Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models

Author Response

1. Task Arithmetic with a Convolutional Architecture

Table R.1: **Task addition of 8 tasks with CNN.** We use the same setup as for the experiments in the main text substituting the ViT models with a CLIP ConvNeXt pre-trained on LAION-400M.

Method	ConvNeXt	
	Abs. (↑)	Norm. (†)
Pre-trained $f(\cdot; \boldsymbol{\theta}_0)$	57.5	_
Non-lin. FT $f(\cdot; \boldsymbol{\theta}_0 + \boldsymbol{\tau})$	79.1	83.6
Linear. FT $f_{\text{lin}}(\cdot; \boldsymbol{\theta}_0 + \boldsymbol{\tau}_{\text{lin}})$	81.1	85.7

2. Weight Disentanglement in Other Architectures and Modalities

Figure R.1: **Visualization of weight disentanglement.** The heatmap shows the disentanglement error $\xi(\alpha_1, \alpha_2)$ of a non-linearly and linearly fine-tuned ConvNeXt on a pair of vision tasks (**two left panels**) and a T5-Base model fine-tuned on a pair of NLP tasks (**right panel**).

3. Weight Disentanglement and Model Scale

Figure R.2: **Visualization of weight disentanglement.** The heatmaps show the disentanglement error $\xi(\alpha_1, \alpha_2)$ of non-linear CLIP ViT models of different sizes and their linearization.