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1 DETAILED LOSS FORMULATIONS
Section 3.3.2 presents the pre-train objectives of the proposed CIRP.
In this section, we explain how ego-item contrastive loss (ITC) and
cross-item contrastive loss (CIC) are formulated in detail.

Following the setting of ALBEF [7], the similarity between the
input image and text pair is represented by the inner product of the
corresponding image representation 𝑔𝑣 (v𝑐𝑙𝑠 ) and text representa-
tion 𝑔𝑡 (t𝑐𝑙𝑠 ), and is formulated as :

𝑠 = 𝑔𝑣 (v𝑐𝑙𝑠 )⊺𝑔𝑡 (t𝑐𝑙𝑠 ), (1)

where𝑔𝑣 and𝑔𝑡 are linear transformations mapping the CLS embed-
dings to normalized low dimensional representations. Following
the design of MoCo [1], we maintain two queues storing the most
recent𝑀 image representations 𝑔′𝑣 (v′𝑐𝑙𝑠 ) and text representations
𝑔′𝑡 (t′𝑐𝑙𝑠 ) respectively from the momentum unimodal encoders.

For each input image and text, the softmax-normalized image-
to-text and text-to-image similarity is calculated as:

𝑝𝑖2𝑡𝑚 (𝐼 ) = exp(𝑠 (𝐼 ,𝑇𝑚)/𝜏)∑𝑀
𝑚=1 exp(𝑠 (𝐼 ,𝑇𝑚)/𝜏)

, (2)

𝑝𝑡2𝑖𝑚 (𝑇 ) = exp(𝑠 (𝑇, 𝐼𝑚)/𝜏)∑𝑀
𝑚=1 exp(𝑠 (𝑇, 𝐼𝑚)/𝜏)

, (3)

where 𝜏 is a learnable temperature parameter and 𝑠 (𝐼 ,𝑇𝑚) and
𝑠 (𝑇, 𝐼𝑚) are defined as:

𝑠 (𝐼 ,𝑇𝑚) = 𝑔𝑣 (v𝑐𝑙𝑠 )⊺𝑔′𝑡 (t′𝑐𝑙𝑠 ), (4)

𝑠 (𝑇, 𝐼𝑚) = 𝑔𝑡 (t𝑐𝑙𝑠 )⊺𝑔′𝑣 (v′𝑐𝑙𝑠 ) . (5)

Let y𝑖2𝑡 (𝐼 ) and y𝑡2𝑖 (𝑇 ) denote the ground-truth one-hot similarity,
where negative image-text pairs have a probability of 0 and the
probability of positive ones are 1. In ITC loss, the image-text pairs
of the same items are regarded as positive pairs. The image-text
contrastive loss is defined as the cross-entropy H between the
softmax-normalized image-text similarities p and ground-truth
labels y𝑒𝑔𝑜 of the image-text pairs of the same items:

L𝑖𝑡𝑐 = 𝐻 (y𝑖2𝑡𝑒𝑔𝑜 (𝐼 ), p𝑖2𝑡 (𝐼 )) + 𝐻 (y𝑡2𝑖𝑒𝑔𝑜 (𝑇 ), p𝑡2𝑖 (𝑇 )) . (6)

And in CIC loss, the cross-item image-text pairs from correlated
items (𝑖, 𝑗) ∈ G̃ are also regarded as positive pairs. We align the
cross-item image-text similarities p with the co-purchase relations
y𝑟𝑒𝑙 from correlated cross-item image-text pairs:

L𝑐𝑖𝑐 = 𝐻 (y𝑖2𝑡
𝑟𝑒𝑙

(𝐼 ), p𝑖2𝑡 (𝐼 )) + 𝐻 (y𝑡2𝑖
𝑟𝑒𝑙

(𝑇 ), p𝑡2𝑖 (𝑇 )). (7)

2 BASELINE IMPLEMENTATION DETAILS
In this section, we present the implementation details of each base-
line model.

2.1 Relation-only Pre-training
This type of methods learn pre-trained item representations from
the item-item relations.

• MFBPR [9] learns item representations using the user-item inter-
action bipartite graph, which is from the Amazon review dataset
and used for pre-training. Factorized from the user-item interac-
tion matrix, the item embeddings are optimized with BPR loss
through the pairwise user-item interaction prediction task.

• LightGCN [2] is one of the SOTA graph learning methods. It
captures the high-order neighbor information by linearly propa-
gating the node embeddings. We train the LightGCN model on
the item-item relation graph with the task of link prediction. BPR
loss is adopted as the optimization target.

• SGL [11] follows the graph learning paradigm of LightGCN. In
addition, it generates two views of item representations using dif-
ferent data augmentations and applies self-supervised contrastive
learning between item representations from two different views.
Similar to the implementation of LightGCN, we train SGL on
the item-item relation graph with link prediction task using BPR
loss.

• Caser [10] is a CNN-based method that models the sequential
patterns by adopting convolutional operations on the embed-
ding matrix of a few most recent items. It achieves competitive
performance on tasks like sequential recommendation. We train
Caser with the item purchase sequence from pre-train data and
the model is optimized with BPR loss.

• GRU4Rec [3] applies GRU modules to model the sequential
patterns within the input item purchase sequences. By inputting
the sequences of items purchased by the same user from pre-train
dataset, the BPR loss is utilized to train the model to predict the
next item given prior item sequence.

• SASRec [4] is a popular sequential method commonly used in
fields like sequential recommendation. It models the item pur-
chase sequences through self-attentionmodules, where the user’s
interest is captured dynamically. The SASRec is trained using the
sequences of items purchased by the same user from pre-train
dataset with BCE loss.

For all the six methods above, we optimize the model using Adam
optimizer and adopt grid search to find the best hyper-parameters.
The learning rate is searched from 0.01 to 1.0×10−4, weight decay is
searched from 1.0× 10−4 to 1.0× 10−7, and embedding size is tuned
in range of [16, 32, 64, 128]. For the three graph-based methods, the
number of graph propagation layers in LightGCN and SGL is tuned
within [1, 2, 3]. The temperature used in contrastive loss is tuned
from 0.05 to 0.4 and the weighting coefficient applied on contrastive
loss is tuned from 0.01 to 0.5. For the sequence-based methods, the
maximum sequence length is set to 20 and zero-padding is applied
to complete the short sequences. All these methods are trained on
a single NVIDIA A5000 (24G) GPU.
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2.2 Semantic-only Pre-training
These methods generate the item representations using the image
and textual descriptions of the items. We adopt two pre-train vision-
language models, CLIP [8] and BLIP [6], as the multimodal feature
extractor. The item representation is obtained by averaging the
normalized visual feature and the normalized textual feature of
each item. To further enhance the effectiveness of the pre-trained
vision-language models under the product bundling task, we fine-
tuned both CLIP and BLIP using the image-text pair of items in the
Amazon review dataset.

Both CLIP and BLIP are finetuned using AdamW optimizer with
the learning rate set to 3.0×10−5 and decayed linearly at the rate of
0.9 in each epoch. The weight decay in finetuning CLIP is set to 0.01
and weight decay in finetuning BLIP is set to 0.05. The batch size is
set to 64 when finetuning CLIP and set to 24 when finetuning BLIP.
Both models are finetuned on four NVIDIA A5000 (24G) GPUs.

2.3 Relational and Semantic Pre-training
These methods learn item representations from both semantic and
relational information of the items. We first extract the multimodal
features from both item texts and images using the finetuned BLIP,
which is the best baseline model for multimodal feature extraction.
The extracted semantic features will be used as input for training
REL-SEM methods.
• Feature Fusion (FF) generates item representations by pool-
ing relational and semantic item features. The pooling methods
could be simple concatenation, average pooling ormore advanced
attention-based pooling. In this paper, we implement feature fu-
sion by summing the normalized relational features with the
normalized semantic features. FF-LightGCN fuses the features
from the relational-only LightGCN model with semantic features
extracted by the finetuned BLIP, and FF-SGL fuses the features
from SGL and the finetuned BLIP.

• GL-GCN [5] combines relational features with semantic features
by initializing node embeddings with multimodal features ex-
tracted by pre-trained vision-language models. The high-order
item relations are modeled through graph propagation in GCN.
The model is optimized by the task of link prediction with BPR
loss.

• GL-GCL [11] follows the setting of GL-GCN, while the difference
is that an additional graph contrastive learning is applied over
two augmented views of GCN. Similarly, GL-GCL is trained with
BPR loss.
Both GL-GCN and GL-GCL are optimized with Adam optimizer

and the best hyper-parameter is determined by grid search. The
learning rate is searched from 0.03 to 1.0 × 10−4 with weight decay
searched from 3.0× 10−5 to 1.0× 10−7, embedding size searched in
range of [16, 32, 64, 128], number of propagation layers searched
within [1, 2, 3]. Temperature of contrastive loss is tuned from 0.05 to
0.4 and the corresponding weighting coefficient is tuned from 0.001
to 0.5. The GL-GCN and GL-GCL are trained on a single NVIDIA
A5000 (24G) GPU.
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