
Supplemental Material

A Missing Proofs

Theorem 1. Let ℓ be a twice differentiable and convex loss function and consider the output pertur-
bation mechanism described above. Then, the excessive risk gap for group a ∈ A is approximated by:

ξa ≈
1
2
∆2
ℓσ

2
∣∣∣Tr(Ha

ℓ ) − Tr(Hℓ)
∣∣∣ , (3)

where Ha
ℓ =∇

2
θ∗

∑
(X,A,Y)∈Da

ℓ( fθ∗(X),Y) is the Hessian matrix of the loss function at the optimal
parameters vector θ∗, computed using the group data Da, Hℓ is the analogous Hessian computed
using the population data D, and Tr(·) denotes the trace of a matrix.

Proof. Recall that the output perturbation mechanism adds Gaussian noise directly to the non-private
model parameters θ∗ to obtain the private parameters θ̃. Denote ψ ∼ N(0, I∆2

ℓσ
2) the random noise

vector with the same size as θ∗. Then θ̃ = θ∗ + ψ. Using a second order Taylor expansion around θ∗

the private risk function for group a ∈ A is approximated as follows:

L(θ̃,Da) = L(θ∗ + ψ,Da) ≈ L(θ∗,Da) + ψT∇θ∗L(θ∗,Da) +
1
2
ψTHa

ℓ ψ. (7)

Taking the expectation with respect to ψ on both sides of the above equation results in:

E
[
L(θ̃,Da)

]
≈ E

[
L(θ∗,Da)

]
+ E

[
ψT∇θ∗L(θ∗,Da)

]
+

1
2
E

[
ψTHa

ℓ ψ
]

(8a)

= L(θ∗,Da) +
1
2
E

[
ψTHa

ℓ ψ
]

(8b)

= L(θ∗,Da) +
1
2

∑
i, j

E
[
ψi(Ha

ℓ )i jψ j

]
(8c)

= L(θ∗,Da) +
1
2

∑
i

E
[
ψ2

i

]
(Ha

ℓ )ii (8d)

= L(θ∗,Da) +
1
2
∆2
ℓσ

2 Tr
(
Ha

ℓ

)
, (8e)

where equation (8b) follows from linearity of expectation, by observing that ∇θ∗L(θ∗,Da) is a
constant term, and that ψ is a 0-mean noise variable, thus, E[ψ] = 0T ×∇θ∗L(θ∗,Da) = 0T . Equation
(8c) follows by definition of Hessian matrix, where (Ha

ℓ )i j denotes the entry with indices i and j of
the matrix. Equation (8d) follows from that ψi ⊥ ψ j, for all i , j, and Equation (8e) from that for a
random variable X, E[X2] = (E[X])2 + Var[X], and Var[ψi] = ∆2

ℓσ
2 ∀i and definition of Trace of a

matrix.

Therefore, the group and population excessive risks are approximated as:

Ra(θ) = E
[
L(θ̃,Da)

]
− L(θ∗,Da) ≈

1
2
∆2
ℓσ

2 Tr
(
Ha

ℓ

)
(9)

R(θ) = E
[
L(θ̃,D)

]
− L(θ∗,D) ≈

1
2
∆2
ℓσ

2 Tr (Hℓ) . (10)

The claim follows by definition of excessive risk gap (Equation 2) subtracting Equation (9) from (10)
in absolute values. □

Corollary 1. Consider the ERM problem for a linear model fθ(X)
def
= θT X, with L2 loss function i.e.,

ℓ( fθ(X),Y) = ( fθ(X) − Y)2. Then, output perturbation does not guarantee pure fairness.

Proof. First, notice that for an L2 loss function the trace of Hessian loss for a group a ∈ A is:

Tr(Ha
ℓ ) = Ex∼Da∥X∥.
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Therefore, from Theorem 1, the excessive risk gap ξa for group a is:

ξa ≈
1
2
∆2
ℓσ

2
∣∣∣Ex∼Da∥X∥ − Ex∼D∥X∥

∣∣∣ . (11)

Notice that ξa is larger than zero only if the average input norm of group a is different with that of
the population one. Since this condition cannot be guaranteed in general, the output perturbation
mechanism for a linear ERM model under the L2 loss does not guarantee pure fairness. □

Corollary 2. If for any two groups a, b ∈ A their average group norms EXa∼Da∥Xa∥ = EXb∼Db∥Xb∥

have identical values, then output perturbation with L2 loss function provides pure fairness.

Proof. The above follows directly by observing that, when the average norms of any two groups have
identical values, ξa ≈ 0 for any group a ∈ A (see Equation (11)), and thus the average norm of each
group also coincide with that of the population. □

The above indicates that as long as the average group norm is invariant across different groups, then
output perturbation mechanism provides pure fairness.

Theorem 2. Consider the ERM problem (L) with loss ℓ twice differentiable with respect to the model
parameters. The expected loss E[L(θt+1; Da)] of group a∈A at iteration t+1, is approximated as:

E [L(θt+1; Da)] ≈ L(θt; Da) − η
〈
gDa , gD

〉
+
η2

2
E

[
gT

BH
a
ℓ gB

]
︸                                                 ︷︷                                                 ︸

non-private term

(4)

+ η
(〈
gDa , gD

〉
−

〈
gDa , ḡD

〉)
+
η2

2

(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
︸                                                                            ︷︷                                                                            ︸

private term due to clipping

(Rclip
a )

+
η2

2
Tr(Ha

ℓ )C2σ2︸              ︷︷              ︸
private term due to noise

(Rnoise
a )

where the expectation is taken over the randomness of the private noise and the mini-batch selection,
and the terms gZ and ḡZ denote, respectively, the average non-private and private gradients over
subset Z of D at iteration t (the iteration number is dropped for ease of notation).

Proof. The proof of Theorem 2 relies on the following two second order Taylor approximations: (1)
The first approximates the ERM loss at iteration t + 1 under non-private training, i.e., θt+1 = θt − ηgB,
where B ⊆ D denotes the minibatch. (2) The second approximates expected ERM loss under private-
training, i.e θt+1 = θt − η(ḡB + ψ) where ψ ∼ N(0, IC2σ2). Finally, the result is obtained by taking
the difference of these approximations under private and non-private training.

1. Non-private term. The non private term of Theorem 2 can be derived using second order Taylor
approximation as follows:

L(θt+1,Da) = L(θt − ηgB,Da) ≈ L(θt,Da) − η⟨gDa , gB⟩ +
η2

2
gT

BH
a
ℓ gB (12)

Taking the expectation with respect to the randomness of the mini-batch B selection on both sides of
the above approximation, and noting that E[gB] = gD (as B is selected randomly from dataset D), it
follows:

E[L(θt+1,Da)] ≈ L(θt,Da) − ηE[⟨gDa , gB]⟩ +
η2

2
E[gT

BH
a
ℓ gB] (13a)

= L(θt,Da) − η⟨gDa , gD⟩ +
η2

2
E[gT

BH
a
ℓ gB]. (13b)
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2. Private term (due to both clipping and noise). Consider the private update in DP-SGD, i.e.,
θt+1 = θt − η(ḡB + ψ). Again, applying a second order Taylor approximation around θt allows us to
estimate the expected private loss at iteration t + 1 as:

L(θt+1,Da) = L (θt − η(ḡB + ψ),Da)

≈ L (θt,Da) − η
〈
gDa , ḡB + ψ

〉
+
η2

2
(ḡB + ψ)T Ha

ℓ (ḡB + ψ) (14a)

= L (θt,Da) − η
〈
gDa , ḡB

〉
− η

〈
gDa , ψ

〉
+
η2

2
ḡT

BH
a
ℓ ḡB (14b)

+
η2

2

(
ψTHa

ℓ ḡB + ḡ
T
BH

a
ℓ ψ + ψ

THa
ℓ ψ

)
Taking the expectation with respect to the randomness of the mini-batch B selection and with respect
to the randomness of noise ψ on both sides of the above equation gives:

E [L(θt+1,Da)] ≈ E
[
L (θt,Da) − η

〈
gDa , ḡB

〉
− η

〈
gDa , ψ

〉
+
η2

2
ḡT

BH
a
ℓ ḡB (15a)

+
η2

2

(
ψTHa

ℓ ḡB + ḡ
T
BH

a
ℓ ψ + ψ

THa
ℓ ψ

) ]
= L(θt,Da) − η

〈
gDa , ḡB

〉
− η

〈
gDa ,E[ψ]

〉
+
η2

2
E

[
ḡT

BH
a
ℓ ḡB

]
(15b)

+
η2

2

(
E

[
ψ
]THa

ℓ ḡB + ḡ
T
BH

a
ℓ E[ψ] + E

[
ψTHa

ℓ ψ
])

= L(θt,Da) − η
〈
gDa , ḡB

〉
+
η2

2
E

[
ḡT

BH
a
ℓ ḡB

]
+
η2

2
E

[
ψTHa

ℓ ψ
]

(15c)

= L(θt,Da) − η
〈
gDa , ḡB

〉
+
η2

2
E

[
ḡT

BH
a
ℓ ḡB

]
+
η2

2
Tr

(
Ha

ℓ

)
C2σ2, (15d)

where (15b), and (15c) follow from linearity of expectation and from that E[ψ] = 0, since ψ is a
0-mean noise variable. Equation (15d) follows from that,

E
[
ψTHa

ℓ ψ
]
= E

∑
i, j

ψi(Ha
ℓ )i, jψ j

 =∑
i

E
[
ψ2

i (Ha
ℓ )i,i

]
= Tr

(
Ha

ℓ

)
C2σ2,

since E[ψ2] = E[ψ]2 + Var[ψ] and E[ψ] = 0 while Var[ψ] = C2σ2.

Note that in the above approximation (Equation (15)), the component

L(θt,Da) − η⟨gDa , ḡB⟩ +
η2

2
E

[
ḡT

BH
a
ℓ ḡB

]
(16)

is associated to the SGD update step in which gradients have been clipped to the clipping bound
value C, i.e. θt+1 = θt − η(ḡB).

Next, the component
η2

2
Tr

(
Ha

ℓ

)
C2σ2 (17)

is associated to the SGD update step in which the noise ψ is added to the gradients.

If we take the difference between the approximation associated with the non-private loss term,
obtained in Equation 13b, with that associated with the private loss term, obtained in Equation 15d,
we can derive the effect of a single step of (private) DP-SGD compared to its non-private counterpart:

E [L(θt+1; Da)] ≈ L(θt; Da) − η
〈
gDa , gD

〉
+
η2

2
E

[
gT

BH
a
ℓ gB

]
(18a)

+ η
(〈
gDa , gD

〉
−

〈
gDa , ḡD

〉)
+
η2

2

(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
(18b)

+
η2

2
Tr

(
Ha

ℓ

)
C2σ2. (18c)

In the above,
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• The components in Equation (18a) are associated with the loss under non-private training (see
again Equation 13b);
• The components in Equation (18b) is associated with for excessive risk due to gradient clipping;
• Finally, the components in Equation (18c) is associated with the excessive risk due to noise

addition.
□

Next, the paper proves Theorem 3. This result is based on the following assumptions.
Assumption 1. [Convexity and Smoothness assumption] For a group a ∈ A, its empirical loss
function L(θ,Da) is convex and βa-smooth.

Assumption 2. Let B ⊆ D be a subset of the dataset D, and consider a constant ε ≥ 0. Then, the
variance associated with the gradient norms of a random mini-batch B, σ2

B = Var [∥gB∥] ≤ ε as well
as that associated with its clipped counterpart, σ̄2

B = Var [∥ḡB∥] ≤ ε.

The assumption above can be satisfied when the mini-batch size is large enough. For example, the
variance is 0 when |B| = |D|.
Assumption 3. The learning rate used in DP-SGD η is upper bounded by quantity 1/maxz∈A βz.

Theorem 3. Let pz = |Dz |/|D| be the fraction of training samples in group z ∈ A. For groups a, b ∈ A,
Rclip

a > Rclip
b whenever: ∥∥∥gDa

∥∥∥ p2
a

2
≥

5
2

C +
∥∥∥gDb

∥∥∥ 1 + pb +
p2

b

2

 . (5)

To ease notation, the statement of the theorem above uses ε = 0 (See Assumption 2) but the theorem
can be generalized to any ε ≥ 0.

The following Lemmas are introduced to aid the proof of Theorem 3.
Lemma 1. Consider the ERM problem (L) solved with DP-SGD with clipping value C. The following
average clipped per-sample gradients ḡZ , where Z ⊆ D, has norm at most C.

Proof. The result follows by triangle inequality:∥∥∥ḡDZ

∥∥∥ = ∥∥∥∥∥∥∥ 1
|DZ |

∑
i∈DZ

ḡi

∥∥∥∥∥∥∥
≤

1
|DZ |

∑
i∈DZ

∥ḡi∥

=
1
|DZ |

∑
i∈DZ

∥∥∥∥∥gi min
(
1,

C
∥gi∥

)∥∥∥∥∥
≤

1
|DZ |

∑
i∈DZ

C = C.

□

The next Lemma derives a lower and an upper bound for the component E[ḡT
BH

a
ℓ ḡB] − E[gT

BH
a
ℓ gB],

which appears in the excessive risk term due to clipping Rclip
a for some group a ∈ A.

Lemma 2. Consider the ERM problem (L) with loss ℓ, solved with DP-SGD with clipping value C.
Further, let ε = 0 (see Assumption 2). For any group a ∈ A, the following inequality holds:

−βa∥gD∥
2 ≤ E[ḡT

BH
a
ℓ ḡB] − E[gT

BH
a
ℓ gB] ≤ βaC2 (19)

Proof. Consider a group a ∈ A. By the convexity assumption of the loss function, the Hessian Ha
ℓ is

a positive semi-definite matrix, i.e., for all real vectors of appropriate dimensions v, it follows that
vTHa

ℓ v ≥ 0.

Therefore, for a subset B ⊆ D the following inequalities hold:
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• ḡBH
a
ℓ ḡB ≥ 0,

• gT
BH

a
ℓ gB ≥ 0 .

Additionally their expectations E[ḡBH
a
ℓ ḡB] and E[gT

BH
a
ℓ gB] are non-negative.

By the smoothness property of the loss function, ḡT
BH

a
ℓ ḡB ≤ βa∥ḡB∥

2, thus:

E[ḡT
BH

a
ℓ ḡB] ≤ βaE

[
∥ḡB∥

2
]

(20a)

= βa
(
E[∥ḡB∥]2 + Var [∥ḡB∥]

)
(20b)

≤ βa
(
C2 + σ̄2

B
)

(20c)

≤ βa(C2 + ε), (20d)

where Equation (20b) follows from that E[X2] = (E[X])2 + Var[X], Equation (20c) is due to Lemma
1, and finally, the last inequality is due to Assumption 2.

Therefore, since ε = 0 by assumption of the Lemma, the following upper bound holds:

E[ḡT
BH

a
ℓ ḡB] − E[gT

BH
a
ℓ gB] ≤ βaC2. (21)

Next, notice that

E[ḡT
BH

a
ℓ ḡB] − E[gT

BH
a
ℓ gB] ≥ −E[gT

BH
a
ℓ gB] (22a)

≥ −E[βa∥gB∥
2] (22b)

= −βa

(
E[∥gB∥]2 + Var [∥gB∥]

)
(22c)

= −βa∥gD∥
2, (22d)

where the inequality in Equation (22a) follows since both terms on the left hand side of the Equation
are non negative. Equation (22b) follows by smoothness assumption of the loss function. Equation
(22c) follows by definition of expectation of a random variable, since E[X]2 = E[X2]+Var[X]. Finally,
Equation (22d) follows from that Var[gB] ≤ ε = 0 by Assumption 2, and that ε = 0 by assumption of
the Lemma, and thus the norms ∥gB∥ = ∥gD∥ and, thus, E[gB] = gD. Therefore if follows:

−βa∥gD∥
2 ≤E[ḡT

BH
a
ℓ ḡB] − E[gT

BH
a
ℓ gB]. (23)

which concludes the proof. □

Again, the above uses ε = 0 to simplify notation, but the results generalize to the case when ε > 0. In
such a case, the bounds require slight modifications to involve the term ε.

Lemma 3. Let a, b ∈ A be two groups. Consider the ERM problem (L) solved with DP-SGD with
clipping value C and learning rate η ≤ 1/maxa∈A βa. Then, the difference on the excessive risk due to
clipping Ra

clip − Rb
clip is lower bounded as:

Ra
clip − Rb

clip ≥ η

(
⟨gDa − gDb , gD − ḡD⟩ −

1
2

(∥gD∥
2 +C2)

)
. (24)
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Proof. Recall that B ⊆ D is the mini-batch during the resolution of DP-SGD. Using the lower and
upper bounds obtained from Lemma 2, it follows:

Ra
clip − Rb

clip = η
(〈
gDa , gD

〉
−

〈
gDa , ḡD

〉)
+
η2

2

(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
(25a)

− η
(〈
gDb , gD

〉
−

〈
gDb , ḡD

〉)
−
η2

2

(
E

[
ḡT

BH
b
ℓ ḡB

]
− E

[
gT

BH
b
ℓ gB

])
= η⟨gDa − gDb , gD − ḡD⟩ +

η2

2

(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
(25b)

−
η2

2

(
E

[
ḡT

BH
b
ℓ ḡB

]
− E

[
gT

BH
b
ℓ gB

])
≥ η⟨gDa − gDb , gD − ḡD⟩ −

η2

2
βa∥gD∥

2 −
η2

2
βbC2 (25c)

≥ η⟨gDa − gDb , gD − ḡD⟩ −
η2

2
max
z∈A

βz
(
∥gD∥

2 +C2) (25d)

≥ η

(
⟨gDa − gDb , gD − ḡD⟩ −

1
2

(∥gD∥
2 +C2)

)
, (25e)

where the inequality (25c) follows as a consequence of Lemma 2, and the inequality (25e) since
η ≤ 1

maxa∈A βa
. □

Proof of Theorem 3. We want to show that Ra
clip > Rb

clip given Equation (5). Since, by Lemma 3 the
difference Ra

clip − Rb
clip is lower bounded – see Equation (24), the following shows that the right hand

side of Equation (24) is positive, that is:〈
gDa − gDb , gD − ḡD

〉
−

1
2

(
∥gD∥

2 +C2
)
> 0. (26)

First, observe that the gradients at the population level can be expressed as a combination of the
gradients of the two groups a and b in the dataset: gD = pagDa + pbgDb and ḡ = paḡDa + pbḡDb .

By algebraic manipulation, and the above, Equation (26) can thus be expressed as:

(26) = ⟨gDa − gDb , pagDa + pbgDb − paḡDa − pbḡDb⟩ −
1
2
(
∥gDa pa + gDb pb∥

2 +C2) (27a)

= (pa∥gDa∥
2 + pbg

T
Da
gDb − pag

T
Da
ḡDa − pbg

T
Da
ḡDb − pag

T
Db
gDa − pb∥gDb∥

2 (27b)

+ pag
T
Db
ḡDa + pbg

T
Db
ḡDb −

1
2
(
p2

a∥gDa∥
2 + 2pa pbgDagDb + p2

b∥gDb∥
2 +C2).

Noting that for any vector x,y the following inequality hold: xTy ≥ −∥x∥∥y∥, all the inner products
in the above expression can be replaced by their lower bounds:

(26) ≥ ∥gDa∥

(
∥gDa∥pa(1 −

pa

2
) − pb∥gDb∥ − paC − pbC − pa∥gDb∥ − pa pb∥gDb∥

)
(28a)

− ∥gDb∥ − pa pb∥gDb∥

(
∥gDb∥pb(1 +

pb

2
) + paC + pbC

)
−

1
2

C2

= ∥gDa∥

(
∥gDa∥pa(1 −

pa

2
) − pa pb∥gDb∥(pb + pa)(∥gDb∥ +C)

)
(28b)

− ∥gDb∥

(
∥gDb∥pb(1 +

pb

2
) + (pa + pb)C

)
−

1
2

C2

= ∥gDa∥

(
∥gDa∥pa(1 −

pa

2
) − pa pb∥gDb∥ − ∥gDb∥ −C)

)
− ∥gDb∥

(
∥gDb∥pb(1 +

pb

2
) +C

)
−

1
2

C2

(28c)

where the last equality is because pa + pb = 1, by assumption of the dataset having exactly two
groups.
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By theorem assumption, ∥gDa∥
p2

a
2 ≥

5
2C + ∥gDb∥(1 + pb +

p2
b

2 ). It follows that ∥gDa∥ > ∥gDb∥ and
∥gDa∥ > C. Combined with Equation (28c) it follows that:

(28c) = ∥gDa∥

(
∥gDa∥pa(1 −

pa

2
) − pa pb∥gDb∥ − ∥gDb∥ −C − ∥gDb∥pb(1 +

pb

2
) −C

)
−

1
2

C2 (29a)

≥ ∥gDa∥

∥gDa∥pa(1 −
pa

2
) − pa pb∥gDa∥ − 2C − ∥gDb∥(1 + pb +

p2
b

2
)
 − 1

2
C2 (29b)

≥ ∥gDa∥

∥gDa∥pa(1 −
pa

2
− pb) − 2C − ∥gDb∥(1 + pb +

p2
b

2
)
 − 1

2
C2 (29c)

= ∥gDa∥

∥gDa∥
p2

a

2
− 2C − ∥gDb∥(1 + pb +

p2
b

2
)
 − 1

2
C2 (29d)

≥ ∥gDa∥
C
2
−

1
2

C2 (29e)

> 0, (29f)
where the last equality is because ∥gDa∥ > C. □

Theorem 4. For groups a, b ∈ A, Rnoise
a > Rnoise

b whenever

Tr(Ha
ℓ ) > Tr(Hb

ℓ ).

Proof. Suppose Tr(Ha
ℓ ) > Tr(Hb

ℓ ). By definition of Rnoise
a and Rnoise

b from Theorem 2 it follows that:

Rnoise
a =

η2

2
Tr(Ha

ℓ )C2σ2 >
η2

2
Tr(Hb

ℓ )C2σ2 = Rnoise
b ,

which concludes the proof.

□

Theorem 5. Consider a K-class classifier fθ,k (k ∈ [K]). For a given sample X ∼ D, the term(
1 −

∑K
k=1 f

2
θ,k(X)

)
is maximized when fθ,k(X) = 1/K and minimized when ∃k ∈ [K] s.t. fθ,k(X) = 1

and fθ,k′ = 0 ∀k′ ∈ [K], k′ , k.

Proof. Fix an input X of D and denote yk = fθ,k(X) ∈ [0, 1]. Recall that yk represents the likelihood
of the prediction of input X to be associated with label k.

Note that, by Cauchy–Schwarz inequality

1 −
K∑

k=1

y2
k ≤ 1 − K

(∑K
i yk

K

)2

(30a)

= 1 −
1
K
, (30b)

where Equation (30b) follows since
∑K

i yk(X) = 1. The above expression is maximized when

yk = fθ,k(X) =
1
K
.

Additionally, since yk ∈ [0, 1] it follows that y2
k ≤ yk. Hence,

1 −
K∑

k=1

y2
k ≥ 1 −

K∑
i=1

yk = 0. (31)

To hold, the equality above, it must exists k ∈ [K] such that yk = fθ,k(X) = 1 and for any other
k′ ∈ [K] with k′ , k, yk′ = fθ,k′ = 0. □

Given the connection of the term 1 −
∑K

k=1(1 − f 2
θ,k(X)) and the associated (trace of the) Hessian

loss H f , the result above suggests that the trace of the Hessian is minimized (maximized) when the
classifier is very confident (uncertain) about the prediction of X ∼ D , i.e., when X is far (close) to
the decision boundary.
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B Experimental settings

Datasets The paper uses the following UCI datasets to support its claims:

1. Adult (Income) dataset, where the task is to predict if an individual has low or high income,
and the group labels are defined by race: White vs Non-White [6].

2. Bank dataset, where the task is to predict if a user subscribes a term deposit or not and the
group labels are defined by age: people whose age is less than 60 years old vs the rest [21].

3. Wine dataset, where the task is to predict if a given wine is of good quality, and the group
labels are defined by wine color: red vs white [6].

4. Abalone dataset, where the task is to predict if a given abalone ring exceeds the median
value, and the group labels are defined by gender: female vs male [6].

5. Parkinsons dataset, where the task is to predict if a patient has total UPDRS score that
exceeds the median value, and the group labels are defined by gender: female vs male [20].

6. Churn dataset, where the task is to predict if a customer churned or not. The group labels
are defined by on gender: female vs male [12].

7. Credit Card dataset, where the task is to predict if a customer defaults a loan or not. The
group labels are defined by gender: female vs male [8].

8. Stroke dataset, where the task is to predict if a patient have had a stroke based on their
physical conditions. The group labels are defined by gender: female vs male [1].

All datasets were processed by standardization so each feature has zero mean and unit variance.

Settings For output perturbation, the paper uses a Logistic regression model to obtain the optimal
model parameters (we set the regularization parameter λ = 1) and add Gaussian noise to achieve
privacy. The standard deviation of the noise required to the mechanism is determined following Balle
and Wang [4].

For DP-SGD, the paper uses a neural network with single hidden layer with tanh activation function
for the different datasets. The batch size |B| is fixed to 32 and the learning rate η = 1e − 4. Unless
specified we set the clipping bound C = 0.1 and noise multiplier σ = 5.0. The experiments consider
100 runs of DP-SGD with different random seeds for each configuration. We employ the Tensorflow
Privacy toolbox to compute the privacy loss ϵ spent during training.

Computing infrastructure All experiments were performed on a cluster equipped with Intel(R)
Xeon(R) Platinum 8260 CPU @ 2.40GHz and 8GB of RAM.

Software and libraries All models and experiments were written in Python 3.7 and in Pytorch 1.5.0.

Code The code used for this submission is attached as supplemental material. All implementation of
the experiments and proposed mitigation solution will be released upon publication.

C Additional experiments

C.1 More on “Warm up: output perturbation”

Correlation between Hessian trace and excessive risk The following provides additional empiri-
cal support for the claims of the main paper: Groups with larger Hessian trace tend to have larger
excessive risks in this subsection.

The experiments in this sub-section use output perturbation. Figure 8 reports the excessive risk and
Hessian traces for the two groups defined in the datasets (as described in Section B. The figure clearly
illustrates that the groups with larger Hessian traces have larger excessive risk (i.e., experienced more
unfairness) under private output perturbation when compared with the groups with smaller Hessian
traces. These empirical findings are again a strong support for the claims of Theorem 1.
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Figure 8: Correlation between excessive risk gap and Hessian Traces at varying of the privacy loss ϵ.

Impact of data normalization by group The next results provide evidence to support the following
claim raised in Section 5: Given the impact of gradient norms to unfairness, normalizing data
independently for each group can help improve fairness. Figure 9 shows the evolution of the
excessive risk Ra and Rb for the dataset groups during training. The top plots present the results
with standard data normalization (e.g., each sample data is normalized independently from its group
membership) while the bottom plots show the counterpart results for models trained when the data
was normalized within the group datasets Da and Db. Note that the normalization adopted ensures
that the data is 0-mean and of unit variance in each group dataset, which is a required condition to
achieve the desired property.

The results clearly show that this strategy can not only reduce unfairness, but also the excessive risk
gaps.

Figure 9: Excessive risk for each group without group normalization (top) and with group normaliza-
tion (bottom).

C.2 More on “Why gradient clipping causes unfairness?”

This section provides additional empirical evidence to support the claim made in Section 7 specifying
the three direct factors influencing the clipping effect to the excessive risk: (1) the Hessian loss, (2)
the gradient values, and (3) the clipping bound. Among these three factors, the gradient values and
clipping bound are the dominant ones.

Impact of gradient values and clipping bound C Figure ?? provides the relation between the
gradient norm and the different choices of clipping bounds to the excessive risks. The results are
shown for the Abalone, Churn and Credit Card datasets. The experiments show that gradient norms
reduce as C increases and that the group with larger gradient norms have also larger excessive risk.
Similar results were achieved for other datasets as well (not reported to avoid redundancy).

The Hessian loss is a minor impact factor to the excessive risk. As showed in the main text, the
excessive risk associated to the gradient clipping for a particular group a ∈ A can be decomposed as:

Rclip
a = η

(〈
gDa , gD

〉
−

〈
gDa , ḡD

〉)
+
η2

2

(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
(32)
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Denote ψa =
(
E

[
ḡT

BH
a
ℓ ḡB

]
− E

[
gT

BH
a
ℓ gB

])
. This quantity clearly depends on the Hessian loss Ha

ℓ .
However, under the assumptions in Theorem 3: convexity and smoothness of the loss function and the
magnitude of the learning rate (i.e., that is small enough), the term ψa will be a negligible component
in Rclip

a .

While this is evident under those assumption, our empirical analysis has reported a similar behavior
for loss function for which those conditions do not generally apply. In the following experiment we
run DP-SGD on a neural network with single hidden layer and tracked the values of Rclip

a and ψa
for each group a ∈ A during private training. These values are reported in Figure 10 for different
datasets. It can be seen that the components ψa (dotted lines) constitute a negligible amount to the
excessive risk under gradient clipping Rclip

a .

Figure 10: Values of Rclip
a and ψa during private training for a neural network classifier.

Relative group data size is a minor impact factor to the excessive risk. Section 7 also observed
that the relative group data size, pb/pa for two groups a, b ∈ A had a minor impact on unfairness.
Figure 11 provides empirical evidence to support this observation. It shows the effects of varying the
relative group data pb/pa to the gradient norms (top rows) and excessive risk (bottom rows) in three
datasets: Abalone, Bank, and Income. The different relative group data ratios were obtained through
subsampling. Notice that changing the relative group sizes does not result in a noticeable effect in the
group gradient norms and excessive risk. These experiments demonstrate that the relative group data
size might play a minor role in affecting unfairness.

These observation are also in alignment with the those raised by Farrand et al. [17], who showed that
the disparate impact of DP on model accuracy is not limited to highly imbalanced data and can occur
in situations where the groups are slightly imbalanced.

C.3 More on “Why noise addition causes unfairness?”

Figure ?? illustrates the connection between the trace of the Hessian of the loss function at some
sample X ∈ D and its distance to the decision boundary. The figure clearly show that the closest
(father) is a sample X to the decision boundary, the larger (smaller) is the associated Hessian trace
value Tr(HX

ℓ ). The experiments are reported for datasets Parkinson, Stroke, Wine, and Churn, but
once again they extend to other datasets as well.
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(a) Abalone dataset

(b) Bank dataset

(c) Income dataset

Figure 11: Impact of the relative group data size towards unfairness under DP-SGD (with C =
0.1, σ = 5.0).

C.4 More on mitigation solutions

Next, this section demonstrates the benefits of the proposed mitigation solution on additional datasets.
Figure 12 illustrates the excessive risk for each group in the reported datasets (recall that better
fairness is achieved when the excessive risk curves values are small and similar) at varying of the
privacy parameter ϵ (i.e., the excessive risk is tracked during private training).

The leftmost column in each sub-figure present the results for the baseline model, which runs DP-SGD
without the proposed fairness-mitigating constraints. Observe the positive effects in reducing the
inequality between the excessive risks between the groups when the solution activates both γ1 (which
regulates the component associated with Rclip) and γ2 (which regulates the component associated with
Rnoise). In the reported experiments hyper-parameters γ1 = 1, γ2 = 1 were found to be good values
for all our benchmark datasets. Smaller γ1 and γ2 values may not reduce unfairness. Likewise, large
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values could even exacerbate unfairness. Using the above setting, the proposed mitigation solution
was able not only to reduce unfairness in 6 out 8 cases studied, but also to increase the utility of the
private models.

Once again, we mention that the design of optimal hyper-parameters is an interesting open challenge.

D Additional examples

D.1 More on gradient and Hessian loss of neural networks

This section focuses on two tasks: The first is to demonstrate the connection between the gradient
norm ∥gX∥ for some input X with its input norm ∥X∥. The second is to demonstrate the relation
between the trace of the Hessian loss at a sample X with input norm ∥X∥ and the closeness of X to the
decision boundary. We do so by providing a derivation of the gradients and the Hessian trace of a
neural networks with one hidden layer.

Settings Consider a neural network model fθ(X) def
= softmax

(
θT

1 σ(θT
2 X)

)
where X ∈ Rd, θ2 ∈

Rd×H , θ1 ∈ R
H×K and the cross-entropy loss ℓ( fθ(X),Y) = −

∑K
k=1 Yi log fθ,k(X) where K is the

number of classes, and σ(·) is the a proper activation function, e.g. a sigmoid function. Let
O = σ(θT

2 X) ∈ RH be the vector (O1, . . . ,OH) of H hidden nodes of the network. Denote with
h j =

∑
i θ jiXi as the j-th hidden unit before the activation function. Next, denote θ1, j,k ∈ R as the

weight parameter that connects the j-th hidden unit h j with the k-th output unit fk and θ2,i, j ∈ R as the
weight parameter that connects the i-th input Xi unit with the j-th hidden unit h j.

Gradients Norm First notice that we can decompose the gradients norm of this neural network
into two layers as follows:

∥∇θℓ( fθ(X),Y)∥2 = ∥∇θ1ℓ( fθ(X),Y)∥2 + ∥∇θ2ℓ( fθ(X),Y)∥2. (33)

We will show that ∇θ2ℓ( fθ(X),Y)∥ ∝ ∥X∥.

Notice that:
∥∇θ2ℓ( fθ(X),Y)∥2 =

∑
i, j

∥∇θ2,i, jℓ( fθ(X),Y)∥2.

Applying, Equation (14) from Sadowski [24], it follows that:

∇θ2,i, jℓ( fθ(X),Y) =
K∑

k=1

(
Yk − fθ,k(X)

)
θ1, j,k

(
O j(1 − O j)

)
Xi, (34)

which highlights the dependency of the gradient norm ∥∇θ2ℓ( fθ(X),Y)∥ and the input norm ∥X∥2.

Hessian trace For the connections between the Hessian trace of the loss function at a sample X
with the closeness of X to the decision boundary and the input norm ∥X∥, the analysis follows the
derivation provided by Bishop [5]. First, notice that:

Tr(HX
ℓ ) = Tr(∇2

θ1
ℓ( fθ(X),Y)) + Tr(∇2

θ2
ℓ( fθ(X),Y)) (35)

The following shows that:
1. Tr

(
∇2
θ2
ℓ( fθ(X),Y)

)
∝

(
1 −

∑K
k=1 f

2
θ,k(X)

)
2. Tr

(
∇2
θ1
ℓ( fθ(X),Y)

)
∝ ∥X∥2.

The former follows from Equation (26) of Bishop [5], since:

∇2
θ1, j,k

ℓ( fθ(X),Y)) = fk(1 − fk)O2
j , (36)

and thus,

Tr(∇2
θ1
ℓ( fθ(X),Y)) =

H∑
j=1

K∑
k=1

fk(1 − fk)O2
j =

H∑
j=1

( K∑
k=1

fk −
K∑

k=1

f 2
k
)
O2

j = (1 −
K∑

k=1

f 2
k )

H∑
j=1

O2
j .
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(a) Abalone dataset

(b) Churn dataset

(c) Credit Card dataset

(d) Income dataset

(e) Wine dataset

(f) Parkinsons dataset

(g) Stroke dataset

Figure 12: Mitigating solution: Excessive risk at varying of the privacy loss ϵ for different γ1 and γ2.

The above shows the connection between the trace of Hessian loss at a sample X for the second layer
of the neural network and the quantity 1 −

∑K
k=1 f 2

k (X) which measures how close is the sample X to
the decision boundary. This result relates with Theorem 5.
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Regarding point (2), by applying Equation (27) of [5] we obtain:

∇2
θ2,i, j

ℓ( fθ(X),Y)) = X2
i Γ j, (37)

where Γ j = σ
′′(h j)

∑K
k=1 θ2, j,k(Yk− fk)+σ′(h j)2 ∑K

k=1 θ
2
2, j,k fk(1− fk), where σ′ and σ′′ are, respectively,

the first and second derivative of the activation σ with respect to the hidden node h j.

Thus:

Tr(∇2
θ2
ℓ( fθ(X),Y)) =

H∑
j=1

d∑
i=1

∇2
θ2,i, j

ℓ( fθ(X),Y) =
H∑

j=1

 d∑
i=1

X2
i

Γ j ∝ ∥X∥2,

which shows the dependency of the trace of the Hessian of the loss function in the first layer at sample
X and the data input norm.
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