
A Proof of Lemma 3.1

Proof. For n-user mean estimation protocol (f,A, PUM ), following the notation and steps from [2,
Proof of Lemma 3.1], we define the marginalized output

g̃i(mi, Ui; v
n) = E{mj ,Uj}j 6=i

h
nA({mj , Uj}nj=1)

��� fi(vi, Ui) = mi, Ui, v
n\i
i
. (35)

Then, we define the user-specific decoder by averaging gi(mi, Ui; vn) with respect to i.i.d. uniform
Punif:

gi(mi, Ui) = Evn\i⇠ Punif
[g̃i(mi, Ui; v

n)] (36)

where v
n\i indicates the v

n vector except vi. Due to the symmetry of Punif, it is clear that gi is
unbiased. We also define

R̂i({vj ,mj , Uj}ij=1) = Evj⇠Punif,j>i

2

4nA({mj , Uj}nj=1)�
iX

j=1

vj

������
{vj ,mj , Uj}ij=1

3

5 (37)

Consider an average error where v1, . . . , vn are drawn i.i.d. uniformly on the sphere Sd�1.

E{vj ,mj ,Uj}n
j=1

���nA({mj , Uj}nj=1)�
Pn

j=1 vj

���
2
�

= E{vj ,mj ,Uj}n
j=1

���R̂n({vj ,mj , Uj}nj=1)
���
2
�

(38)

= E{vj ,mj ,Uj}n
j=1

���R̂n({vj ,mj , Uj}nj=1)� R̂n�1({vj ,mj , Uj}n�1
j=1 ) + R̂n�1({vj ,mj , Uj}n�1

j=1 )
���
2
�

(39)

= E{vj ,mj ,Uj}n
j=1

���R̂n({vj ,mj , Uj}nj=1)� R̂n�1({vj ,mj , Uj}n�1
j=1 )

���
2
�

+ E{vj ,mj ,Uj}n�1
j=1

���R̂n�1({vj ,mj , Uj}n�1
j=1 )

���
2
�

(40)

=
nX

i=1

E{vj ,mj ,Uj}i
j=1

���R̂i({vj ,mj , Uj}ni=1)� R̂i�1({vj ,mj , Uj}i�1
j=1)

���
2
�

(41)

�
nX

i=1

Emi,Ui

���E{vj ,mj ,Uj}i�1
j=1

h
R̂i({vj ,mj , Uj}ni=1)� R̂i�1({vj ,mj , Uj}i�1

j=1)
i���

2
�

(42)

=
nX

i=1

Emi,Ui

h
kgi(mi, Ui)� vik2

i
. (43)

Then, we need to show the same inequality for the worst-case error.

sup
v1,...,vn

E{mj ,Uj}n
j=1

2

64

������
nA({mj , Uj}nj=1)�

nX

j=1

vj

������

2
3

75

� E{vj ,mj ,Uj}n
j=1

2

64

������
nA({mj , Uj}nj=1)�

nX

j=1

vj

������

2
3

75 (44)

=
nX

i=1

Evi,mi,Ui

h
kgi(mi, Ui)� vik2

i
(45)

=
nX

i=1

sup
vi

Emi,Ui

h
kgi(mi, Ui)� vik2

i
(46)
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where the last equality (46) is from Lemma 3.2, Lemma 3.4, and Lemma 3.5. Thus, the user-specific
decoder achieves lower MSE:

Errn(f,A, PUn) � 1

n

nX

i=1

Err1(fi, gi, PUi). (47)

Since we keep random encoder fi the same, the canonical protocol with gi also satisfies "-LDP
constraint. This concludes the proof.

B Proof of Lemma 3.2

Proof. Let Ũm = g(m,U) for all 1  m M . Without loss of generality g(·, U) is one-to-one, i.e.,
{u : ũm = g(m,u) for all m} has at most one element (with probability 1), and u = g

�1(ũM ) is
well-defined. Then, we define a randomizer f0(v, ŨM ) that satisfies

Qf0(m|v, ũM ) = Qf (m|v, g�1(ũM )). (48)

It is clear that f0 satisfies "-LDP constraint. Then,

D(v, f0, g
+
, PŨM ) =Ef0,PŨM

h
kg+(f0(v, ŨM ), ŨM )� vk2

i
(49)

=EPŨM

hPM
m=1 Qf0(m|v, ŨM )kŨm � vk2

i
(50)

=Ef,PU

hPM
m=1 Qf (m|v, U)kg(m,U)� vk2

i
(51)

=Ef,PU

⇥
kg(f(v, U), U)� vk2

⇤
(52)

=D(v, f, g, PU ). (53)

We also need to show that the composition of the new randomizer f0 and selector g+ is unbiased.

EPŨM

h
g
+(f0(v, ŨM ), ŨM )

i
=Ef0,PŨM

hPM
m=1 Qf0(m|v, ŨM )Ũm

i
(54)

=Ef,PU

hPM
m=1 Qf (m|v, U)g(m,U)

i
(55)

=Ef,PU [g(f(v, U), U)] (56)
=v. (57)

Finally, Qf0(m|v, ũM ) is a valid transition probability, since

MX

m=1

Qf0(m|v, ũM ) =
MX

m=1

Qf (m|v, g�1(ũM )) = 1 (58)

for all ũM . This concludes the proof.

C Proof of Lemma 3.4

Proof. Let A be a uniformly random orthogonal matrix and Ū
M = A

|
U

M . We further let f1 be a
randomized encoder that satisfies

Qf1(m|v, ŪM ) = EA

⇥
Qf (m|Av,AŪ

M )|ŪM
⇤
. (59)

Then, Qf1 is a valid probability since

MX

m=1

Qf1(m|v, ŪM ) = EA

"
MX

m=1

Qf (m|Av,AŪ
M )|ŪM

#
= 1. (60)

Also, we have

Qf1(m|v, ŪM )

Qf1(m|v0, ŪM )
=

EA

⇥
Qf (m|Av,AŪ

M )|ŪM
⇤

EA

⇥
Qf (m|Av0, AŪM )|ŪM

⇤ (61)
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
EA

⇥
e
"
Qf (m|Av

0
, AŪ

M )|ŪM
⇤

EA

⇥
Qf (m|Av0, AŪM )|ŪM

⇤ (62)

=e
"
. (63)

Finally, we need to check unbiasedness.

EPŪM

⇥
Qf1(m|v, ŪM )Ūm

⇤
=EA,PUM

hPM
m=1 Qf (m|Av,AŪ

M )Ūm

i
(64)

=EA,PUM

hPM
m=1 Qf (m|Av,U

M )A|
Um

i
(65)

=EA

h
A

|EPUM

hPM
m=1 Qf (m|Av,U

M )Um

ii
(66)

=EA [A|
Av] (67)

=v. (68)
The key step is that the original encoder f is unbiased, which implies

EPUM

hPM
m=1 Qf (m|Av,U

M )Um

i
= Av (69)

for all A.

Now, we are ready to prove the main inequality.
Err(f, PUM ) = sup

v
D(v, f, PUM ) (70)

�EA [D(Av, f, PUM )] (71)

=EA

h
EPUM

hPM
m=1 Qf (m|Av,U

M )kUm �Avk2
ii

(72)

=EPUM ,A

hPM
m=1 Qf (m|Av,AŪ

M )kŪm � vk2
i

(73)

=EPŪM

hPM
m=1 EA

⇥
Qf (m|Av,AŪ

M )|ŪM
⇤
kŪm � vk2

i
(74)

=EPŪM

hPM
m=1 Qf1(m|v, ŪM )kŪm � vk2

i
(75)

=D(v, f1, PŪM ). (76)
for all v. This concludes the proof.

D Proof of Lemma 3.5

Proof. For v, v0 2 Sd�1, let A0 be an orthonormal matrix such that v0 = A0v. Let f2 be a randomized
encoder such that

f2(v, U
M ) = f(Av,AU

M ) (77)
for uniform random orthonormal matrix. Then,

Qf2(m|v, UM ) = EA

⇥
Qf (m|Av,AU

M )
⇤
. (78)

Similar to the previous proofs, Qf2 is a well-defined probability distribution, and f2 is unbiased
as well as "-LDP. Since PUM is rotationally symmetric and f2 is also randomized via the uniform
random orthogonal matrix, we have

D(v0, f2, PUM ) = D(A0v, f2, PUM ) = D(v, f2, PUM ). (79)
Compared to a given randomizer f , we have

Err(f, PUM ) �EA [D(Av, f, PUM )] (80)

=EA,PUM

hPM
m=1 Qf (m|Av,U

M )kAv � U
Mk2

i
(81)

=EA,PUM

hPM
m=1 Qf (m|Av,U

M )kv �A
|
U

Mk2
i

(82)

=EA,PUM

hPM
m=1 Qf (m|Av,AU

M )kv � U
Mk2

i
(83)

=EPUM

hPM
m=1 EA

⇥
Qf (m|Av,AU

M )
⇤
kv � U

Mk2
i

(84)

=D(v, f2, PUM ) (85)
for all v 2 Sd�1. This concludes the proof.
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E Proof of Theorem 3.6

Proof. The rotationally symmetric simplex codebook with normalization constant r is
(rAs1, . . . , rAsM ). Let f be the unbiased encoder satisfying "-LDP. Let Qmax =
maxQf (m|v, rAs

M ) and Qmin = minQf (m|v, rAs
M ), our objective is to demonstrate that Qmax

is less than or equal to e
"
Qmin. We will employ a proof by contradiction to establish this. Suppose

Qf (m1|v1, rA1s
M ) > e

"
Qf (m2|v2, rA2s

M ) for some m1, v1, A1,m2, v2, and A2. Let Ã be the
row switching matrix where rÃA1sm1 = rA1sm2 and rÃA1sm2 = rA1sm1 , then we have

Qf (m1|v1, rA1s
M ) = Qf (m2|Ãv1, rÃA1s

M ). (86)

We further let A0 be an orthogonal matrix such that A0
ÃA1 = A2, then

Qf (m2|Ãv1, rÃA1s
M ) =Qf (m2|A0

Ãv1, rA
0
ÃA1s

M ) (87)

=Qf (m2|A0
Ãv1, rA2s

M ) (88)

If we let v01 = A
0
Ãv1, then

Qf (m2|v01, rA2s
M ) =Qf (m1|v1, rA1s

M ) (89)

>e
"
Qf (m2|v2, rA2s

M ), (90)

which contradicts the "-LDP constraint.

For an unbiased encoder, the error is

EPUM

hPM
m=1 kUm � vk2Qf (m|v, UM )

i
= EPUM

"
MX

m=1

kUmk2Qf (m|v, UM )

#
� 1 (91)

= r
2 � 1. (92)

Thus, we need to find r that minimizes the error.

On the other hand, the encoder needs to satisfy unbiasedness. Without loss of generality, we assume
v = e1, then we need

EA

hPM
m=1 rAsmQf (m|e1, rAs

M )
i
= e1, (93)

where the expectation is with respect to the random orthonormal matrix A. If we focus on the first
index of the vector, then

r ⇥ Ea

"
MX

m=1

a
|
smQf (m|e1, rAs

M )

#
= 1, (94)

where a| = (a1, . . . , ad) is the first row of A and has uniform distribution on the sphere Sd�1. Thus,
it is clear that assigning higher probability (close to Qmax) to the larger a|sm.

If Qmax is strictly smaller than e
"
Qmin, then we can always scale up the larger probabilities and scale

down the lower probabilities to keep the probability sum to one (while decreasing the error). Hence,
we can assume that Qmin = q0 and Qmax = e

"
q0 for some 1 > q0 > 0.

Now, let k be such that

(M � bkc � 1)q0 + qi + bkce"q0 = 1, (95)

where qi is an intermediate value such that qi 2 [q0, e"q0]. Then, the optimal strategy is clear: (i)
assign e

"
q0 to bkc-th closest codewords sm’s, (ii) assign qi to the (bkc+ 1)-th closest codeword, and

(iii) assign q0 to the remaining codewords. This implies that the k-closest coding is optimal.

F Proof of Lemma 3.7

Proof. Following (28) with Um = Asm and v = e1, we have

rk
e
" � 1

ke" + (M � k)
E

2

4
X

m2Tk(e1,A·S)

A · sm

3

5
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= rk
e
" � 1

ke" + (M � k)
E

2

4
X

m2argmaxk({he1,As1i,...,he1,AsM i})

A · sm

3

5

= e1.

By focusing on the first coordinate of the above equation and observing that he1, AsM i = ha, smi
where a is the first row of the rotation matrix A, we must have

rk · e
" � 1

ke" + (M � k)
Ea⇠unif(Sd�1)

2

4
X

m2Topk({ha,s1i,...,ha,sM i})

ha, smi

3

5 = 1. (96)

Note that since A is a random orthogonal matrix drawn from the Haar measure on SO(d), a is
distributed uniformly over the unit sphere Sd�1.

Next, observe that by definition,

sm =
Mp

M(M � 1)
em �

1p
M(M � 1)

1M ,

where 1M = (1, 1, ..., 1| {z }
Mentries

, 0, ..., 0) 2 {0, 1}d (that is, (1M )m = {mM}). Therefore,

ha, smi =
Mp

M(M � 1)
am �

1p
M(M � 1)

ha,1M i,

and hence plugging in (96) yields

rk · e
" � 1

ke" + (M � k)
Ea⇠unif(Sd�1)

2

4
X

m2Topk({ha,s1i,...,ha,sM i})

ha, smi

3

5

=rk · e
" � 1

ke" + (M � k)
· Mp

M(M � 1)
Ea⇠unif(Sd�1)

"
kX

i=1

a(i|M) �
k

M
ha,1M i

#

=rk · e
" � 1

ke" + (M � k)
·
r

M

M � 1
·Ea⇠unif(Sd�1)

"
kX

i=1

a(i|M)

#

| {z }
:=Ck

,

where (1) a(i|M) denotes the i-th largest entry of the first M coordinates of a and (2) the last equality
holds since a is uniformly distributed over Sd�1.

G Proof of Lemma 3.8

Proof. First of all, observe that

Ea⇠unif(Sd�1)

"
kX

i=1

a(i|M)

#

= Ea⇠unif(Sd�1)

"
E
"

kX

i=1

a(i|M)

�����

MX

i=1

a
2
i

##

(a)
= Ea⇠unif(Sd�1)

2

4

vuut
MX

i=1

a2i · E(a0
1,...,a

0
M )⇠unif(SM�1)

"
kX

i=1

a
0
(i)

#3

5

= Ea⇠unif(Sd�1)

2

4

vuut
MX

i=1

a2i

3

5

| {z }
(i)

·E(a0
1,...,a

0
M )⇠unif(SM�1)

"
kX

i=1

a
0
(i)

#

| {z }
(ii)

,

where (a) holds due to the spherical symmetry of a. Next, we bound (i) and (ii) separately.
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Claim G.1 (Bounding (i)). For any d �M > 2, it holds that

r
M � 2

d� 2
 Ea⇠unif(Sd�1)

2

4

vuut
MX

i=1

a2i

3

5 
r

M

d� 2
. (97)

Proof of Claim G.1. Observe that when a is distributed uniformly over Sd�1, it holds that

(a1, a2, ..., ad)
d
=

0

@ Z1qPd
i=1 Z

2
i

,
Z2qPd
i=1 Z

2
i

, ...,
ZdqPd
i=1 Z

2
i

1

A ,

where A
d
= B denotes A and B have the same distribution, and Z1, ..., Zd

i.i.d.⇠ N (0, 1). As a result,
we must have

Ea⇠unif(Sd�1)

2

4

vuut
MX

i=1

a2i

3

5 = E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4

vuut
PM

i=1 Z
2
iPM

i=1 Z
2
i +

Pd
i0=M+1 Z

2
i0

3

5 .

By Jensen’s inequality, it holds that

E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4

vuut
PM

i=1 Z
2
iPM

i=1 Z
2
i +

Pd
i0=M+1 Z

2
i0

3

5

= E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

64
vuut

1

1 +
Pd

i0=M+1
Z2

i0PM
i=1 Z2

i

3

75

(a)
�
vuuut

1

1 + E
Z1,...,ZM

i.i.d.⇠N (0,1)

Pd
i0=M+1

Z2
i0PM

i=1 Z2
i

�

(b)
=

s
1

1 + d�M
M�2

=

r
M � 2

d� 2
,

where (a) holds since x 7!
p
1/(1 + x) is a convex mapping for x > 0, and (b) holds due to the fact

that
P

i Z
2
i follows from a �

2 distribution and that the ratio of two independent �2 random variables
follows an F -distribution.

On the other hand, it also holds that

E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4

vuut
PM

i=1 Z
2
iPM

i=1 Z
2
i +

Pd
i0=M+1 Z

2
i0

3

5

(a)


vuutE
Z1,...,ZM

i.i.d.⇠N (0,1)

" PM
i=1 Z

2
iPM

i=1 Z
2
i +

Pd
i0=M+1 Z

2
i0

#

=

vuutE
Z1,...,ZM

i.i.d.⇠N (0,1)

"
1�

Pd
i=M+1 Z

2
i0PM

i=1 Z
2
i +

Pd
i0=M+1 Z

2
i0

#

=

vuuuut1� E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

64
1

1 +
PM

i=1 Z2
iPd

i=M+1 Z2
i0

3

75
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(b)

vuuut

1� 1

1 + E
Z1,...,ZM

i.i.d.⇠N (0,1)

 PM
i=1 Z2

iPd
i=M+1 Z2

i0

�

(c)
=

s
1� 1

1 + M
d�M�2

=

r
M

d� 2
,

where (a) holds since
p
· is concave, (b) holds since x 7! 1

1+x is convex, and (c) again is due to the
fact that the ratio of two independent �2 random variables follows an F -distribution.

Claim G.2 (Bounding (ii)). As long as

• k � 400 · log 10,

• log (M/k) �
⇣

103⇡ log 2
9

⌘2
,

it holds that

s
k log

�
M
k

�

24⇡ log 2M
 E(a0

1,...,a
0
M )⇠unif(SM�1)

"
kX

i=1

a
0
(i)

#

r

4k logM

M
. (98)

Proof of Claim G.2. We start by re-writing a
0:

(a01, a
0
2, ..., a

0
M )

d
=

0

@ Z1qPM
i=1 Zi

,
Z2qPM
i=1 Zi

, ...,
ZMqPM
i=1 Zi

1

A .

This yields that

(a0(1), a
0
(2), ..., a

0
(k))

d
=

0

@ Z(1)qPM
i=1 Z

2
i

,
Z(2)qPM
i=1 Z

2
i

, ...,
Z(k)qPM
i=1 Z

2
i

1

A ,

and hence

E(a0
1,...,a

0
M )⇠unif(SM�1)

"
kX

i=1

a
0
(i)

#
= E

Z1,...,ZM
i.i.d.⇠N (0,1)

2

4 1qPM
i=1 Z

2
i

kX

i=1

Z(i)

3

5 .

Upper bound. To upper bound the above, observe that

E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4 1qPM
i=1 Z

2
i

kX

i=1

Z(i)

3

5  kE
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4 1qPM
i=1 Z

2
i

Z(1)

3

5 .

Let E1 :=
n
(Z1, ..., ZM )|

PM
i=1 Z

2
i M(1� �)

o
where � > 0 will be optimized later. Then it

holds that

Pr {E1}  e
�M�2

4 . (99)

On the other hand, the Borell-TIS inequality ensures

Pr
���Z(1) � E

⇥
Z(1)

⇤�� > ⇠
 
 2e�

⇠2

2�2 , (100)
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where Zi ⇠ N (0,�2) (in our case, � = 1). Since E
⇥
Z(1)

⇤

p
2 logM , it holds that

Pr
n
Z(1) �

p
2 logM + ⇠

o
 2e�⇠2

.

Therefore, define E2 :=
�
Z(1) �

p
2 logM + ⇠

 
and we obtain

E
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4 1qPM
i=1 Z

2
i

kX

i=1

Z(i)

3

5

 kE
Z1,...,ZM

i.i.d.⇠N (0,1)

2

4 1qPM
i=1 Z

2
i

Z(1)

3

5

 k ·

0

@E

2

4 Z(1)qPM
i=1 Z

2
i

������
E1 \ E2

3

5+ sup
z1,...,zm

0

@ z(1)qPM
i=1 z

2
i

1

A · Pr (Ec
1 [ Ec

2)

1

A

 k ·
✓p

2 logM + ⇠

M(1� �)
+ 1 ·

⇣
e
�M�2/4 + 2e�⇠2

⌘◆

 k ·

0

@

q
2 logM +

p
log(M)

0.9 ·M + 1 ·
⇣
e
�M/400 + 2/M

⌘
1

A

= ⇥

✓
k
p
logM

M

◆
,

where the last inequality holds by picking � = 0.1 and ⇠ =
p
logM .

Lower bound. The analysis of the lower bound is more sophisticated. To begin with, let

EM :=

(
(Z1, ..., ZM )

�����

MX

i=1

Z
2
i 2 [M(1� �),M(1 + �)]

)

denote the good event such that the denominator of our target is well-controlled, where � > 0 again
will be optimized later. By the concentration of �2 random variables, it holds that

Pr {Ec
M}  e

�M
2 (��log(1+�)) + e

�M�2

4  e
�M

2

⇣
1� 1p

1+�

⌘
�
+ e

�M�2

4  2e�
M�2

4 . (101)

Next, to lower bound
Pk

i=1 Z(i), we partition (Z1, Z2, ..., ZM ) into k blocks B1, B2, ..., Bk where
each block contains at least N = bM/kc samples: Bj := [(j � 1) ·N + 1 : j ·N ] for j 2 [k � 1]

and Bk = [M ] \
⇣Sk�1

j=1 Bj

⌘
. Define Z̃

(j)
(1) be the maximum samples in the j-th block: Z̃

(j)
(1)

:=

maxi2Bj Zi. Then, it is obvious that

kX

i=1

Z(i) �
kX

j=1

Z̃
(j)
(1) .

To this end, we define E1 to be the good event that 90% of Z̃(j)
(1)’s are large enough (i.e., concentrated

to the expectation):

E1 :=

⇢����

⇢
j 2 [k]

����Z̃
(j)
(1) �

p
logNp
⇡ log 2

� log 100

����� > 0.9k

�
.

Note that by the Borell-TIS inequality, for any j 2 [k],

Pr

⇢
Z̃

(j)
(1) �

p
logNp
⇡ log 2

� ⇠

�
� 1� 2e�⇠2

,
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so setting ⇠ = log 100 implies Pr
n
Z̃

(j)
(1) �

p
logNp
⇡ log 2

� ⇠

o
� 0.98. Since blocks are independent with

each other, applying Hoeffding’s bound yields

Pr {E1} � 1� Pr {Binom(k, 0.98)  0.9} � 1� e
�k(0.08)2 � 0.9,

when k � 400 · log 10 � log 10/0.082.

Next, we define a “not-too-bad” event where
Pk

j=1 Z̃
(j)
(1) is not catastrophically small:

E2 :=

8
<

:

kX

j=1

Z̃
(j)
(1) � �

kp
M

⇠

9
=

; ,

for some ⇠ > 0 to be optimized later. Observe that E2 holds with high probability:

Pr {E2}
(a)
� Pr

(
k

M

MX

i=1

Zi � �
kp
M

⇠

)

(b)
� 1� e

�⇠2/2
,

where (a) holds since the each of the top-k values must be greater than k times the average, and (b)
holds due to the Hoeffding’s bound on the sum of i.i.d. Gaussian variables.

Lastly, a trivial bound implies that

inf
a2SM�1

kX

i=1

a(i) � �
kp
M

.

Now, we are ready to bound E
Z1,...,ZM

i.i.d.⇠N (0,1)


1pPM
i=1 Z2

i

Pk
i=1 Z(i)

�
. We begin by decomposing

it into three parts:
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i=1 Z(i)qPM
i=1 Z

2
i

������
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2 [ Ec

M} · E
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4
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i=1 Z(i)qPM
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������
Ec
2 [ Ec

M

3

5 .

We bound these three terms separately. To bound the first one, observe that condition on E1 \ E2,
Pk

i=1 Z(i) � Z̃
(j)
(1) � 0.9k

q
logN
⇡ log 2 �

kp
M
�. As a result,

Pr {E1 \ E2 \ EM} · E

2

4
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i=1 Z(i)qPM
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������
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. (102)

To bound the second term, observe that under E2,
kX

i=1

Z(i) � �
kp
M

⇠,
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so we have
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For the third term, it holds that

Pr {Ec
2 [ Ec

M} · E
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Combining (102), (103), and (104) together, we arrive at
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Finally, setting � = O

⇣
1p
M

⌘
and ⇠ = O(1) yields the desired lower bound

Cd,M,k = ⌦

✓
k logNp

M

◆
.

H Additional Experimental Results

In Figure 2, we provide additional empirical results by sweeping the number of users n from 2, 000
to 10, 000 on the left and sweeping the dimension d from 200 to 1, 000 on the right.

I Additional Details on Prior LDP Schemes

For completeness, we provide additional details on prior LDP mean estimation schemes in this
section, including PrivUnit [4], SQKR [6], FT21 [12], and MMRC [30]. We skip prior work analyzing
compression-privacy-utility tradeoffs that do not specifically focus on the distributed mean estimation
problem [19, 20] or others that study frequency estimation [6, 11, 30].
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Figure 2: Comparison of RRSC with SQKR [6], MMRC [30], and PrivUnitG [2]. (left) `2 error vs
number of users n with d = 500, " = 6, and the number of bits is b = " = 6. k = 1 for each n.
(right) `2 error vs dimension d for n = 5000, " = 6, and the number of bits is b = " = 6. k = 1 for
for each d.

I.1 PrivUnit [4]

[2] considered the mean estimation problem under DP constraint (without communication constraint)
when X = Sd�1 = {v 2 Rd : kvk1 = 1}. Since there is no communication constraint, they assumed
canonical protocol where the random encoder is f : Sd�1 ! Rd and the decoder is a simple additive
aggregator

gn(f(v1), . . . , f(vn)) =
1

n

nX

i=1

f(vi).

The authors showed that PrivUnit is an exact optimal among the family of unbiased locally private
procedures.

Recall that given an input vector v 2 Sd�1, the local randomized PrivUnit(p, q) has the following
distribution up to normalization:

PrivUnit(p, q) ⇠
⇢
Z|hZ, vi � � w.p. p
Z|hZ, vi < � w.p. 1� p

where Z has a uniform distribution on Sd�1. Let S� be the surface area of hypersphere cap {z 2
Sd�1|hz, vi � �}, with S�1 representing the surface area of the d dimensional hypersphere. We
denoted q = Pr [Z1  �] = (S�1 � S�)/S�1 (convention from [4, 2]). The normalization factor is
required to obtain unbiasedness.

[2] also introduced PrivUnitG, which is a Gaussian approximation of PrivUnit. In this approach,
Z is sampled from an i.i.d. N (0, 1/d) distribution. This simplifies the process of determining more
accurate parameters p, q, and �. Consequently, in practical applications, PrivUnitG surpasses
PrivUnit in performance owing to superior parameter optimization.

I.2 SQKR [6]

Next, we outline the encoder and decoder of SQKR in this section. The encoding function mainly
consists of three steps: (1) computing Kashin’s representation, (2) quantization, and (3) sampling and
privatization.

Compute Kashin’s representation A tight frame is a set of vectors {uj}Nj=1 2 Rd that satisfy
Parseval’s identity, i.e. kvk22 =

PN
j=1huj , vi2 for all v 2 Rd

. We say that the expansion v =
PN

j=1 ajuj is a Kashin’s representation of x at level K if maxj |aj |  Kp
N
kvk2 [23]. [27] shows

that if N > (1 + µ) d for some µ > 0, then there exists a tight frame {uj}Nj=1 such that for any
x 2 Rd, one can find a Kashin’s representation at level K = ⇥(1). This implies that we can
represent the local vector v with coefficients {aj}Nj=1 2 [�c/

p
d, c/
p
d]N for some constants c and

N = ⇥(d).
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Quantization In the quantization step, each client quantizes each aj into a 1-bit message qj 2n
�c/
p
d, c/
p
d

o
with E [qj ] = aj . This yields an unbiased estimator of {aj}Nj=1, which can be

described in N = ⇥(d) bits. Moreover, due to the small range of each aj , the variance of qj is
bounded by O(1/d).

Sampling and privatization To further reduce {qj} to k = min(d"e, b) bits, client i draws k

independent samples from {qj}Nj=1 with the help of shared randomness, and privatizes its k bits
message via 2k-RR mechanism[36], yielding the final privatized report of k bits, which it sends to
the server.

Upon receiving the report from client i, the server can construct unbiased estimators âj for each
{aj}Nj=1, and hence reconstruct v̂ =

PN
j=1 âjuj , which yields an unbiased estimator of v. In [6], it

is shown that the variance of v̂ can be controlled by O
�
d/min

�
"
2
, ", b

��
.

I.3 FT21 [12] and MMRC [30]

Both FT21 and MMRC aim to simulate a given "-LDP scheme. More concretely, consider an "-LDP
mechanism q(·|v) that we wish to compress, which in our case, PrivUnit. A number of candidates
u1, · · · , uN are drawn from a fixed reference distribution p(u) (known to both the client and the
server), which in our case, uniform distribution on the sphere Sd�1. Under FT21 [12], these candidates
are generated from an (exponentially strong) PRG, with seed length ` = polylog(d). The client
then performs rejection sampling and sends the seed of the sampled candidates to the server. See
Algorithm 2 for an illustration.

Algorithm 2 Simulating LDP mechanisms via rejection sampling [12]
Inputs: "-LDP mechanism q(·|v), ref. distribution p(·), seeded PRG G : {0, 1}` ! {0, 1}t, failure
probability � > 0.
J = e

" ln(1/�).
for j 2 {1, · · · , J} do

Sample a random seed s 2 {0, 1}`.
Draw u p(·) using the PRG G and the random seed s.
Sample b from Bernoulli

⇣
q(u|v)
e"·p(u)

⌘
.

if b = 1 then
BREAK

end if
end for

Output: s

On the other hand, under MRC [30] the LDP mechanism is simulated via a minimal random coding
technique [15]. Specifically, the candidates are generated via shared randomness, and the client
performs an importance sampling and sends the index of the sampled one to the server, as illustrated
in Algorithm 3. It can be shown that when the target mechanism is "-LDP, the communication costs
of both strategies are ⇥(") bits. It is also worth noting that both strategies will incur some bias
(though the bias can be made exponentially small as one increases the communication cost), and [30]
provides a way to correct the bias when the target mechanism is PrivUnit (or general cap-based
mechanisms).
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Algorithm 3 Simulating LDP mechanisms via importance sampling [30]
Inputs: "-LDP mechanism q(·|v), ref. distribution p(·), # of candidates M

Draw samples u1, · · · , uM from p(u) using the shared source of randomness.
for k 2 {1, · · · ,M} do
w(k) q(uk|v)/p(uk).

end for
⇡MRC(·) w(·)/

P
k w(k).

Draw k
⇤  ⇡MRC.

Output: k⇤
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