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Supplementary Materials

A Overview

In this supplementary material, we will give the derivation for geometry guided diffusion model
for stereo vision in Appendix B, introduce different metrics in Appendix C, study some interesting
properties of our method in Appendix D, provide more implementation details in Appendix E, ana-
lyze different guidance modes in Appendix F, study alternative guidance in Appendix G, show more
results of our methods in Appendix H, provide more data samples in our dataset HISS in Appendix I,
and perform more experiments of mobile part manipulation in Appendix J.

B Geometry Guidance for Stereo Vision

To complement the main body of the paper, we provide the detailed derivation of the geometry
guided diffusion model which appears in Equation 9 in the main text.

B.1 Stereo Vision

We define y = {I;, I,.} represents the conditioning stereo image pair and z; is the noisy depth at
time step t. By Bayes’ theorem, we have

p(z)p(ylz:)

p(ely) = 1
log p(x+|y) = log p(x¢) + log p(ylx+) — log p(y) 2

Task derivative with respect to x; on both sides of Equation 2:
Va,logp(z¢|y) = Vailogp(zt) + Ve log p(y|ae) 3)

Now, partition the second term log p(y|z+) as
log p(y|x1) = log p(11, I+|x)
= log p(Li|z¢) + log p(Iy |11, )
= log p(z| 1) + log p(1;) — log p(x1) +log p(Iy |11, z1) )
where we apply Bayes’ theorem again in the third equation. Substitute Equation 4 back to Equation
3, we have
Vi logp(aily) = Vay logp(ae| ;) + Vay log p(L |1, x4) (5)
The first term is learned by the denoising network and the second term is the geometric guidance

which can be calculated by stereo matching. In the experiments, we leverage more available data
such as I, and D in addition to [; into the network during training:

1
Va, logp(a|y) = —ﬁ%*(wt,t,y; 0) + sV, Lom(L1, I, ) 6)

Here we empirically scale the geometry gradient with s € R™ and set it to 1 in the experiments.

B.2 Extend to Active Stereo Vision

In addition to the left and right IR images, active stereo cameras provide another color image I,
captured from a third color camera. While the above derivation directly applies to active stereo
cameras if we ignore the color image, we found that further feeding the color image into the network
slightly improves the performance in DREDS [1]. However, most stereo datasets are passive and
do not have additional color images. Therefore, during mixed dataset training, this additional color
image is dropped. Here, we provide an active stereo version of derivation analogous to Equation 4:

log p(ylw:) = log p(Ie, I, I |¢)
= log p(Ic|zs) +log p(L|1c, x¢) +log p(Iy |11, Ie, 1)
= logp(Ic|xt) + log p(L |1}, x4)
= log p(z¢|1c) 4 log p(I.) — log p(x¢) + log p(1, |1}, x;) (7)
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where the third equation assumes p([;|I., z;) = 1. The I. and I; are already aligned and the only
difference is the shadow pattern projected from the camera IR projector. The shadow pattern is
irrelevant to the depth. Therefore, I. is approximately the sufficient statistic of [;. For the same
argument, we have log p(I,.|I;, z;) = p(I|1;, I, z;). Likewise, the guidance for the active stereo
camera can then be obtained by substituting Equation 7 into Equation 3:

Va, logp(atly) = Ve, logp(z|1.) + Vo, log p(I |1, z4) €]

In active stereo vision scenarios, we further train the network by conditioning it also on other avail-
able images. We sety = {I;, I,., I, D}.

C Baselines and Metrics

Baselines. NLSPN [2] is a depth completion work that uses an end-to-end non-local spatial prop-
agation network to predict dense depth given sparse inputs. LIDF [3] proposes to learn an implicit
density field that can recover missing depth given noisy RGB-D input. SwinDR [1] proposes a
depth restoration framework based on SWIN transformer and is trained on a proposed table-top
dataset with STD objects (DREDS). ASGrasp [4] proposes a stereo-depth estimation method based
on Raft-Stereo to predict two-layer depths for tabletop grasping. Raft-Stereo [5] is the seminal deep
stereo network. To this day, it is still the most adopted architecture in stereo vision.

Disparity Metric. End-Point Error (EPE) = Hxlw MIX — X | is the mean absolute difference

for all pixels between the ground truth and estimated disparity map.

Depth Metrics. We use the following depth metrics: 1) RMSE = |/ L—|D — D|? is the
root mean square error between ground truth and predicted depths, 2) MAE = ﬁw — ﬁ|

is the mean absolute depth error, 3) REL = 1 |D — D|/D is the mean absolute relative dif-
ference, and 4) accuracy metric §; is the percentage of pixels satisfying max(%, %) < §; where

§; € {1.05,1.10,1.25}.

D Interesting Properties of Generative Stereo Vision

D.1 Uncertainty Estimation

Because our method is diffusion model based, we inherited the stochasticity in the reverse sampling
process. To visualize the stochasticity, we run the same input 10 times. The uncertainty is obtained
as the variance of the output disparity map. We conduct the experiments on DREDS and show the
results in Figure 1. We observed that high uncertainty area corresponds to object edges where depth
dramatically changes between foreground and background. Flat surfaces have lower uncertainty as
the geometry is simpler. Such uncertainty could be used to filter outliers.

D.2 Generalization Comparisons with Monocular Methods

While our method works only in stereo cases, there are seminar works predicting depth given single
RBG images. The attractive part of monocular depth estimation (MDE) is that more data is available
for training. Therefore, these methods can be generalized well in the wild. While some monocular
methods like ZeoDepth [6] propose to recover metric depth after a special training procedure, most
monocular methods predict relative depth. The relative depth can be recovered with an absolute
scale which can be obtained via other sensors like lidar or prior knowledge. However, our experi-
ments (Figure 2) found that most monocular methods produce inferior quality depth even without
considering the absolute scale.
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Figure 2: Generalization comparisons with State-of-the-art monocular depth estimation methods.
All the results except ours are taken from their official web demo. Different methods used different
color maps.

E Implementation Details

E.1 CUDA accelerated Semi-Global Matching

We used 1ibSGM[7], a CUDA-accelerated, widely adopted implementation of the Semi-Global
Matching (SGM)[8] algorithm. To seamlessly integrate 1ibSGM into our pipeline, we utilized py-
bind11 to encapsulate the original codebase within our Python-based framework. This integration
allows the adapted version of 1ibSGM to achieve a performance of approximately 55 frames per
second (FPS) at an input resolution of 960 x 540, with around 380MB of memory allocated on an
NVIDIA RTX 4090 GPU.

E.2 Network HyperParameters and Training

We implement our network using Hugging Face Diffusers [9] and pre-compute raw disparity maps
using 1ibSGM [7]. The network is trained 600 epochs with the batch size 6 x 8 and a constant learning
rate 0.0001. All the images are randomly cropped to 320x240 and no other data augmentation is
used during training. We use cosine scheduler [10] with 128 denoising time steps for /3, starting at
0.0001 and ending at 0.02. We use UNet as our denoising network. In the DREDS experiments,
we have 6 downsampling ResNet blocks each layer has 128, 128, 256, 256, 512, and 512 channels.
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The second-to-last channel is a downsampling block with spatial attention. We use MSE as our
loss function. For the SceneFlow experiment, we scale down the original image resolutions from
960x640 into 480x270. We use a multi-resolution pyramid noise strategy as in [11]. We further
use pretrained StableDiffusion v2 [12] in the grasping experiments and adapt the input Conv block
accordingly to the conditioning inputs [11]. We also train the mixed datasets including DREDS,
HISS, and SceneFlow at the batch level.

E.3 Grasping Implementation and Hardware Setup

In the grasping experiments, we mount the RealSense D415 on the wrist of the arm. After the camera
captures a frame, we first acquire the depth map by D = (f-b)/X. Then back project the depth into
point cloud P = DK ! P, where K € R3*3 is the camera intrinsics and P are the homogeneous
points in the image plane corresponding to each pixel. With the restored point cloud, we leverage
GSNet [13] to predict 6 DoF grasping poses. To increase the grasping success rate for all baselines,
we filter the grasping pose which has the angle between the grasping pose and the z (up) direction
less than 30 degrees. We always select the grasping pose with the highest core and transform it into
the robot base frame. Then we grasp the object with a motion planner like CuRobo [14]. We did not
perform workspace point cloud cropping operation as in the baseline ASGrasp [4] hence leading to
an overall success rate drop in the main text compared with the numbers reported in ASGrasp.

We use a wheeled mobile base mounted with two 7 DoF customized arms in the real mobile grasping
experiments. Each arm attaches a parallel gripper. We only use the left arm in the experiments.
Figure 3 displays the robot and the workplace.

RealSense
stereo camera

7 DoF Arm with
a parallel gripper
Wheeled mobile base

Transparent and
specular objects

One random table

Figure 3: The robot used in the real mobile grasping experiments.

F Ablations on Network HyperParameters, Architectures and Samplers

F.1 Ablations on Network HyperParameters and Architectures

We provide ablation studies on the DREDS dataset in Table 1. The baseline is conditioned on the
left, and right image and raw disparity. Its hyperparameters and network architecture are described
in Appendix E.2. We also trained variants with different network architectures, loss functions, and
noise strategies. We reduce the channels from 512 to 256 of the last two layers denoted as reduced
channels. We also changed the loss function from MSE to L1 and used the default standard Gaussian
noise.

F.2 Ablations on Different Samplers and Inference Time

The main factors of run time are the input image resolution and the number of denoising steps.
We report the inference time of our method in Table 2. We also evaluate the effects of different
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Table 1: Ablation Studies on Hyperparameters and Network Architectures.

Methods | RMSE] REL] MAE] 81057 611017 1257
Baseline 0.0040  0.0014  0.0010  99.71 99.90 99.99
D®RoMa (reduced channels) 0.0048  0.0016  0.0011 99.60 99.85 99.98
D®RoMa (L1 loss) 0.0047  0.0008  0.0012  99.60 99.83 99.98
D®RoMa (randn noise) 0.0048 00017  0.0012  99.64 99.87 99.98

samplers in the real experiments where we used pretrained StableDiffusion [12]. The network total
has about 865M parameters. We fixed the number of time steps during training to 1000 and used the
same standard cosine scheduler [10], and all the samplers take 10 denoising steps during inference.
We perform reverse sampling using different schedulers implemented by Diffusers [9]. All the
samplers achieve similar qualitative results except Euler Ancestral. The results are shown in Figure
4. Empirically, we select DDPM with 10 denoising steps and a resolution of 640x360 in our real
experiments.

Table 2: Runtime and memory consumption of our method during reverse sampling for single input.
All times are reported on NVIDIA A100.

Disparity Resolutions | 1280720 640x360  480x270  320x180  224x126
5 Denoising steps 5.53 2.56 231 1.95 1.96
10 Denoising Steps 8.82 3.19 291 2.25 2.17
50 Denoising Steps 34.56 8.45 5.79 4.28 3.86
Peak Memory Usage | 18.62G 7.87G 7.57G 6.94G 6.89G

IAIMMM ol oad s

(a) DDPM (b) DDIM (c) Euler (d) Euler Ancestral (e) Heun (f) LMS (g) DPM Solver

Figure 4: Comparisons of different samplers used during reverse sampling. We use DDPM [15]
sampler with 10 steps in the experiments.

G Alternative Guidance with Raw Disparity

This section will study alternative guidance to the diffusion model during the reverse sampling
processes. In the stereo vision case, the gradient of the photometric loss is obtained by checking
the consistency of the left and right images. Mathematically, the gradient should also have the same
direction with o — z; where x is the ground truth disparity. In test time, x( is unknown but can
be approximated by an external less noisy measurement source such as a Lidar. The external depth
measurement can be converted to the disparity space Z¢ and is multiplied with a mask if it is sparse:

Va, logp(xtly) = Vg, log p(z|1.) + Vo, log p(1 |1, 74)
~ Vi, logp(a|le) + aw(u, v)sign(Zo — z¢) ©
We here experiment with raw depth guidance. The guidance Z( is approximated by camera raw

sensor depth. Therefore the sign(Zg — ) is the approximate gradient. We set mask w(u,v) =
(o > 0) and « is a constant controls the guidance strength. We qualitatively study the guidance



132 of the approximate gradient in Figure 5. The benefits of guidance by the approximate gradient are
limited when raw depth is highly noisy.

RGB Raw Disparity Results RGB Raw Disparity Results

Figure 5: Guidance with raw disparity.

133

13« H Evaluations on HISS dataset

135 H.1 Results on HISS Test Split

136 In this section, we train other SOTA stereo methods from scratch and compare with our method

137 on the HISS dataset. We further rendered 300 images in 5 new scenes different from our training

138 dataset as the test set. The results are given in Table 3. We also show more real depth estimation

139 results in Figure 7 and more comparisons in Figure 8, which we consider also attributed to the joint
training on our dataset.

Table 3: Quantatives evaluations on HISS dataset.

Methods | EPE | RMSEl REL| MAE] 61057 d1.10T 1257
Raft-Stereo 0.0721 | 00521  0.0092 00164 9526 98.89 99.10
D®*RoMa 0.0579 | 0.0378  0.0067 00084  97.86 99.22 99.76

140

141 H.2 Deonising Process

142 One of the motivations for using the diffusion model to predict depth is the multi-step reverse sam-

143 pling process. It resembles the iterative solver which has been proven successful in RAFT [16] and

144 its successors. In figure 6 we show an example of the denoising process trained on our HISS dataset.
The total denoising steps is set to 128 and we visualize every 32 timesteps.

t=95 t =63 t =31 t=20 Ground Truth

Figure 6: Visualization of the denoising process on the HISS dataset. The 4 left columns show the
denoising steps every 2 time steps. The 2 right columns show the final output and ground truth
disparity map respectively.

145
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Figure 7: More in the wild examples.

I HISS Dataset

Training diffusion models for stereo depth estimation are more data-demanding due to lacking spe-
cialized network architectures and loss functions as in traditional deep stereo networks. Most ex-
isting stereo depth datasets are either synthetic (SceneFlow [17]) or with limited diversity, such as
ClearGrasp[18], LIDF [3], DREDS [1]. While deep stereo methods [5, 19, 20, 21] are trained on
a small number of stereo images and show strong generalizability performance, they are unable to
predict correct depth for transparent objects, which are critical for many robotic tasks. Part of the
reason is lacking data. Shi et al. [4] and Dai et al. [1] both created specially crafted transparent and
specular objects but both datasets are table-top scenes. Based on the above motivations, we com-
pensate existing datasets with more indoor room-level stereo images with domain randomization on
object materials and scenes.

One aspect that characterizes our dataset is scene-level and photo-realistic rendering of the specular,
transparent, and diffuse objects. We rendered over 350 objects in 168 different HSSD [22] scenes.
The objects randomly fall onto the furniture, ground, and tables to simulate real-world object place-
ments. The infrared (IR) images are rendered properly with seeing-through or specular lighting
effects on Non-Lambertian surfaces. We provide some data samples in Figure 9.
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Figure 8: Qualitative comparisons with other state-of-the-arts. Each row (from left to right) displays
rgb image and disparity map: RGB image, our method, pre-trained Raft Stereo, Raft Stereo fine-
tuned on our dataset, and ASGrasp.

J Part Manipulation

J.1 Interaction Policy

Following [23, 24], we first do part segmentation and pose estimation using the perception method.
Based on the predictions of the part poses, we move the robot arm toward the target part and turn
the gripper in the direction suitable for grabbing. Finally, we move the gripper along the proposed
trajectories toward the target position, following our GAPart pose definition.

J.2 Experiment Setup

In the experiments, we use the Franka Emika Panda robot arm with CuRobo[14] motion planning
and the end-effector trajectory just like GAPartNet[23]. For manipulation tasks in the real world,
a partial point cloud of the target object instance is acquired from our method. With the proposed
network and manipulation heuristics in [23], the pose trajectory of the end-effector can be predicted.
Then we use cuRobo[14] to solve the pose of Franka to follow our end-effector trajectory.



Figure 9: RGB Data samples from Our dataset HISS except the bottom row which shows a group of
rendering of RGB image, (left) IR image, and normal.
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