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BANDIT LEARNING IN MATCHING MARKETS WITH IN-
DIFFERENCE
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ABSTRACT

A rich line of recent works studies how participants in matching markets learn
their unknown preferences through iterative interactions with each other. The two
sides of participants in the market can be respectively formulated as players and
arms in the bandit problem. To ensure market stability, the objective is to mini-
mize the stable regret of each player. Though existing works provide significant
theoretical upper bounds for players’ stable regret, the results heavily rely on the
assumption that each participant has a strict preference ranking. However, in real
applications, multiple candidates (e.g., workers in the labor market and students in
school admission) usually demonstrate comparable performance levels, making it
challenging for participants (e.g., employers and schools) to differentiate and rank
their preferences. To deal with the potential indifferent preferences, we propose an
adaptive exploration algorithm based on arm-guided Gale-Shapley (AE-AGS). We
show that its stable regret is of order O(NK log T/∆2), where N is the number
of players, K the number of arms, T the total time horizon, and ∆ the minimum
non-zero preference gap. Extensive experiments demonstrate the algorithm’s ef-
fectiveness in handling such complex situations and its consistent superiority over
baselines.

1 INTRODUCTION

The two-sided matching market is a fundamental concept in economics and operations research
(Gale & Shapley, 1962; Roth, 1984; Roth & Sotomayor, 1992; Roth & Peranson, 1999; Fleiner,
2003). It provides a formal framework to model interactions between two distinct sides of agents
and has a wide range of applications such as labor markets (Kelso Jr & Crawford, 1982; Roth, 1984),
school admission (Roth, 2008), house allocation (Sönmez & Ünver, 2011), and so forth. Each agent
(e.g., employer) has his own preferences over the other side (e.g., workers in labor markets) and
seeks to form beneficial pairings. To keep the stability of the market and thus avoid dissatisfaction
of agents and future inefficiencies, a rich line of works study how to find a stable matching in the
market (Gale & Shapley, 1962; Roth, 1984; Roth & Sotomayor, 1992; Kelso Jr & Crawford, 1982),
among which the Gale-Shapley algorithm (Gale & Shapley, 1962) is one of the most classic one.
All these works assume that agents’ preferences are known as a prior.

However, prior knowledge of preferences may not always be fully certain in real-world applications.
For example, employers typically cannot precisely assess a worker’s abilities before they are hired.
A stable matching derived from temporal preference estimation may not ensure long-term stability.
With the rise of online marketplaces such as the online labor platform Upwork and the crowdsourc-
ing platform Amazon Mechanical Turk, employers are increasingly able to learn about uncertain
preferences through iterative matching processes driven by their released multiple tasks. The multi-
armed bandit (MAB) is a classic model that characterizes the learning process for agents towards
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uncertain information (Auer et al., 2002; Lattimore & Szepesvári, 2020), also offering solutions for
agents in matching markets to learn their unknown preferences.

The classic MAB model contains one player and K arms. Each arm aj is associated with an un-
known reward µj . The player would learn this knowledge through iterative selections. The objective
of the player is to maximize the cumulative rewards, equivalent to minimizing the cumulative regret
defined as the cumulative distance between the optimal reward and received rewards. To achieve this
long-horizon objective, the player faces the dilemma of exploration and exploitation. The former
hopes to select the arm with fewer observed times to know the arm better, and the latter hopes to se-
lect the better-performed arms to accumulate as many rewards as possible. The explore-then-commit
(ETC) (Garivier et al., 2016), upper confidence bound (UCB) (Auer et al., 2002) and Thompson
sampling (TS) (Thompson, 1933) are common strategies to deal with the problem.

The bandit learning problem in matching markets recently attracted great interest in the literature,
where two sides of participants can be modeled as players and arms. Players can learn their unknown
preferences through interactions with arms. Das & Kamenica (2005) first introduces the framework
and proposes empirical solutions. Liu et al. (2020) further gives a formal theoretical formulation and
derives algorithms with theoretical guarantees on the stable regret, which is defined as the cumulative
distance between the reward in a stable matching and the reward received during the interactions.
In the matching market scenario, due to the interference among multiple agents, the selections of an
individual player can be easily blocked, making the trade-off between exploration and exploitation
more challenging. To avoid conflicts among players, Liu et al. (2020) consider the centralized setting
where a central platform collects information from participants and assigns partners for players. A
rich line of the following works try to improve their stable regret bound and generalize the model by
considering the decentralized setting (Liu et al., 2021; Sankararaman et al., 2021; Basu et al., 2021;
Maheshwari et al., 2022; Kong et al., 2022; Zhang et al., 2022; Kong & Li, 2023).

Despite the significance of the results, all existing works assume each market participant has a strict
preference ranking, i.e., the preference values towards different candidates are different. However,
this assumption may not be realistic. In many applications such as labor market and school admis-
sion, multiple candidates usually demonstrate similar performances, leading to ties of preference
rankings. Especially in large markets, maintaining a strict preference ranking over all candidates
can be extremely time-consuming and effort-intensive, while the marginal benefit of distinguishing
between closely ranked candidates may be minimal. To improve the practicality and robustness
of algorithms, it is crucial to deal with participants’ indifferent preferences (Erdil & Ergin, 2008;
Abdulkadiroğlu et al., 2009; Chen, 2012; Erdil & Ergin, 2017; Erdil & Kumano, 2019).

The state-of-the-art approaches in matching markets employ an explore-then-Gale-Shapley strategy
to address the exploration-exploitation trade-off (Zhang et al., 2022; Kong & Li, 2023; Kong et al.,
2024). In these methods, exploration continues until players have identified all preference gaps,
after which the algorithm transits to exploitation, applying the Gale-Shapley algorithm (Gale &
Shapley, 1962) to achieve stable matching. However, once two arms exhibit identical preferences,
the exploration process would never stop, leading the algorithm to incur an O(T ) regret, where T
represents the total time horizon. With indifferent preferences, the algorithm faces new difficulties in
balancing exploration and exploitation. Prolonged exploration could incur additional regret, while
prematurely halting exploration may result in incorrect ranking estimates, leading to a non-stable
matching.

In this work, we try to overcome the above challenge for the bandit learning problem in matching
markets with indifference. Though existing results all assume market participants have strict prefer-
ence rankings, we examine whether they can be extended to the indifference setting. As summarized
in Table 1, only Liu et al. (2020) and Basu et al. (2021) can apply to indifference. However, their
approaches either require knowledge of ∆ or suffer exponential regret. We propose a more suitable
policy to balance exploration and exploitation - an arm-guided adaptive exploration algorithm where
players only explore arms that propose to them and adaptively eliminate sub-optimal arms, for both
the centralized and decentralized setting. This design allows players to explore freely without the
need to explicitly distinguish between exploration and exploitation processes. We show that such an
algorithm achieves the stable regret of order O(NK log T/∆2) where N is the number of players,
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K is the number of arms, T is the total horizon and ∆ is the minimum non-zero gap1. Extensive ex-
periments are conducted to show our algorithm’s effectiveness and consistent advantage compared
with available baselines.

Table 1: Comparisons of related results. N is the number of players, K is the number of arms, ∆
is the minimum preference gap among all players for different arms in existing works, and is the
minimum non-zero preference gap among all players for different arms if the result holds under
indifference. ρ, ϵ are hyper-parameters. C and D represent centralized and decentralized settings,
respectively. We use tiny font to annotate the parts of the original proof where it fails to hold under
indifference and provide more details in Appendix A.

References Stable regret bound Setting Holds under indifference?

Liu et al. (2020) O
(

NK log T
∆2

)
C ✗(Corollary 9)

Liu et al. (2021) O
(

N5K2 log2 T

ρN4∆2

)
D ✗(Lemma 8)

Kong et al. (2022) O
(

N5K2 log2 T

ρN4∆2

)
D ✗(Lemma 1)

Zhang et al. (2022) O
(

K log T
∆2

)
D ✗(2nd paragraph in page 16)

Kong & Li (2023) O
(

K log T
∆2

)
D ✗(Lemma 4)

Kong et al. (2024) O
(

N2 log T
∆2

)
C & D ✗(Lemma A.5)

Liu et al. (2020) O
(

K log T
∆2

)
C (Known ∆) ✓

Basu et al. (2021) O
(
K log1+ϵ T + 2∆

−2/ϵ
)

D ✓

Ours O
(

NK log T
∆2

)
C & D ✓

2 RELATED WORK

The model of two-sided matching markets has been studied for many years (Gale & Shapley, 1962;
Roth, 1984; Roth & Sotomayor, 1992). The seminal work (Gale & Shapley, 1962) proposes the
Gale-Shapley algorithm to compute a stable matching in the one-to-one markets. Some research
has extended the algorithm to address more complex markets with different preference structures
(Kelso Jr & Crawford, 1982; Roth & Sotomayor, 1992). Most of these works analyze the algorithm
based on the assumption that all participants have a strict preference ranking. When participants
have indifferent preferences, Irving (1994) define different levels of stability and propose algorithms
to achieve them. Erdil & Ergin (2008) propose a method to improve satisfaction from a given
stable matching. Abdulkadiroğlu et al. (2009) consider the strategy-proofness of the mechanism
that whether participants have an incentive to deviate from the algorithm.

When market participants have uncertain preferences, Das & Kamenica (2005) first introduce the
bandit model into matching markets. They propose an ε-greedy type algorithm and demonstrate its
empirical performances. Liu et al. (2020) theoretically formulate this problem. They mainly study
the centralized setting with a central platform computing the matching in each time slot. Both an
ETC and UCB-type algorithm are proposed for this setting. The former achieves O(K log T/∆2)
regret with the knowledge of ∆ and the latter achieves O(NK log T/∆2). Liu et al. (2021) and
Kong et al. (2022) generalize the problem to the decentralized setting, where players need to coor-
dinate their selections to avoid invalid explorations due to conflicts. However, due to the interfer-
ence of multiple agents in the decentralized markets, their algorithm suffers an exponential order of
regret. To improve the learning efficiency, Sankararaman et al. (2021); Basu et al. (2021); Mahesh-
wari et al. (2022); Wang & Li (2024) consider the setting where participants’ preferences satisfy
special assumptions thus the interference becomes easier. For these special markets, they provide
an O(NK log T/∆2) or O(N log T/∆2) regret guarantee. Until recently, Zhang et al. (2022) and
Kong & Li (2023) independently propose an explore-then-Gale-Shapley procedure and show an

1If all preference gaps are zero, we show our stable regret is 0 in the centralized setting and is O(log T ) in
the decentralized setting.
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O(K log T/∆2) stable regret upper bound for general markets. In all of the above works, both
players and arms are assumed to have strict preference rankings and ∆ is defined as the minimum
preference gap among all players over different arms, which may be 0 under indifference. Our work
follows this line and considers the more general indifference setting.

A contemporary work (Lin et al., 2024) also investigates the indifference setting. They first consider
the offline setting where players have known preferences and propose an α-approximate oracle that
returns a matching in which each player’s utility is at least an α fraction of their optimal utility
across all stable matchings. They further extend this oracle to the bandit setting, obtaining results on
α-approximate player-optimal stable regret. Their analysis also yields a problem-independent regret
of order O(T 2/3). Different from this work, we focus on stable regret, which is defined on the least
reward among all stable matchings, and do not consider approximate guarantees.

There are also other works studying the uncertain preferences in matching markets. The variants
include the market where both sides of agents have unknown preferences (Pagare & Ghosh, 2023),
the contextual markets where the player’s preferences can be represented by the inner product be-
tween the preference vector and the arm feature (Li et al., 2022), the many-to-one markets where
one side of agents can match more than one partners (Wang et al., 2022; Kong & Li, 2024; Li et al.,
2024; Zhang & Fang, 2024), as well as the non-stationary markets where the preference of agents
vary over time (Ghosh et al., 2022; Muthirayan et al., 2023).

3 PROBLEM SETTING

This section introduces the problem setting of bandit learning in matching markets with indifference.
Denote N = {p1, p2, . . . , pN} as the player set and K = {a1, a2, . . . , aK} as the arm set, where N
and K represent the number of players and arms, respectively. To ensure each player has a chance
to be matched, we assume N ≤ K as existing works (Liu et al., 2020; 2021; Sankararaman et al.,
2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Wang & Li, 2024).

Each market participant has a preference ranking over the other side. Specifically, the preference
value of player pi over arm aj can be portrayed by a real value µi,j ∈ (0, 1]. A higher value
represents more preferences, i.e., µi,j > µi,j′ implies pi prefers aj to aj′ . These preference values
are unknown and need to be learned through interactive interactions with arms. It is worth noting
that all existing works (Liu et al., 2020; 2021; Kong et al., 2022; Sankararaman et al., 2021; Basu
et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Wang & Li, 2024; Kong et al., 2024) assume
the preference values over different arms are different, i.e., µi,j ̸= µi,j′ for any player pi and arms
aj , aj′ . However, this assumption is often unrealistic in practical applications, as multiple arms
(e.g., workers in labor markets or students in school admission scenarios) usually exhibit similar
performances, making it difficult for players to explicitly differentiate their preferences. We relax
this assumption by allowing indifferent preferences, i.e., the player can have the same preference
values over different arms. On the other side, each arm aj also has preferences over players. Denote
πj,i as the position of pi in aj’s preference rankings. Arms can also have indifferent preferences
over players. We use πj,i ≺ πj,i′ to denote that pi has a higher ranking so is more preferred than
pi′ by aj . And πj,i = πj,i′ represents aj can not distinguish the performances between pi and pi′ .
Similar to the labor market scenario where workers (arms) usually have an evaluation system based
on the known characteristics of the employers (players) such as the salary, location, and so forth,
we assume each arm knows their own preference ranking as existing works (Liu et al., 2020; 2021;
Kong et al., 2022; Sankararaman et al., 2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023;
Wang & Li, 2024; Kong et al., 2024).

The players would iteratively interact with the arms. At each time slot t = 1, 2, 3, . . . , each player pi
selects an arm Ai(t) ∈ K∪{−1}, where we use −1 to represent that pi does not select any arm in this
time slot. For the arm side, each arm aj receives the proposals from A−1

j (t) = {pi : Ai(t) = aj}.
Due to the capacity constraint, it only accepts the most preferred one, i.e., the player A−1

j (t) ∈
argmini∈A−1

j (t) πj,i with the highest preference ranking. When there are multiple choices, the arm
would randomly break the tie. For the player side, any player pi whose proposal is accepted would
successfully match with Ai(t). It would receive a reward Xi,Ai(t)(t) characterizing its satisfaction
over this matching experience, where we assume the reward is a 1-subgaussian random variable with
expectation µi,Ai(t) as existing bandit works (Lattimore & Szepesvári, 2020). And if pi’s proposal is
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rejected, it only receives Xi,Ai(t)(t) = 0. For convenience, we use Ā(t) = (Āi(t))i∈[N ] to represent
the final matching outcome in time slot t, where Āi(t) = Ai(t) if pi is successfully matched and
Āi(t) = −1 otherwise.

To ensure long-term equilibrium in the market, the players aim to find a stable matching. Given a
matching Ā := (Āi)i∈[N ], if there exists a pair (pi, aj) such that pi prefers aj to its current partner
Āi and aj also prefers pi to its current partner Ā−1

j , i.e., µi,j > µi,Āi
and πj,i ≺ πj,Ā−1

j
, then pi

and aj has the incentive to deviate from their partners. In this case, the matching Ā is unstable,
and such a pair is called a blocking pair. A stable matching is a matching without any blocking
pair. It is worth noting that there may be more than one stable matching in the market. Denote
M :=

{
m := (mi)i∈[N ] : m is stable

}
as the set of all stable matchings. Existing works study the

player-optimal stable matching (Liu et al., 2020; Zhang et al., 2022; Kong & Li, 2023; Kong et al.,
2024) which is defined as the stable matching in which all players are matched with their most
preferred arm among all stable matchings and the player-pessimal stable matching (Liu et al., 2020;
2021; Kong et al., 2022) which is defined as the stable matching in which all players are matched
with their least preferred arm among all stable matchings. However, when the market participants
have indifferent preferences, such two stable matchings may not exist. Example 3.1 illustrates one
possible case.

Example 3.1. The market contains 3 players and 3 arms with the preference rankings listed below:{
p1 : a1 = a2 ≻ a3 ,
p2 : a1 ≻ a2 = a3 ,
p3 : a1 ≻ a2 ≻ a3 ,

{
a1 : p1 ≻ p2 = p3 ,
a2 : p1 ≻ p2 ≻ p3 ,
a3 : p1 ≻ p2 ≻ p3 ,

where a2 ≻ a3 for p1 implies p1 prefers a2 over a3. In this market, both {(p1, a2), (p2, a1), (p3, a3)}
and {(p1, a2), (p2, a3), (p3, a1)} are stable matchings. But players p2 and p3 do not match with the
most preferred arm in a common stable matching.

In this work, we focus on the stable regret of each player pi which is defined as the difference
between the least reward µi,mi

= minm′∈M µi,m′
i

that can be obtained in any stable matching and
the reward accumulated during the interaction process, i.e.,

Regi(T ) = E

[
T∑

t=1

(µi,mi −Xi,Ai(t))

]
, (1)

where the expectation is taken from the randomness of the reward and players’ policies2.

4 ALGORITHM IN THE CENTRALIZED SETTING

In this section, we introduce our proposed adaptive exploration with arm-guided GS (AE-AGS)
algorithm. To better convey the algorithm idea, we first present the centralized version (Algorithm 1)
where a central platform collects information from market participants and computes the matching.

Algorithm 1 adaptive exploration with arm-guided GS (AE-AGS, centralized version, from the view
of the central platform)

1: for time slot t = 1, 2, . . . do
2: Collect the arms’ preference rankings (πj,i)i∈[N ] from each arm aj ∈ K
3: Collect the matched times (Ti,j)j∈[K] and the comparison matrix (Better(i, j, j′))j,j′∈[K]

from each player pi ∈ N
4: Compute A(t) = Subroutine-of-AE-AGS(πj,i, Ti,j ,Better(i, j, j

′))i∈[N ],j,j′∈[K]

5: Assign the arm Ai(t) to each player pi ∈ N
6: end for

2It is worth noting that the worst partner for all players may not appear in a single stable matching. As
demonstrated in the proof, we bound the stable regret by constraining the number of unstable matchings. So
our stable regret upper bound also applies to the cumulative market instability (the cumulative number of
unstable matchings).
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Specifically, in each time slot t, each arm aj would submit its preference ranking (πj,i)i∈[N ] to the
central platform (Line 2). If multiple players share the same preferences, the arm can randomly
break the tie. And each player pi maintains a counter Ti,j representing the number of times that
pi is matched with arm aj . It also maintains a comparison matrix Better among each arm pair.
Better(i, j, j′) = 1 means pi estimate that it prefers aj over aj′ . And Better(i, j, j′) = 0 means pi
still cannot distinguish the performances between aj and aj′ , or estimates that it prefers aj′ over aj .
The player would submit the counter and comparison matrix to the central platform (Line 3).

Then, the central platform would compute a matching A(t) based on the collected information (Line
4) and assign the target arm Ai(t) to player pi (Line 5). The detailed procedure to compute A(t)
is summarized in the Subroutine-of-AE-AGS algorithm (Algorithm 2). In general, Algorithm 2 can
be regarded as an adaptive exploration algorithm based on GS with the arm side as the proposing
side. Arms would propose to their most preferred players based on their submitted preference rank-
ing (Line 3). Among the received proposals, players would first compute the estimated sub-optimal
arms, i.e., an arm aj can be regarded as sub-optimal if there exists a player aj′ such that pi deter-
mines it prefers aj′ over aj (Line 5). Each player pi would accept the proposal from the potential
optimal arm with the least matched times (Line 6). If the arm is not accepted by its proposed player,
it proposes to the next preferred player (Line 8). Until all arms are matched or have proposed all of
the N players (Line 2), the algorithm stops and outputs the final matching. It is worth noting that
Algorithm 2 ensures that all players are assigned different arms when stopping since N ≤ K.

Algorithm 2 Subroutine-of-AE-AGS
Input: Arms’ preference rankings (πj,i)j∈[K],i∈[N ], player-arm matched times (Ti,j)i∈[N ],j∈[K],

comparison matrix (Better(i, j, j′))i∈[N ],j,j′∈[K]

1: Initialize: ∀pi ∈ N , its available arm set Ai = ∅, temporarily matched arm mi = −1;
∀aj ∈ K, its current proposing ranking sj = 1, temporarily matched player m−1

j = −1

2: while ∃aj : m−1
j = −1 and sj ≤ N do

3: Denote pi as the player who ranked at the position sj , i.e., pi := πj,sj
4: Update the available arm set: Ai = Ai ∪ {aj}
5: Compute the estimated sub-optimal arm set in Ai:

Di = {aj ∈ Ai : ∃j′ ∈ Ai s.t. Better(i, j′, j) = 1}
6: Update the temporarily matched arm of pi as mi ∈ argminj∈Ai\Di

Ti,j

Suppose ak is the temporarily matched arm of pi, i.e., ak = mi, update m−1
k = pi

7: for aj′ ∈ Ai and aj′ ̸= mi do
8: sj′ = sj′ + 1, m−1

j′ = −1
9: end for

10: end while
Output: Matching outcome m = (mi)i∈[N ]

The operation of players is summarized in Algorithm 3. Each player pi maintains µ̂i,j and Ti,j to
record the estimated preference value and the matched time with arm aj (Line 1). In each time
slot t, the player pi first computes the upper confidence bound UCBi,j and lower confidence bound
LCBi,j as Line 3. It can be shown in the analysis that the real preference value µi,j can be upper
bounded by UCBi,j and lower bounded by LCBi,j with high probability. So once an arm aj’s lower
bound is better than the other arm aj′ ’s upper bound, pi can regard it prefers aj over aj′ and update
Better(i, j, j′) = 1 (Line 4). Each player would then submit the information of matched times and
comparison matrix to the central platform (Line 5) and receive the assigned target arm Ai(t) (Line
6). It then selects this arm and updates the estimated preference values and matched times based on
the received rewards (Line 7-9).

4.1 THEORETICAL RESULTS

This section provides the theoretical results for the centralized AE-AGS algorithm. To characterize
the hardness of the learning process, we first define the preference gap ∆ as follows.
Definition 4.1. For any player pi and arm aj , aj′ , define ∆i,j,j′ = |µi,j − µi,j′ | as the preference
gap of pi between aj and aj′ . Further, define ∆ = mini,j,j′,∆i,j,j′ ̸=0 ∆i,j,j′ as the minimum non-
zero gap if mini,j,j′,∆i,j,j′ ̸=0 ∆i,j,j′ ̸= 0. Otherwise, define ∆ = 0.
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Algorithm 3 AE-AGS (centralized version, from the view of player pi)
1: Initialize: ∀j ∈ [K], µ̂i,j = 0, Ti,j = 0

∀j, j′ ∈ [K], Better(i, j, j′) = 0 // Better(i, j, j′) = 1 implies that pi considers that aj is better
than aj′ , Better(i, j, j′) = 0 otherwise

2: for time slot t = 1, 2, . . . do
3: Compute the upper and lower confidence bounds for each arm aj ∈ K as

UCBi,j = µ̂i,j +
√

6 log T/Ti,j ,LCBi,j = µ̂i,j −
√

6 log T/Ti,j

// If Ti,j = 0, then UCBi,j = ∞, LCBi,j = −∞
4: Update Better for any j, j′ ∈ [K]: Better(i, j, j′) = 1 if LCBi,j(t) > UCBi,j′(t)
5: Submit (Ti,j)j∈[K], (Better(i, j, j

′))j,j′∈[K] to the central platform
6: Receive Ai(t) from the central platform and select this arm, receive reward Xi,Ai(t)(t)
7: if pi is successfully accepted by Ai(t) then
8: µ̂i,Ai(t) = (Xi,Ai(t)(t) + µ̂i,Ai(t) · Ti,Ai(t))/(Ti,Ai(t) + 1) , Ti,Ai(t) = Ti,Ai(t) + 1
9: end if

10: end for

The stable regret by following the centralized AE-AGS algorithm can be bounded as follows.
Theorem 4.1. Following Algorithm 1 and 3, if ∆ > 0, the stable regret of each player pi satisfies

Regi(T ) ≤ O(NK log T/∆2) .

If ∆ = 0, the stable regret of each player pi is Regi(T ) = 0.

Due to the space limit, the detailed proof is deferred to Appendix B. The algorithm can also be
extended to the decentralized setting. We provide more discussions regarding its implementation,
problem challenge, and the corresponding theoretical results in the next section.

The experiments are deferred to Appendix E.

5 DECENTRALIZED SETTING

In real applications, the central platform may not be always available. For generality, we also extend
the AE-AGS algorithm to the decentralized setting. In this case, we follow existing decentralized
works (Liu et al., 2021; Kong et al., 2022; Kong & Li, 2023) and assume that each player can observe
the successfully matched pairs in each time slot. This is also common in real applications such as
the workers usually updating their online profile in the market and the schools usually publishing the
admission list. The decentralized version of the algorithm is presented in Algorithm 4. Due to that
the algorithm proceeds in several phases, we use τ as the local time slot index during each phase.

To avoid conflicts among players when selecting arms, Algorithm 4 starts from an index estimation
phase where each player learns a unique index that guides the following selections. The players
can simultaneously learn arms’ preference rankings during this phase (Line 3-10). Specifically, the
phase contains NK rounds and each arm corresponds to a N -round block. At the first round in arm
aj’s N -round block, all players would first select arm aj . The successfully accepted player can be
regarded as ranked in the first position in aj’s ranking and receives an index of 1. In each of the
following time τ , the previously accepted players would not select arms and only the previously
rejected players select arm aj . The accepted one is regarded as ranked in the τ -th position and
receives an index τ . Then after NK rounds, each player knows all arms’ preference rankings and
gets a unique index.

The algorithm then enters the main exploration part. The total horizon can be further divided into
several phases (Line 12) with the phase length growing exponentially if no player breaks the process
(Line 13). Within the phase, each player locally runs the Subroutine-of-AE-AGS (Algorithm 2)
with its local knowledge of all arms’ preferences, player-arm matched times, and the comparison
matrix (Line 15). The player then selects the computed target arm (Line 16), receives the reward,
and updates its estimated preference value (Line 17). The player also updates its local counter Ti,j

for the observed matched player-arm pair (pi, aj).

When the phase ends, players will update their comparison information based on the previous reward
observations (Line 20-24). Specifically, pi uses Update Flagi(s) to indicate whether it has updated
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Algorithm 4 AE-AGS (decentralized version, from the view of player pi)
1: Initialize: Better(i, j, j′) = 0, Ti,j = 0,∀i ∈ [N ], j, j′ ∈ [K]; µ̂i,j = 0,∀j ∈ [K]

Update Flag(0) = False // Update Flag = False means no player updates the Better matrix,
Update Flag = True otherwise

2: Initialize: πj,i = −1, Indexi = −1,∀j ∈ [K], i ∈ [N ]
3: for j ∈ [K] do
4: Arm = aj
5: for round τ = 1, 2, · · · , N do
6: Ai(τ) = Arm
7: Set Arm = −1 and Indexi = τ if accepted by Ai(τ)
8: Update πj,Ā−1

j (τ) = τ

9: end for
10: end for
11: ℓ0 = 2 // The length of the phase
12: for phase s = 1, 2, · · · do
13: ℓs = 2ℓs−1 if Update Flag(s− 1) = False and ℓs = 2 otherwise
14: for round τ = 1, 2, · · · , ℓs do
15: m = Subroutine-of-AE-AGS(πj,i, Ti,j ,Better(i, j, j

′))i∈[N ],j,j′∈[K]

16: Select arm Ai(τ) = mi

17: Update the empirical mean (µ̂i,j)j∈[K] as Line 7-9 in Algorithm 3
18: For each arm aj , observe its matched player Ā−1

j (τ) and update TĀ−1
j (τ),j+ = 1

19: end for
20: Update Flagi(s) = False,Update Pairsi(s) = {}
21: for j, j′ ∈ [K] and Better(i, j, j′) = 0 and UCBi,j′ < LCBi,j do
22: Update Flagi(s) = True
23: Update Pairsi(s).add((j, j

′))
24: end for
25: Update Flag(s),Better = Communication(Update Flagi(s),Update Pairsi(s),Better)
26: end for

the comparison information in the phase s, and uses Update Pairsi(s) to restore the updated pairs,
where a pair (j, j′) is included in Update Pairsi(s) if pi identifies that LCBi,j > UCBi,j′ at
the end of phase s. Then players communicate the updated information with each other through
the Communication procedure (Line 25). After communicating with others, players get the
Update Flag(s) that represents whether a player has updated his comparison information and the
updated Better matrix. If Update Flag(s) is true, the players may need to explore some new arms,
so the phase length must be restarted to avoid additional exploration cost (Line 13).

The detailed Communication description is presented in Algorithm 5. Generally speaking, players
would transmit their information one by one based on their unique index. In the first round, each
player would select the arm with its own index if its Update Flag is true and select nothing oth-
erwise (Line 2-4). So for other players, if they observe that an arm aj is matched in this round,
they can infer that the player with index j has updated its comparison information in this phase and
would transmit the updated pairs in the following. The following rounds can then be divided into
N blocks where the p-th block is used for player with index p to transmit information and others to
receive the information from this player (Line 6). If the player has no information to update, then
the block can be regarded as having 0 round (Line 7-8). Otherwise, the player would select the
arm in its Update Pairsi one by one (Line 9-15) with a round selecting nothing indicating the end
of the transmission (Line 16). And other players would receive the updated pairs by observing the
successfully matched arms in the corresponding block (Line 19-26). After the communication, the
player gets Flag that represents whether a player updates its comparison information in this phase
as well as the updated Better matrix. The communication procedure ensures that all players locally
maintain the up-to-date comparison information of all players.
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Algorithm 5 Communication

Input: Update Flagi, Update Pairsi, Better
1: Initialize: Flag = False, τ = 1
2: if Update Flagi = True then
3: Select arm Ai(τ) = aIndexi
4: end if
5: p = 1 // the player index who transmit information currently
6: while p ≤ N do
7: if ap is not matched at time slot τ = 1 then
8: p = p+ 1
9: else if ap is matched at time slot τ = 1 and p = Indexi then

10: Flag = True
11: for (j, j′) ∈ Update Pairsi do
12: τ = τ + 1, Ai(τ) = aj
13: τ = τ + 1, Ai(τ) = aj′
14: Update Better(i, j, j′) = 1
15: end for
16: τ = τ + 1, Ai(τ) = −1
17: p = p+ 1
18: else
19: Flag = True
20: Denote pi′ as the player with index p
21: τ = τ + 1
22: while Āi′(τ) ̸= −1 do
23: j := Āi′(τ), τ = τ + 1
24: j′ := Āi′(τ), τ = τ + 1
25: Update Better(i′, j, j′) = 1
26: end while
27: p = p+ 1
28: end if
29: end while
Output: Flag, Better

5.1 THEORETICAL RESULTS AND DISCUSSIONS

Algorithm 4 is a decentralized version of Algorithm 1. Compared with that in the centralized version,
the algorithm only pays additional regret for index estimation and communication, which only costs
a constant number of time slots and does not influence the regret order.
Theorem 5.1. Following Algoirthm 4, if ∆ > 0, the stable regret of each player pi satisfies

Regi(T ) ≤ O(NK log T/∆2) .

If ∆ = 0, the stable regret of each player pi satisfies Regi(T ) = O(log T ).

Due to the space limit, the proof of Theorem 5.1 is deferred to Appendix C. How to balance ex-
ploration and exploitation is important to achieving lower stable regret. The state-of-the-art works
(Zhang et al., 2022; Kong & Li, 2023; Kong et al., 2024) in matching markets distinctly separate
exploration from exploitation, where players only shift to exploitation once the preferences for arms
have been clearly differentiated. Assuming all preference values are distinct, players can keep ex-
ploring until all gaps are identified. However, under indifference, when a player cannot differentiate
between two arms, it becomes challenging to discern whether further exploration is necessary. Con-
tinuous exploration may bring higher regret when preferences are the same; while discontinuing
exploration may result in insufficient observations to identify preference differences and further ex-
ploiting a non-stable matching. The key to learning under indifference, therefore, is to allow players
to explore without the burden of suffering additional regret. Though Liu et al. (2020) and Basu
et al. (2021) can be extended to handle indifference, they either use the value of ∆ to control the
exploration budget (Liu et al., 2020), or adopt exponential time as the trial-and-error cost to avoid
prematurely exploiting a non-stable matching (Basu et al., 2021). This results in their algorithms
requiring strong assumptions and suffering from exponential regret.
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Our approach provides a more adaptive perspective to balance exploration and exploitation under
indifference. Players only need to explore arms that propose to them. If these arms share the same
preferences, all become potential partners in a stable matching, making exploration cost-free and
preserving the opportunity to exploit the stable outcome. If the arms have different preferences, the
player will eventually eliminate suboptimal options after collecting sufficient observations. Such a
design prevents players from deciding when to stop exploring and naturally addresses the learning
challenge under indifference.

Although the ODA algorithm in Kong & Li (2024) and AE arm-DA algorithm in Hosseini et al.
(2024) are also inspired by the arm-guided GS, they differ fundamentally from our approach
in exploration-exploitation design principles. These two algorithms still adopt an ”explore-then-
exploit” strategy, explicitly dividing each step of the GS process. Only when the player completes
an exploration step and identifies the optimal arm does the process move to the next step. Such an
approach is still unable to handle indifferent preferences, which could lead to the algorithm getting
stuck in one of the steps. Our key idea to address indifferences is to prevent players from facing the
dilemma of determining when to stop exploration. In our approach, the available arms for players in
each round are determined dynamically as the outcome of a multi-step GS process, allowing players
to freely explore. Our convergence results also differ from Kong & Li (2024); Hosseini et al. (2024).
These two algorithms converge to a fixed stable matching when players have strict preferences but
may fail to converge under indifference. In contrast, our algorithm can guarantee stability under
indifferences, with outcomes potentially switching between different stable matchings.

6 CONCLUSION

In this work, we study the bandit learning problem in more general matching markets with indif-
ference. Under this setting, the exploration-exploitation strategies employed by existing algorithms
become ineffective. To enable players to explore unknown arms without incurring significant costs,
we propose a novel adaptive exploration strategy based on the arm-guided GS algorithm. This ap-
proach allows players to freely explore arms with indistinguishable preferences while ensuring ef-
ficient exploitation of stable matchings. We prove that the algorithm achieves a stable regret bound
of O(NK log T/∆2). We also analyze existing algorithms and demonstrate their limitations when
extended to handle indifference. Compared with the two existing algorithms that can be extended to
indifference, our method shows a significant improvement with respect to not only the assumptions
but also the regret order. The convergence and effectiveness of our algorithm are further validated
through a series of experiments.

One future direction is to explore stronger objectives. There are various levels of stability under in-
difference, including stronger stability, super stability, and weak stability (Irving, 1994). This work
focuses on weak stability, which aligns with existing research on strict preference settings. Inves-
tigating stronger objectives is an interesting avenue for further study. Under weak stability, while
a player-optimal stable matching may not always exist, it may be possible to establish guarantees
for Pareto-efficient stable matchings—ensuring that no player is matched with a better arm in com-
parison to another stable matching while all other players are matched with an arm that is no worse
(Erdil & Ergin, 2008).
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A DISCUSSION ON THE SUCCESS OR FAILURE OF EXISTING ALGORITHMS
WHEN DEALING WITH INDIFFERENCE

In this section, we try to extend existing algorithms for general one-to-one markets (Liu et al., 2020;
2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Kong et al., 2024) to the indifference
setting. We specify the failure parts of the original proof if it cannot work under indifference and a
sketched reason for Liu et al. (2020) and Basu et al. (2021) to deal with indifference.

For the centralized UCB algorithm in Liu et al. (2020), Corollary 9 does not hold as when players
have indifferent preferences,

∑
j′:µi,j′<µi,j

≤
∑K

ℓ=1 1/(ℓ
2∆2) does not hold.

For the CA-UCB algorithm in Liu et al. (2021), Lemma 8 does not hold. We can provide a coun-
terexample that mt is stable and Et+1 holds, but mt+1 /∈ M∗. For example, there are 3 players and
3 arms with preference rankings list below:{

p1 : a1 ≻ a2 = a3 ,
p2 : a2 = a1 ≻ a3 ,
p3 : a1 = a3 ≻ a2 ,

{
a1 : p2 ≻ p3 ≻ p1 ,
a2 : p1 ≻ p2 ≻ p3 ,
a3 : p1 ≻ p2 ≻ p3 .

At t, the matching mt = {(p1, a3), (p2, a2), (p3, a1)} is stable. And at time t+ 1, the matching can
be {(p1, a2), (p2, a1), (p3,−1)}, which is unstable. The same example can illustrate the failure of
Lemma 1 in Kong et al. (2022).

For the ML-ETC algorithm in Zhang et al. (2022), the second paragraph in page 16 does not hold as
when players have indifferent preferences, there always exists a pair of arms such that the stopping
condition is never satisfied (the last paragraph in page 6). Similarly, for the ETGS algorithm in Kong
& Li (2023), Lemma 4 does not hold as it may never happen that a pair of arms with the LCB of one
is better than the UCB of the other when their preference values are the same. The same analysis
applies to Lemma A.5 in Kong et al. (2024).

The proof of the centralized ETC algorithm in Liu et al. (2020) and Basu et al. (2021) goes through
under indifference with ∆ defined as the minimum non-zero preference gap among all players. The
reason is that when the matched time of players over arms is enough to identify the minimum non-
zero gap ∆, the matching process in these two algorithms can be regarded as running the offline GS
algorithm by randomly breaking the tie, resulting in the stable matching.

B PROOF OF THEOREM 4.1

For convenience, for any time slot t, define µ̂i,j(t), Ti,j(t),LCBi,j(t),UCBi,j(t) as the value of
µ̂i,j , Ti,j ,LCBi,j ,UCBi,j in the AE-AGS algorithm at the start of t. Define the failure event

F =

{
∃i ∈ [N ], j ∈ [K], t ∈ [T ] : |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}
(2)

to represent that some estimated preference value is far from the real preference value at some round
t. When ∆ > 0, the stable regret of Algorithm 1 and Algorithm 3 can be decomposed as

Regi(T ) = E

[
T∑

t=1

(
µi,mi

−Xi,Ai(t)(t)
)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

= E

[
T∑

t=1

1{A(t) /∈ M}

]
(3)

≤ E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]
+ E

[
T∑

t=1

1{F}

]

≤ 96NK log T

∆2
+ 2NK , (4)
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where equation 3 holds since all players select different arms in the centralized setting and thus no
rejection happens, equation 4 is because of Lemma B.1 and Lemma B.2.

When ∆ = 0, all players have the same preferences over all arms. So any matching that each player
is matched with an arm is a stable matching since no blocking pair exists. Since Algorithm 1 assigns
different arms to different players, the matching A(t) in each time slot is a stable matching. So the
stable regret of all players is 0 as equation 3 is 0.

Lemma B.1.

E

[
T∑

t=1

1{F}

]
≤ 2NK . (5)

Proof. Recall that F is defined as equation 2. Then,

E

[
T∑

t=1

1{F}

]
= E

[
T∑

t=1

1

{
∃i ∈ [N ], j ∈ [K], t ∈ [T ] : |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}]

≤ T ·
∑
i∈[N ]

∑
j∈[K]

E

[
T∑

t=1

1

{
|µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}]

= T ·
∑
i∈[N ]

∑
j∈[K]

T∑
t=1

t∑
ω=1

P

(
Ti,j(t) = ω, |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

)

= T ·
∑
i∈[N ]

∑
j∈[K]

T∑
t=1

t∑
ω=1

P

(
|µ̂i,j,ω − µi,j | >

√
6 log T

ω

)

≤ T ·
∑
i∈[N ]

∑
j∈[K]

T∑
t=1

t∑
ω=1

2 exp(−3 log T ) (6)

≤ 2NK .

Here equation 6 is due to Lemma D.1.

Lemma B.2. Following Algorithm 1 and Algorithm 3, when ∆ > 0, it holds that

E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]
≤ 96NK log T

∆2
. (7)

Proof. For convenience, denote Ai(t) as the set of available arms of player i at the end of Algorithm
2 when running it at round t. According to the definition of stable matching, we can first decompose
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the above regret as

E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]

≤E

[
T∑

t=1

1
{
∃i ∈ [N ], j ∈ [K] : µi,j > µi,Ai(t) and πj,i ≺ πj,A−1

j (t)

}
|⌝F

]

≤E

[
T∑

t=1

1
{
∃i ∈ [N ], j ∈ Ai(t) : µi,j > µi,Ai(t)}

}
|⌝F

]
(8)

≤E

 T∑
t=1

∑
i∈[N ]

1{∃j, j′ ∈ Ai(t) : µi,j > µi,j′ , aj′ = Ai(t)} |⌝F


≤E

 T∑
t=1

∑
i∈[N ]

∑
j′∈Ai(t)

1{Ai(t) = aj′ , j
′ is not the best arm in Ai(t)} |⌝F


≤E

∑
i∈[N ]

∑
j′∈[K]

T∑
t=1

1{j′ ∈ Ai(t), j
′ is not the best arm in Ai(t), Ai(t) = aj′} |⌝F

 (9)

≤96NK log T

∆2
,

where equation 8 holds since arm aj prefers aj to its matched arm A−1
j (t), then aj must first propose

to arm pi in Algorithm 2 and thus aj ∈ Ai(t). And equation 9 can be proved by contradiction.
Suppose the matched time of pi and aj′ is larger than 96 log T/∆2, i.e., Ti,j′(t) > 96 log T/∆2,
then pi would not select aj′ to match at time t. This is because for other better arms aj ∈ Ai(t) with
µi,j > µi,j′ , if the matched time Ti,j(t) is smaller than 96 log T/∆2, then pi would select those with
fewer match times (Line 6 of Algorithm 2). And otherwise, due to Lemma B.3, pi would estimate
aj′ as sub-optimal arms and does not select it (Line 5 of Algorithm 2).

Lemma B.3. At any time slot t, for any player pi and arm aj , aj′ with µi,j > µi,j′ , if
min {Ti,j(t), Ti,j′(t)} > 96 log T/∆2, then UCBi,j′(t) < LCBi,j(t) conditional on ⌝F .

Proof. By contradiction, suppose UCBi,j′(t) ≥ LCBi,j(t). Based on the definition of ⌝F (equa-
tion 2) and LCB,UCB (Line 3 of Algorithm 3), it holds that

µi,j − 2

√
6 log T

Ti,j(t)
≤ LCBi,j(t) ≤ UCBi,j′(t) ≤ µi,j′ + 2

√
6 log T

Ti,j′(t)
. (10)

we can conclude

∆i,j,j′ := µi,j − µi,j′ ≤ 4

√
6 log T

min {Ti,j(t), Ti,j′(t)}
.

This implies min {Ti,j(t), Ti,j′(t)} ≤ 96 log T/∆2
i,j,j′ ≤ 96 log T/∆2, which contradicts the fact

that min {Ti,j(t), Ti,j′(t)} > 96 log T/∆2. The lemma can thus be proved.

C PROOF OF THEOREM 5.1

Denote smax as the total number of phases of Algorithm 4 when the interaction ends. For each
phase s, denote ts(Communication) as the number of time slots when running the Communication

15



Published as a conference paper at ICLR 2025

algorithm (Algorithm 5). Then when ∆ > 0, the regret of Algorithm 4 can be decomposed as

Regi(T ) = E

[
T∑

t=1

(
µi,mi

−Xi,Ai(t)(t)
)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

≤ NK + E

[
smax∑
s=1

(
ℓs∑

τ=1

1
{
Ā(τ) /∈ M

}
+ ts(Communication)

)]

≤ NK + E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]
+ E

[
smax∑
s=1

ts(Communication)

]
+ E

[
T∑

t=1

F

]

≤ NK +
672NK log T

∆2
+NK2 log T + 3NK2 + 2NK .

where the second last inequality is due to Lemma C.1, the last inequality is due to Lemma C.2,
Lemma C.3, and Lemma B.1.

If ∆ = 0, recall that any matching without conflicts is a stable matching as no blocking pair exists.
So Algorithm 4 would only suffer regret in the index estimation phase and the Communication
phase as running Subroutine-of-AE-AGS does not suffer stable regret (Lemma C.1). The regret can
thus be decomposed as

Regi(T ) = E

[
T∑

t=1

(
µi,mi −Xi,Ai(t)(t)

)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

≤ NK + E

[
smax∑
s=1

(
ℓs∑

τ=1

1
{
Ā(τ) /∈ M

}
+ ts(Communication)

)]

≤ NK + E

[
smax∑
s=1

ts(Communication)

]
≤ NK + log T ,

where the last inequality is due to Lemma C.2.
Lemma C.1. In Algorithm 4, no collision happens, i.e., Āi(t) = Ai(t) when players select arms
based on the Subroutine-of-AE-AGS (Line 15).

Proof. We first prove that all players maintain the same values of πj,i, Ti,j , and Better(i, j, j′) for
each j, j′ ∈ [K]. In Algorithm 4, π := (πj,i)j∈[K],i∈[N ] is determined based on which player is
matched with arm aj in the corresponding time slot (Line 3-10). Since all players have the same
observation, different players have the same knowledge over π. Similarly, all players have the
same value of (Ti,j)i∈[N ],j∈[K] since they update this knowledge only when they observe that aj is
matched with pi within the phase (Line 18). The comparison matrix Better is only updated during
the Communication based on the selection of players in the corresponding slot (Line 14, 25 in
Algorithm 5), so the value of Better among different players is also the same.

Above all, the computed matching m in each time slot (Line of Algorithm 15) is the same for all
players. Further based on the procedure of Subroutine-of-AE-AGS (Algorithm 2), all players are
assigned with different arms. So no collision happens, i.e., Āi(t) = Ai(t) for each player pi, when
players select arms based on Subroutine-of-AE-AGS in Algorithm 4 (Line 15).

Lemma C.2. When ∆ > 0,

E

[
smax∑
s=1

ts (communication)

]
≤ NK2 log T + 3NK2 .
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When ∆ = 0,

E

[
smax∑
s=1

ts (communication)

]
≤ log T .

Proof. We first prove the first inequality. Recall that the phase length grows exponentially until a
player pi finds that an arm aj is better than aj′ and updates its comparison flag Update Flag as
True. Based on Line 21 in Algorithm 4, the comparison information of each arm pair can only be
updated once. Above all, N players can update the comparison information in at most NK2 phases.
We can divide the total phases into several super phases where only the start phase of the super phase
has length 2 and the length of all of the following phases grows. Then each super phase contains
at most log T phases and there are at most NK2 super phases. So the Communication procedure
runs in at most NK2 log T times.

When running Communication, one time slot would be first used for all players to transmit the
Update Flag information (Line 2-4). So the total time complexity to transmit the update flag is
NK2 log T . Then players would transmit their updated pairs, with each pair costing 2 time slots and
an ending slot to select nothing. Since at most NK2 pairs are updated, the total time complexity to
transmit the updated pairs is 3NK2. Thus the lemma can be proved.

When ∆ = 0, all players have the same preference values over all arms. Based on the definition
of UCB and LCB in Line 3 of Algorithm 3, it would never happen that LCBi,j < UCBi,j′ for
some player pi and arms aj , aj′ . So the comparison information of any player would not updated
in all phases. The phase length would never restart and there is only one super phase. So the total
number of phases is log T . And during each Communication procedure, all players only spend
one time slot to transmit the Update Flag and have no update pair to transmit. Above all, the total
communication time complexity is log T .

Lemma C.3. In Algorithm 4,

E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]
≤ 672NK log T

∆2
.

Proof. Recall that the phase length grows exponentially if Update Flag = False and restart if
Update Flag = True at the last phase. Divide the total smax phases into several super-phases
based on whether Update Flag = True. And denote sr as the number of phases contained in the
super-phase r. Use rmax to represent the number of super-phases. For convenience, denote Ai(t) as
the set of available arms of player i at the end of Algorithm 2 when running it at round t. The above
regret can be decomposed as

E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1
{
∃i ∈ [N ], j ∈ [K] : µi,j > µi,Ai(τ) and πj,i ≺ πj,A−1

j (τ)

}
|⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1
{
∃i ∈ [N ], j ∈ Ai(τ) : µi,j > µi,Ai(τ)

}
|⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{∃i ∈ [N ], j′ ∈ Ai(τ) : Ai(τ) = aj′ , j
′ is not the best arm in Ai} |⌝F

]

≤
∑
i∈[N ]

∑
j′∈[K]

E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

]
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With a little abuse of notation, denote s′ as the first phase at the end of which Ti,j′ > 96 log T/∆2.
Denote t′ as the first round in s′ at the end of which Ti,j′ > 96 log T/∆2. Further, denote r′ as the
super-phase that contains phase s′ and s(r′) as the global phase index of the first phase in r′.

Then at any round τ that after phase s′, if exists better arm aj such that Ti,j > 96 log T/∆2, pi would
update Better(i, j, j′) = 1 based on ⌝F and Lemma B.3. Subroutine-of-AE-AGS (Algorithm 2)
would thus not assign aj′ to player pi. And if all of the other better arms aj have Ti,j < 96 log T/∆2,
pi may still select arm aj′ in the next phase. But recall that Subroutine-of-AE-AGS would always
select the arm with the fewest selection times for pi (Line 6 of Algorithm 2), at time t′, the difference
between Ti,j and Ti,j′ should be no more than 1. So pi would not select arm aj′ after the phase s′+1.
Above all, the formula can be bounded as

∑
i∈[N ]

∑
j′∈[K]

E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

]

≤
∑
i∈[N ]

∑
j′∈[K]

96 log T

∆2
+ E

 ℓs′∑
τ=t′

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F


+E

ℓs′+1∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F


≤
∑
i∈[N ]

∑
j′∈[K]

96 log T

∆2
+ E

(2 + 4) ·
s′−1∑

s=s(r′)

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F


(11)

≤
∑
i∈[N ]

∑
j′∈[K]

(
96 log T

∆2
+ 6 · 96 log T

∆2

)

≤ 672NK log T

∆2
,

where equation 11 is due to the exponentially increasing phase length.

D TECHNICAL LEMMAS

Lemma D.1. (Corollary 5.5 in Lattimore & Szepesvári (2020)) Assume that X1, X2, . . . , Xn are
independent, σ-subgaussian random variables centered around µ. Then for any ε > 0,

P

(
1

n

n∑
i=1

Xi ≥ µ+ ε

)
≤ exp

(
−nε2

2σ2

)
, P

(
1

n

n∑
i=1

Xi ≤ µ− ε

)
≤ exp

(
−nε2

2σ2

)
.

E EXPERIMENTS

In this section, we conduct a series of experiments to validate the convergence of our AE-AGS in
markets with indifference and compare its performance with that of centralized ETC (abbreviated
as C-ETC) (Liu et al., 2020) and phased ETC (abbreviated as P-ETC) (Basu et al., 2021), both of
which can also be extended to handle indifference. In each experiment, we run all algorithms for
T = 100k rounds and report the averaged results over 20 independent runs. The standard errors
calculated as the standard deviation divided by

√
20 are plotted.

To present the stable regret of each player, we first test the algorithms’ performances in a small
market with 5 players and 5 arms. The position of each arm in a player’s preference ranking is a
random number in {1, 2, . . . ,K}, similar to how the arms rank the players. Arms sharing the same
position in a ranking have the same preference values, and the preference gap between two arms
ranked in adjacent positions is set to ∆ = 0.1. The feedback Xi,j(t) for player pi on arm aj at time
t is drawn independently from the Gaussian distribution with mean µi,j and variance 1. We report
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Figure 1: Experimental comparison of AE-AGS and baselines in a market with 5 players and 5 arms.

the stable regret of each player in Figure 1 (a)(b)(c)(d)(e) and the cumulative market unstability (the
cumulative number of unstable matchings) in Figure 1 (f).

For generality, we also vary the value of ∆ ∈ {0.1, 0.15, 0.2, 0.25} and market size N = K ∈
{3, 6, 9, 12} to show the performances of algorithms. We report both the market unstability and the
maximum cumulative stable regret among all players in Figure 2 (a)(c) and (b)(d), respectively.
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Figure 2: Experimental comparison of AE-AGS and baselines in markets with different preference
gaps and market sizes.

In all tested markets, our AE-AGS consistently demonstrates good performances. This observation
aligns with the theoretical results, where the performance of C-ETC is sensitive to the value of ∆,
performing well in markets where ∆ is appropriate but worse in others. The baseline P-ETC suf-
fers from exponential regret and has not converged within the reported horizon. The dependency
of the algorithm’s performance on the parameters ∆ and N , K is also consistent with the theoret-
ical results. Specifically, as ∆ decreases and N or K increases, the algorithm needs to pay more
exploration costs, leading to higher regret.
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