
Supplementary Materials1

A Overview2

In this supplementary material, we will give the derivation for geometry guided diffusion model3

for stereo vision in Appendix B, introduce different metrics in Appendix C, study some interesting4

properties of our method in Appendix D, provide more implementation details in Appendix E, ana-5

lyze different guidance modes in Appendix F, study alternative guidance in Appendix G, show more6

results of our methods in Appendix H, provide more data samples in our dataset HISS in Appendix I,7

and perform more experiments of mobile part manipulation in Appendix J.8

B Geometry Guidance for Stereo Vision9

To complement the main body of the paper, we provide the detailed derivation of the geometry10

guided diffusion model which appears in Equation 9 in the main text.11

B.1 Stereo Vision12

We define y = {Il, Ir} represents the conditioning stereo image pair and xt is the noisy depth at13

time step t. By Bayes’ theorem, we have14

p(xt|y) =
p(xt)p(y|xt)

p(y)
(1)

log p(xt|y) = log p(xt) + log p(y|xt)− log p(y) (2)
Task derivative with respect to xt on both sides of Equation 2:15

∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt) (3)
Now, partition the second term log p(y|xt) as16

log p(y|xt) = log p(Il, Ir|xt)

= log p(Il|xt) + log p(Ir|Il, xt)

= log p(xt|Il) + log p(Il)− log p(xt) + log p(Ir|Il, xt) (4)
where we apply Bayes’ theorem again in the third equation. Substitute Equation 4 back to Equation17

3, we have18

∇xt log p(xt|y) = ∇xt log p(xt|Il) +∇xt log p(Ir|Il, xt) (5)
The first term is learned by the denoising network and the second term is the geometric guidance19

which can be calculated by stereo matching. In the experiments, we leverage more available data20

such as Ir and D̃ in addition to Il into the network during training:21

∇xt
log p(xt|y) = − 1√

1− ᾱt
sθ∗(xt, t, y; θ) + s∇xt

Lsm(Il, Ir, xt) (6)

Here we empirically scale the geometry gradient with s ∈ R+ and set it to 1 in the experiments.22

B.2 Extend to Active Stereo Vision23

In addition to the left and right IR images, active stereo cameras provide another color image Ic24

captured from a third color camera. While the above derivation directly applies to active stereo25

cameras if we ignore the color image, we found that further feeding the color image into the network26

slightly improves the performance in DREDS [1]. However, most stereo datasets are passive and27

do not have additional color images. Therefore, during mixed dataset training, this additional color28

image is dropped. Here, we provide an active stereo version of derivation analogous to Equation 4:29

log p(y|xt) = log p(Ic, Il, Ir|xt)

= log p(Ic|xt) + log p(Il|Ic, xt) + log p(Ir|Il, Ic, xt)

= log p(Ic|xt) + log p(Ir|Il, xt)

= log p(xt|Ic) + log p(Ic)− log p(xt) + log p(Ir|Il, xt) (7)
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where the third equation assumes p(Il|Ic, xt) = 1. The Ic and Il are already aligned and the only30

difference is the shadow pattern projected from the camera IR projector. The shadow pattern is31

irrelevant to the depth. Therefore, Ic is approximately the sufficient statistic of Il. For the same32

argument, we have log p(Ir|Il, xt) = p(Ir|Il, Ic, xt). Likewise, the guidance for the active stereo33

camera can then be obtained by substituting Equation 7 into Equation 3:34

∇xt
log p(xt|y) = ∇xt

log p(xt|Ic) +∇xt
log p(Ir|Il, xt) (8)

In active stereo vision scenarios, we further train the network by conditioning it also on other avail-35

able images. We set y = {Il, Ir, Ic, D̃}.36

C Baselines and Metrics37

Baselines. NLSPN [2] is a depth completion work that uses an end-to-end non-local spatial prop-38

agation network to predict dense depth given sparse inputs. LIDF [3] proposes to learn an implicit39

density field that can recover missing depth given noisy RGB-D input. SwinDR [1] proposes a40

depth restoration framework based on SWIN transformer and is trained on a proposed table-top41

dataset with STD objects (DREDS). ASGrasp [4] proposes a stereo-depth estimation method based42

on Raft-Stereo to predict two-layer depths for tabletop grasping. Raft-Stereo [5] is the seminal deep43

stereo network. To this day, it is still the most adopted architecture in stereo vision.44

Disparity Metric. End-Point Error (EPE) = 1
H×W

∑
|X − X̂| is the mean absolute difference45

for all pixels between the ground truth and estimated disparity map.46

Depth Metrics. We use the following depth metrics: 1) RMSE =
√

1
H×W |D − D̂|2 is the47

root mean square error between ground truth and predicted depths, 2) MAE = 1
H×W |D − D̂|48

is the mean absolute depth error, 3) REL = 1
H×W |D − D̂|/D is the mean absolute relative dif-49

ference, and 4) accuracy metric δi is the percentage of pixels satisfying max(d
d̂
, d̂
d ) < δi where50

δi ∈ {1.05, 1.10, 1.25}.51

D Interesting Properties of Generative Stereo Vision52

D.1 Uncertainty Estimation53

Because our method is diffusion model based, we inherited the stochasticity in the reverse sampling54

process. To visualize the stochasticity, we run the same input 10 times. The uncertainty is obtained55

as the variance of the output disparity map. We conduct the experiments on DREDS and show the56

results in Figure 1. We observed that high uncertainty area corresponds to object edges where depth57

dramatically changes between foreground and background. Flat surfaces have lower uncertainty as58

the geometry is simpler. Such uncertainty could be used to filter outliers.59

D.2 Generalization Comparisons with Monocular Methods60

While our method works only in stereo cases, there are seminar works predicting depth given single61

RBG images. The attractive part of monocular depth estimation (MDE) is that more data is available62

for training. Therefore, these methods can be generalized well in the wild. While some monocular63

methods like ZeoDepth [6] propose to recover metric depth after a special training procedure, most64

monocular methods predict relative depth. The relative depth can be recovered with an absolute65

scale which can be obtained via other sensors like lidar or prior knowledge. However, our experi-66

ments (Figure 2) found that most monocular methods produce inferior quality depth even without67

considering the absolute scale.68
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Figure 1: We visualize sample variance as uncertainty in the last column.

Figure 2: Generalization comparisons with State-of-the-art monocular depth estimation methods.
All the results except ours are taken from their official web demo. Different methods used different
color maps.

E Implementation Details69

E.1 CUDA accelerated Semi-Global Matching70

We used libSGM[7], a CUDA-accelerated, widely adopted implementation of the Semi-Global71

Matching (SGM)[8] algorithm. To seamlessly integrate libSGM into our pipeline, we utilized py-72

bind11 to encapsulate the original codebase within our Python-based framework. This integration73

allows the adapted version of libSGM to achieve a performance of approximately 55 frames per74

second (FPS) at an input resolution of 960 × 540, with around 380MB of memory allocated on an75

NVIDIA RTX 4090 GPU.76

E.2 Network HyperParameters and Training77

We implement our network using Hugging Face Diffusers [9] and pre-compute raw disparity maps78

using libSGM [7]. The network is trained 600 epochs with the batch size 6×8 and a constant learning79

rate 0.0001. All the images are randomly cropped to 320×240 and no other data augmentation is80

used during training. We use cosine scheduler [10] with 128 denoising time steps for βt starting at81

0.0001 and ending at 0.02. We use UNet as our denoising network. In the DREDS experiments,82

we have 6 downsampling ResNet blocks each layer has 128, 128, 256, 256, 512, and 512 channels.83
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The second-to-last channel is a downsampling block with spatial attention. We use MSE as our84

loss function. For the SceneFlow experiment, we scale down the original image resolutions from85

960×640 into 480×270. We use a multi-resolution pyramid noise strategy as in [11]. We further86

use pretrained StableDiffusion v2 [12] in the grasping experiments and adapt the input Conv block87

accordingly to the conditioning inputs [11]. We also train the mixed datasets including DREDS,88

HISS, and SceneFlow at the batch level.89

E.3 Grasping Implementation and Hardware Setup90

In the grasping experiments, we mount the RealSense D415 on the wrist of the arm. After the camera91

captures a frame, we first acquire the depth map by D = (f ·b)/X . Then back project the depth into92

point cloud P = DK−1P , where K ∈ R3×3 is the camera intrinsics and P are the homogeneous93

points in the image plane corresponding to each pixel. With the restored point cloud, we leverage94

GSNet [13] to predict 6 DoF grasping poses. To increase the grasping success rate for all baselines,95

we filter the grasping pose which has the angle between the grasping pose and the z (up) direction96

less than 30 degrees. We always select the grasping pose with the highest core and transform it into97

the robot base frame. Then we grasp the object with a motion planner like CuRobo [14]. We did not98

perform workspace point cloud cropping operation as in the baseline ASGrasp [4] hence leading to99

an overall success rate drop in the main text compared with the numbers reported in ASGrasp.100

We use a wheeled mobile base mounted with two 7 DoF customized arms in the real mobile grasping101

experiments. Each arm attaches a parallel gripper. We only use the left arm in the experiments.102

Figure 3 displays the robot and the workplace.103

Figure 3: The robot used in the real mobile grasping experiments.

F Ablations on Network HyperParameters, Architectures and Samplers104

F.1 Ablations on Network HyperParameters and Architectures105

We provide ablation studies on the DREDS dataset in Table 1. The baseline is conditioned on the106

left, and right image and raw disparity. Its hyperparameters and network architecture are described107

in Appendix E.2. We also trained variants with different network architectures, loss functions, and108

noise strategies. We reduce the channels from 512 to 256 of the last two layers denoted as reduced109

channels. We also changed the loss function from MSE to L1 and used the default standard Gaussian110

noise.111

F.2 Ablations on Different Samplers and Inference Time112

The main factors of run time are the input image resolution and the number of denoising steps.113

We report the inference time of our method in Table 2. We also evaluate the effects of different114
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Table 1: Ablation Studies on Hyperparameters and Network Architectures.

Methods RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Baseline 0.0040 0.0014 0.0010 99.71 99.90 99.99
D3RoMa (reduced channels) 0.0048 0.0016 0.0011 99.60 99.85 99.98
D3RoMa (L1 loss) 0.0047 0.0008 0.0012 99.60 99.83 99.98
D3RoMa (randn noise) 0.0048 0.0017 0.0012 99.64 99.87 99.98

samplers in the real experiments where we used pretrained StableDiffusion [12]. The network total115

has about 865M parameters. We fixed the number of time steps during training to 1000 and used the116

same standard cosine scheduler [10], and all the samplers take 10 denoising steps during inference.117

We perform reverse sampling using different schedulers implemented by Diffusers [9]. All the118

samplers achieve similar qualitative results except Euler Ancestral. The results are shown in Figure119

4. Empirically, we select DDPM with 10 denoising steps and a resolution of 640×360 in our real120

experiments.121

Table 2: Runtime and memory consumption of our method during reverse sampling for single input.
All times are reported on NVIDIA A100.

Disparity Resolutions 1280×720 640×360 480×270 320×180 224×126

5 Denoising steps 5.53 2.56 2.31 1.95 1.96
10 Denoising Steps 8.82 3.19 2.91 2.25 2.17
50 Denoising Steps 34.56 8.45 5.79 4.28 3.86

Peak Memory Usage 18.62G 7.87G 7.57G 6.94G 6.89G

Figure 4: Comparisons of different samplers used during reverse sampling. We use DDPM [15]
sampler with 10 steps in the experiments.

G Alternative Guidance with Raw Disparity122

This section will study alternative guidance to the diffusion model during the reverse sampling123

processes. In the stereo vision case, the gradient of the photometric loss is obtained by checking124

the consistency of the left and right images. Mathematically, the gradient should also have the same125

direction with x0 − xt where x0 is the ground truth disparity. In test time, x0 is unknown but can126

be approximated by an external less noisy measurement source such as a Lidar. The external depth127

measurement can be converted to the disparity space x̃0 and is multiplied with a mask if it is sparse:128

∇xt
log p(xt|y) = ∇xt

log p(xt|Ic) +∇xt
log p(Ir|Il, xt)

≈ ∇xt
log p(xt|Ic) + αω(u, v)sign(x̃0 − xt) (9)

We here experiment with raw depth guidance. The guidance x̃0 is approximated by camera raw129

sensor depth. Therefore the sign(x̃0 − xt) is the approximate gradient. We set mask ω(u, v) =130

(x̃0 > 0) and α is a constant controls the guidance strength. We qualitatively study the guidance131
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of the approximate gradient in Figure 5. The benefits of guidance by the approximate gradient are132

limited when raw depth is highly noisy.

Figure 5: Guidance with raw disparity.
133

H Evaluations on HISS dataset134

H.1 Results on HISS Test Split135

In this section, we train other SOTA stereo methods from scratch and compare with our method136

on the HISS dataset. We further rendered 300 images in 5 new scenes different from our training137

dataset as the test set. The results are given in Table 3. We also show more real depth estimation138

results in Figure 7 and more comparisons in Figure 8, which we consider also attributed to the joint139

training on our dataset.

Table 3: Quantatives evaluations on HISS dataset.

Methods EPE RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Raft-Stereo 0.0721 0.0521 0.0092 0.0164 95.26 98.89 99.10
D3RoMa 0.0579 0.0378 0.0067 0.0084 97.86 99.22 99.76

140

H.2 Deonising Process141

One of the motivations for using the diffusion model to predict depth is the multi-step reverse sam-142

pling process. It resembles the iterative solver which has been proven successful in RAFT [16] and143

its successors. In figure 6 we show an example of the denoising process trained on our HISS dataset.144

The total denoising steps is set to 128 and we visualize every 32 timesteps.

Figure 6: Visualization of the denoising process on the HISS dataset. The 4 left columns show the
denoising steps every 2 time steps. The 2 right columns show the final output and ground truth
disparity map respectively.

145
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Figure 7: More in the wild examples.

I HISS Dataset146

Training diffusion models for stereo depth estimation are more data-demanding due to lacking spe-147

cialized network architectures and loss functions as in traditional deep stereo networks. Most ex-148

isting stereo depth datasets are either synthetic (SceneFlow [17]) or with limited diversity, such as149

ClearGrasp[18], LIDF [3], DREDS [1]. While deep stereo methods [5, 19, 20, 21] are trained on150

a small number of stereo images and show strong generalizability performance, they are unable to151

predict correct depth for transparent objects, which are critical for many robotic tasks. Part of the152

reason is lacking data. Shi et al. [4] and Dai et al. [1] both created specially crafted transparent and153

specular objects but both datasets are table-top scenes. Based on the above motivations, we com-154

pensate existing datasets with more indoor room-level stereo images with domain randomization on155

object materials and scenes.156

One aspect that characterizes our dataset is scene-level and photo-realistic rendering of the specular,157

transparent, and diffuse objects. We rendered over 350 objects in 168 different HSSD [22] scenes.158

The objects randomly fall onto the furniture, ground, and tables to simulate real-world object place-159

ments. The infrared (IR) images are rendered properly with seeing-through or specular lighting160

effects on Non-Lambertian surfaces. We provide some data samples in Figure 9.161
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Figure 8: Qualitative comparisons with other state-of-the-arts. Each row (from left to right) displays
rgb image and disparity map: RGB image, our method, pre-trained Raft Stereo, Raft Stereo fine-
tuned on our dataset, and ASGrasp.

J Part Manipulation162

J.1 Interaction Policy163

Following [23, 24], we first do part segmentation and pose estimation using the perception method.164

Based on the predictions of the part poses, we move the robot arm toward the target part and turn165

the gripper in the direction suitable for grabbing. Finally, we move the gripper along the proposed166

trajectories toward the target position, following our GAPart pose definition.167

J.2 Experiment Setup168

In the experiments, we use the Franka Emika Panda robot arm with CuRobo[14] motion planning169

and the end-effector trajectory just like GAPartNet[23]. For manipulation tasks in the real world,170

a partial point cloud of the target object instance is acquired from our method. With the proposed171

network and manipulation heuristics in [23], the pose trajectory of the end-effector can be predicted.172

Then we use cuRobo[14] to solve the pose of Franka to follow our end-effector trajectory.173
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Figure 9: RGB Data samples from Our dataset HISS except the bottom row which shows a group of
rendering of RGB image, (left) IR image, and normal.
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