a multimodal encoder, and is optimized by the CIC and ITC losses. For
the downstream task, we leverage the ItemKNN model and CIRP extracted item representations for product bundling.

GCN [20], GPT-GNN [16], HeCo [43], MPKG [10], etc. These meth-
ods use pre-extracted item features to initialize the node representa-
tion, and then leverage graph propagation to integrate the relational
information. They focus more on the relational information, falling
short in modeling the semantics, especially the cross-modal align-
ment. Even worse, for cold-start items that have no relations before,
such graph learning methods can hardly endow any relational data
into the item representation. Our work would attempt to integrate
the relational information into the multimodal backbone model
with the relational pre-training framework.

To be noted, our task targets at bundle construction rather than
personalized bundle recommendation [9, 29, 30, 34, 46, 48], which
aims to recommend pre-defined bundles to users according to users’
preference. Nevertheless, these two tasks are highly related to each
other since bundle construction is a pre-requisite step for platforms
before they can offer bundle services.

3 METHOD

We first introduce the preliminary of the pre-training and the down-
stream task. Then, we present our proposed CIRP, as shown in
Figure 2, which includes the relation pruning module and the pre-
training framework. Finally, we briefly describe how to use the
pre-trained representations for the task of product bundling.

3.1 Preliminary

Problem Formulation: We target at pre-training a multimodal
item representation learning model for the downstream task of
product bundling. Given a large set of product items 7 = { in}nN=1s
associated with each item’s semantic features (i.e., text 7 = {¢t;}
and image V = {v;}, where i € ') and item-item relations (i.e., an
item-item graph, will be introduced later), we aim to train a model
®(v, t; ©) that consumes an item’s image v and text ¢, then outputs

a multimodal representation (v, t) that endow both semantic and

relational information, where © is the parameters of the represen-
tation learning model. Thereafter, the item representation can be
incorporated into product bundling models.

Item Graph Construction: There are multiple types of relations
that could be considered for pre-training, such as co-purchase (two
items that are frequently purchased together), sequential interaction
(two items are interacted with a certain user consecutively), and
knowledge graph (two items are related via the knowledge graph),
etc. Following the work [40], we construct the item-item relation
graph based on the co-purchase data, which has been demonstrated
to be helpful relations for product bundling. Specifically, if two
items are purchased consecutively by the same user in a short
time period (i.e, one day), these two items will be connected with
an undirected edge. Thereby, all the items I and edges & form a
homogeneous graph G = {7, &}. It is worth noting that we aim
to develop a pre-training framework for general types of relations
among items. Different relation types or graph construction details
may impact the pre-training, which will be left for future work.

3.2 Relation Pruning

The graph is prone to include noisy or redundant edges, which
are useless or even harmful to cross-item relational modeling. It is
imperative to remove such relations from the item-item graph. More
importantly, given the extensive amount of item-item relations, it
is computationally heavy for large-scale pre-training. Therefore, to
enhance the quality of the item-item relation graph and accelerate
pre-training, we propose a relation pruning module. It comprises
of two steps: we first train a graph auto-encoder to obtain the node
representations; then we use the learned node embedding to prune
the original graph.

3.2.1 Graph Auto-Encoder. The graph auto-encoder is devoted
to learning informative node embeddings that well preserve the
graph structural information. Thereby, we follow the previous
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works [6, 13] and use the LightGCN kernel as the graph encoder. It
includes two main components: information propagation and layer
aggregation. The information propagation is defined as:

(ky _ 1 Z (k-1)
e =— e; , (1)
! |Ni|j€M !

where N; denotes the neighbors of item i in the graph, egk) e R4
is the k-th layer representation of item i during information propa-

gation, and d is the dimensionality of the representation. The first
layer of the node embedding (ego)) is randomly initialized. After
K layers of information propagation, we aggregate the representa-
tions of multiple layers and obtain the final item representation e;,

represented as:
% k
e = Z eg ). (2)
k=0

The decoder part is a typical link prediction task. Given a pair of
items (i, j), we use the inner product to calculate the score of how
likely these two items could be connected to each other, formally
represented as: s; j = elTe 7. We resort to the Bayesian Personalized
Ranking (BPR) [35] loss to optimize the model, and the loss used to
train the graph auto-encoder is denoted as:

L= =Ino(s;; —sij) + AllO|l, (3)

(i.j)€&,(i.j")¢E

where o(-) is the sigmoid function, j’ is the negative sample, ©
denotes all trainable parameters for the graph auto-encoder, and A
is the coefficient for the L2 regularization.

3.2.2 Graph Pruning. After training the graph auto-encoder, we
obtain an embedding for each item, which preserves its relational
information with other items. We use these embeddings to prune
the graph, to achieve a more concise graph with cleaner relations.
For each item i, we rank all its first-order neighbors on the graph
according to the pair-wise inner-product scores. We deem that the
pairs with higher scores are more likely to be reliable and of high
quality, while the pairs with lower scores are prone to be noisy or
redundant. For each item, we remove % of its first-order relations
that have the lowest scores, where f is a hyper-parameter to control
the pruning ratio.

After the graph pruning, we obtain a smaller graph, denoted as G.
We deem that our relation pruning method is a self-supervised boot-
strapping approach to denoising the graph data. More importantly,
the pruning is dependent on the item embeddings that are learned
from high-order graph propagation, justifying that the remained
item-item relations are more reliable.

3.3 Pre-train Framework

The architecture of the pre-train framework encompasses two parts:
multimodal encoder and pre-train objective.

3.3.1 Multimodal Encoder. We inherit the backbone of BLIP [22]
to encode the image and text input. Specifically, we use the visual
transformer [8] as the image encoder, which inputs a sequence of
image patches and uses the [CLS] token to represent the feature of
the whole. In parallel, we use BERT [5] as the text encoder, which
inputs the sequence of textual tokens and makes use of the [CLS]

Anonymous Authors

token to represent the entire text. Given the image v; and text ¢;
of an item i, the multimodal encoder outputs its visual and textual
representations, denoted as v; and t;, respectively.

3.3.2  Pre-train Objective. In order to make the pre-train model

capture both individual items’ semantics and cross-item relational

information, we jointly optimized two pre-train losses, i.e., image-

text contrastive loss (ITC) and cross-item contrastive loss (CIC).

e ITC Loss. We inherit it from BLIP [22] and ALBEF [23], targeting
at the cross-modality alignment between image and text. The
ITC loss for item i is represented as:

L€ = Contrast(vy, t;), )

where v;, t; are the visual and textual representations output
from the multimodal encoder. Contrast(-) denotes the contrastive
loss function implemented by ALBEF [23], where a momentum
encoder and soft labels from the momentum encoders are utilized.
The details of the equations for contrastive loss are provided in
the supplementary part.

e CIC Loss. We employ the CIC loss to model the cross-item rela-
tions by pulling close a pair of related items in the representation
space. For every pair of items (i, j) € G, we obtain their image
and text representations (v;, t;, v;, t;) through the multimodal
encoder. We then harness a contrastive loss to form the CIC,
denoted as:

.Ll-c;c = Contrast(v;, tj) + Contrast(t;, v;), (5)

where Contrast(-) is the contrastive loss same with Equation 4.
The difference between CIC and ITC is that the image-text con-
trastive pair of CIC is from different items, while the contrastive
pair of ITC is from the same item.

e Optimization. We first finetune BLIP on the image-text pairs
of our pre-training dataset, to fully utilize the multiple training
objectives of the original BLIP (i.e, ITM and LM) and capture
the domain characteristics. Thereafter, we take the finetuned
multimodal encoder to initialize our CIRP encoder. The overall
pre-train objective of CIRP is obtained by combining the ITC and
CIC loss, denoted as:

L=E ) L+ LI+ L. ©)
It is worth noting that even though the finetuned BLIP already
well captures the semantics of image and text, the ITC loss is
still essential during our pre-training. Empirical study (please
refer to Section 4.3) shows that only using the CIC loss could mis-
lead the pre-training and destroy the learned semantic modeling
capability.

3.4 Product Bundling

The main objective of our pre-training framework is to perform the
task of multimodal product bundling. Since this work focuses on
learning high-quality item representations through the pre-train
model, we prefer a representative but simple model for product
bundling, thus preventing any potential bias introduced by the
downstream model. Hence, we follow the previous work [40] and
employ ItemKNN [36].
P

Specifically, given a partial bundle P = {in}i:]:l that consists of a
set of N, seed items, the task of product bundling aims to complete
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Table 1: The statistics of the three e-commerce datasets for
both pre-train and downstream task of product bundling.

Pre-train Downstream Task
Datasets
#items #relations #bundles #items #avg. size
Clothing 236,387 278,259 1,910 4,487 3.31
Electronic 178,443 658,446 1,750 3,499 3.52
Food 54,323 86,373 1,784 3,767 3.58
Total 469,153 1,023,078 5,444 11,753 3.47

the bundle by selecting the most probable items from a candidate
set of items. As shown in Figure 2, we first use the pre-trained
model extract the visual and textual representations of a given item,
denoted as:

vi, ti = (v, £; 0). (7)
Next, we obtain the multimodal representation of each item by
averaging both visual and textual features x;, formally written as:

xi = S (vi+t). ®)

As following, we aggregate the representations of items in the
partial bundle using the simple average pooling strategy, resulting
in a partial bundle representation p, represented as:

1
= — Xj. 9)
Pe Z};
Then we rank all the candidate items J based on the affinity score
between p and x;, where i € 7. Finally, we get the top-k items i
that are most probably be selected to complete the input partial
bundle, denoted as:

I= arg max Z cos(xi, p), (10)
IcT|I|=k jcf

where cos(+, -) denotes the cosine similarity function, and k is the
hyper-parameter during testing. It should be noted that ItemKNN
is a model-free method, which means it includes no auxiliary train-
able parameters while only relying on the item representations
extracted by the pre-train model. We acknowledge there are more
model-based bundle recommendation models, such as auto-encoder
models [31]. However, given the extremely small scales of the
datasets [39, 40], the bundle construction models would severely
overfit to the small datasets. We leave the study of using model-
based product bundling methods for future work.

4 EXPERIMENTS

We conduct extensive experiments on e-commerce datasets to an-

swer the following research questions:

e How does our proposed CIRP model perform on the task of
product bundling, compared to various baseline methods?

o Whether are the key modules in CIRP effective?

e What are the key and interesting properties of CIRP?

4.1 Experimental Settings

4.1.1  Datasets and Evaluation Metrics. Even though product bundling
is mature in business, there are few public datasets that are suit-
able for product bundling, especially in the multimodal setting. We
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utilize the Amazon review dataset for pre-training and the three
bundle datasets, i.e., Clothing, Electronic, and Food [39, 40], for
product bundling. The statistics of the three datasets are shown in
Table 1. We unify all three datasets into a big one for pre-training.
For the downstream task of product bundling, we use the same pre-
trained model and evaluate it on the three datasets separately. Since
ItemKNN does not need training, we use the whole bundle dataset
for testing. We follow the previous work [39, 40] and employ the
Recall@k and NDCG@k to evaluate the performance of product
bundling, where k € {10, 20}.

4.1.2  Baselines. Since we are pioneering in using pre-train models
for product bundling, there are few baselines that exactly match
our task on these datasets. Therefore, we consider three streams
of item representation learning baselines according to the input
information, i.e., relation-only (REL-only), semantics-only (SEM-
only), and relation and semantics (REL-SEM). We briefly introduce
these baselines, and their implementation details are presented in
the supplementary notes.

e REL-only methods only use the relational data, without any
image or text features. They can be broadly categorized into two
types: non-sequential (MFBPR, LightGCN, and SGL) and sequen-
tial methods (Caser, GRU4Rec, and SASRec). MFBPR [35] is the
pre-train model used by Sun et al. [40]. We additionally adopt
two more powerful non-sequential methods of LightGCN [13]
and SGL [47]. For sequential methods, we implement three clas-
sical models: the CNN-based method Caser [41], the RNN-based
method GRU4Rec [15], and the self-attention-based method SAS-
Rec [18]. To be noted, given the sequential essence, during the
product bundling, we treat the input partial bundle as a sequence
and directly use the pre-trained model to get the partial bun-
dle representation p, which is then used to rank all the items.
This setting is designed to faithfully and maximally retain the
sequential methods’ capabilities.

SEM-only models only leverage the item semantic information
(i.e., the image and text), without any item-item relational data.
We implement the leading methods CLIP [33] and BLIP [22], of
which the parameters are fixed. We also finetune CLIP and BLIP
on our image-text pairs, resulting in the CLIP-FT and BLIP-FT
methods.

REL-SEM approaches utilize both relational and semantic data,
including feature fusion (FF-) methods and graph learning (GL-)
methods. Both types of methods require pre-extracted multi-
modal features, where we use the best-performing BLIP-FT as
the feature extractor. For feature fusion methods, we concate-
nate the multimodal features with relational features. We have
FF-LightGCN and FF-SGL, using the relational embedding ob-
tained by the REL-only model LightGCN and SGL, respectively.
For graph learning methods, we use the multimodal features to
initialize the node embedding and employ GCN [20] and GCL
(Graph Contrastive Learning [47]) as the graph model, resulting
in the GL-GCN and GL-GCL baselines.

4.1.3 Implementation Details. Our model is initialized from the
pre-trained BLIP [22] with BERT as text encoder and ViT-Base [8]
as image encoder. The BLIP is finetuned on our image-text pairs
for 10 epochs and our pre-train model is trained on the relation
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Table 2: The overall performance comparison, where R is short for Recall and N for NDCG. The strongest baselines are
underlined, and "%Improv." indicates the relative improvement compared to the strongest baselines.

Clothing Electronic Food

Models
R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20
MFBPR 0.0421 0.0239 0.0664 0.0300 0.0914 0.0494 0.1216 0.0571 0.0906 0.0492 0.1331 0.0599
LightGCN 0.0676 0.0377 0.1021 0.0465 0.1001 0.0584 0.1405 0.0686 0.1321 0.0711 0.1802 0.0833
REL-onl SGL 0.0890 0.0504 0.1234 0.0591 0.1008 0.0588 0.1443 0.0698 0.1446 0.0773 0.1878 0.0881

-on

Y Caser 0.0092 0.0044 0.0139 0.0056 0.0289 0.0152 0.0428 0.0187 0.0215 0.0119 0.0307 0.0141
GRU4Rec 0.0091 0.0043 0.0159 0.0060 0.0283 0.0153 0.0407 0.0184 0.0222 0.0120 0.0356 0.0154
SASRec 0.0135 0.0072 0.021 0.0091 0.0337 0.0179 0.0509 0.0222 0.0171 0.0083 0.0280 0.0110
CLIP 0.2926 0.1942 0.3704 0.2138 0.0898 0.0536 0.1363 0.0653 0.2867 0.1995 0.3524 0.2159
SEM-onl CLIP-FT 0.2982 0.1928 0.3799 0.2134 0.1006 0.0628 0.1448 0.0740 0.2633 0.1842 0.3152 0.1971
y BLIP 0.3176 0.2101 0.4041 0.2319 0.1032 0.0631 0.1518 0.0754 0.2956 0.2038 0.3444 0.2161
BLIP-FT 0.3483 0.2347 0.4303 0.2551 0.1271 0.0801 0.1739 0.0919 0.3164 0.2189 0.3758 0.2339
FF-LightGCN 0.2699 0.1809 0.3246 0.1947 0.1457 0.0872 0.1982 0.1005 0.2607 0.1766 0.3128 0.1899
REL-SEM FF-SGL 0.2900 0.1924 0.3458 0.2066 0.1613 0.0949 0.2160 0.1087 0.2727 0.1812 0.3273 0.1951
GL-GCN 0.3145 0.2149 0.3853 0.2329 0.1571 0.0947 0.2075 0.1073 0.2822 0.1953 0.3403 0.2100
GL-GCL 0.3131 0.2082 0.3790 0.2250 0.1624 0.0949 0.2195 0.1093 0.2778 0.1877 0.3400 0.2035
Ours CIRP 0.3906 0.2651 0.4866 0.2893 0.2103 0.1210 0.2801 0.1385 0.3430 0.2304 0.4140 0.2481
%Ilmprov. 12.14 1295 13.08 13.41 2950 27.50 27.61 26.72 8.41 5.25 10.16 6.07

pairs for 10 epochs using 4*A5000 (24G) GPUs. We use AdamW
optimizer [28] with a weight decay of 0.05. The learning rate is set
to 3.0 x 107> and decayed linearly with a ratio of 0.9 at the end
of every training epoch. The batch size is 24 for BLIP finetuning
and 16 for CIRP. For relation pruning, we train the graph auto-
encoder and perform graph pruning on each dataset separately.
For each dataset, we split the pre-train item relations into training,
validation, and testing sets with the ratio of 8:1:1. We search for
the best hyper-parameter of LightGCN with grid search. Wherein,
learning rate is searched from 1.0 X 1073 to 1.0 X 1074, and weight
decay is searched from 1.0 x 107 to 1.0 x 107, The embedding
size is tuned in the range of {16, 32, 64, 128 }, and the number of
propagation layers is searched from {1, 2, 3}. After determining the
best hyper-parameter for each dataset, we train the graph auto-
encoder with full data using the best hyper-parameter, and then
we use it for graph pruning. The implementation details of all the
baseline methods, including REL-only, SEM-only, and REL-SEM
baselines, are presented in the supplementary file.

4.2 Performance Comparison (RQ1)

Table 2 explicates the overall performance of our method CIRP and
the baseline methods. We have the following observations. First, our
approach CIRP beats all the baselines, especially in the Electronic
data, which achieves over 25% relative performance improvements.
Second, SEM-only methods are competitive and outperform all the
REL-only methods, demonstrating their strong generalization capa-
bility. Interestingly, for non-sequential REL-only or SEM-only base-
lines, stronger models yield better performance. This justifies that
either relational or semantic data pertains essential information for
product bundling, and the performance is positively correlated with

Table 3: The ablation study of CIRP. ITC and CIC are the
pre-train objectives, and RP represents Relation Pruning.

Clothing Electronic Food

Models

R@20 N@20 R@20 N@20 R@20 N@20
BLIP 0.4041 0.2319 0.1518 0.0754 0.3444 0.2161
-ITC&CIC 0.4303 0.2551 0.1739 0.0919 0.3758 0.2339
-ITC 0.4162 0.2264 0.2224 0.1020 0.3309 0.1860
-RP 0.4738 0.2801 0.2771 0.1372 0.4030 0.2392
CIRP 0.4866 0.2893 0.2801 0.1385 0.4140 0.2481

the pattern modeling capability on the pre-training dataset. How-
ever, for sequential-based REL-only methods, their performances
are significantly worse than their non-sequential counterparts. This
may because: 1) the items within a bundle are insensitive to the
sequential order; and more importantly 2) the sequence in the pre-
train dataset is too short. Third, even though our method surpasses
REL-only and SEM-only methods, other REL-SEM models struggle
to do it. This observation further strengthens that the pre-train
framework plays a pivotal role in maximizing the utility of all the
data. Finally, the effects of each type of data vary across different
datasets. For example, when comparing REL-SEM and SEM-only
methods, after incorporating the relational data, the performance
gain on Electronic dataset is much more than those on Clothing and
Food datasets. This indicates that relations are more prominent in
Electronic while semantics are more crucial for Clothing and Food
when bundling products.
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Table 4: Model performance under the cold-start setting.

Clothing Electronic Food
Models  setting
R@20 N@20 R@20 N@20 R@20 N@20
BLIP - 0.4041 0.2319 0.1518 0.0754 0.3444 0.2161
BLIP-FT Wam 0.4303 0.2551 0.1739 0.0919 0.3758 0.2339
cold 0.4236 0.2544 0.1736 0.0961 0.3768 0.2302
CIRP-Rp  Warm 0.4738 0.2801 0.2771 0.1372  0.4030 0.2392

cold 0.4671 0.2845 0.2462 0.1243 0.4006 0.2434

4.3 Ablation Study (RQ2)

We progressively remove modules of CIRP and curate three ablated
models to demonstrate the effectiveness of each key module; where
"-ITC&CIC" represents removing both losses of ITC and CIC, which
is identical with the BLIP-FT baseline. "-ITC" means only removing
the ITC loss while keeping the CIC loss. "-RP" corresponds to the
model variant without any relation pruning. The results of the ab-
lated models are presented in Table 3. First, "-ITC&CIC" is worse
than CIRP, illustrating that the loss combination of ITC and CIC is
reasonable and effective. Second and interestingly, "-ITC" under-
performs not only CIRP but also "-ITC&CIC". This shows that the
cross-modal alignment loss (ITC) plays a crucial role in cross-item
relational modeling. Only applying CIC loss cannot well capture
the cross-item relations, even worse, it will corrupt the semantic
modeling capability pertained within the backbone model. Jointly
optimizing both ITC and CIC loss is key to the success of CIRP.
Third, "-RP" is slightly worse than CIRP, showing that relation
pruning is able to enhance the performance.

4.4 Model Study (RQ3)

We are interested in multiple key properties of CIRP and conduct
multiple model studies to investigate the details.

4.4.1  Effects on Cold-start Items. To evaluate our model’s gener-
alization capability on cold-start items, we remove all the items,
which exist in both pre-train and downstream datasets, from the
pre-train dataset. Afterwards, we re-train our model and baselines,
and evaluate them on the product bundling task. To be noted, REL-
only and SEM-REL models cannot deal with cold-start items since
item relations are necessary for them. Given that, we only im-
plement the strongest SEM-only baseline BLIP-FT. The results in
Table 4 show that cold-start has little impact on both BLIP-FT and
CIRP-RP (with no relation pruning). We can derive that multimodal
pre-train models’ generalization capability, which has been verified
in various vision-language downstream tasks, does also apply to
the cross-item relational task of product bundling. Moreover, the
performance gap between the baseline model and our method is
consistent no matter whether in warm or cold-start setting. This
implies that the cross-item relational patterns have approximately
the same level of generalization capability with semantic patterns.

4.4.2  Effects w.rt. Varying Relation Pruning Ratio. In order to quan-
titatively illustrate the denoise and acceleration effects of relation
pruning, we progressively increase the relation pruning ratio from
10% to 90% and record the corresponding performance and training
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Figure 3: Analysis of how varying relation pruning rate affect
the pre-train efficiency and product bundling performance.

Table 5: Representation distribution comparison between the
random items (5405) and intra-bundle items (5;,¢rq)-

Clothing Electronic Food

Models - - - - - -
Savg Sintra Savg Sintra Savg Sintra
BLIP 0.4718 0.6143 0.5334 0.5992 0.5375 0.6212
BLIP-FT 0.2848 0.4484 0.3054 0.3683 0.3454 0.4605
CIRP 0.2843 0.5256 0.2732 0.4069 0.4568 0.6173

time (on 4*A5000 GPUs) under each setting, as shown in Figure 3.
First, with the pruning ratio increasing, the performance of our
model first goes up and then drops. This phenomenon aligns well
with our hypothesis that pruning prioritizes noisy relations. When
the pruning ratio keeps increasing, more benign relations start
to be removed, as a result, the performance curves turn down.
Second, with the pruning ratio increasing, the convergence time
drops significantly. For example, when the pruning ratio is 10%,
the convergence time is only half of the original cost, while the
performance slightly increases. When the pruning ratio is 90%, the
convergence time decreases to 10% of the original setting, with
only a marginal performance drop. The results show that the rela-
tion pruning can significantly improve the pre-train efficiency with
marginal or even no performance drop.

4.4.3 Representation Learning Analysis. In order to demystify the
working mechanism of our method, we quantitatively study the
representation characteristics. Specifically, we make statistics of
the average cosine similarity of random item pairs and the item
pairs within the same bundle, denoted as 3509 and 3jn¢rq, respec-
tively. We compare three models of BLIP, BLIP-FT, and CIRP, the
results of which are depicted in Table 5. Generally, the intra-bundle
similarity score is higher than that of random item pairs, for all
sthree methods and datasets. This implies that the items within the
same bundle are semantically close to each other. When comparing
BLIP and BLIP-FT, the average item similarity score decreases. This
shows that finetuning BLIP enforces the items scatter and occupy as
much space as possible, thus endowing the model’s improved repre-
sentation capability to discriminate trivial differences, which could
not be captured before finetuning. For the intra-bundle cross-item
similarity, it decreases significantly on BLIP-FT while increases on
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Figure 4: Qualitative visualization of how the item representation space shift after applying the semantic pre-training (BLIP-FT)

and cross-item relational pre-train (CIRP).

Table 6: Product bundling cases: given a query item, we show
the ground-truth item’s ranking made by various methods.

Ranking
BLIP BLIP-FT CIRP

“ & 87 7
—

Basketball Shoes

Query Item  Ground-truth

w

Running Shoes

- X . . .

Streaming Media
Players HDMI Cable

CIRP conversely, explicitly illustrating that our proposed cross-item

relational pre-train can re-gather the items within the same bundle.

To further qualitatively demonstrate how the embedding space
differs w.r.t. different models, we randomly select 20 bundles and
project their included items’” embeddings into a 2D plane, as shown
in Figure 4. Clearly, we can find out that BLIP-FT makes the gathered
items expand to a larger space, however, it simultaneously pushes
away the items within the same bundle. By applying cross-item
relational pre-train, the item distribution becomes more compact,
especially for items within the same bundle. This observation aligns
well with the quantitative results presented in Table 5.

4.4.4 Case Study. To directly demonstrate how the model performs
on product bundling, we pick two pairs of items and present them in
Table 6. Each item pair is from the same bundle, where the first item
is provided as the query while the second item is the ground-truth
item for product bundling. The number in Table 6 corresponds to
the ranking of the second item in the candidate set for different

models. We can see that by finetuning BLIP and applying cross-
item relational pre-training, the ranking of the second item keeps
increasing. Interestingly, the two cases illustrate two representative
bundling strategies. The first item pair is curated based on semantic
similarity, that’s why BLIP-FT already works very well. The second
item pair is bundled based on implicit relation, i.e., functionally
compatible, which is hard to be identified from the semantic features.
That’s why both BLIP and BLIP-FT fail to recognize the relations
between these two items. However, our method CIRP is able to
capture such implicit relations and ranks the HDMI Cable high
when given a Streaming Media Player as the query.

5 CONCLUSION AND FUTURE WORK

We explored an interesting task of integrating the cross-item rela-
tions into a multimodal pre-train model for product bundling. We
developed a novel framework CIRP that leverages both intra-item
cross-modality constrastive loss (ITC) and cross-item contrastive
loss (CIC). More importantly, to alleviate the noise in the relations
as well as reduce the training cost, we designed a relation prun-
ing method to enhance and accelerate the pre-train. We tested our
method on large-scale e-commerce datasets and evaluated its per-
formance on three product bundling datasets. Experimental results
demonstrated the effectiveness and efficiency of our method.
Despite the great progress, there are multiple potential directions
to be explored in the future. First, current work only focuses on
the first-order direct relations among items, while the higher-order
relations that contain additional crucial information should also be
considered. Second, our method only considers one type of item-
item relations, and more types of heterogeneous relations could
be more helpful yet challenging to model. Therefore, integrating
heterogeneous relations, such multiple behaviors, cross-domain
relations, and relations from knowledge graph, into the pre-train
model should be investigated in the future. Third, cross-item rela-
tional pre-training is a general paradigm and can be generalized
to more downstream tasks, such as session-based and sequential
recommendations. Finally, it is worthwhile to embrace the powerful
LLMs, for example, we can directly use LLMs for product bundling
or incorporate relations into the LLMs to boost the performance.
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