
Under review as a conference paper at ICLR 2024

A EQUIVALENT DEFINITIONS OF DDIM AND DDPM

The DDPM and DDIM samplers are usually described in a different coordinate system zt defined by
parameters ᾱt and the following relations , where the noise model is defined by a schedule ᾱt:

y ≈
√
ᾱtz +

√
1− ᾱtϵ, (13)

with the estimate ẑt0 := ẑ0(zt, t) given by

ẑ0(y, t) :=
1√
ᾱt

(y −
√
1− ᾱtϵ

′
θ(y, t)). (14)

We have the following conversion identities between the x and z coordinates:

x0 = z0, xt = zt/
√
ᾱt, σt =

√
1− ᾱt

ᾱt
, ϵθ(y, σt) = ϵ′θ(y/

√
ᾱt, t). (15)

While this change-of-coordinates is used in Song et al. (2020a, Section 4.3) and in Karras et al.
(2022)–and hence not new– we rigorously prove equivalence of the DDIM and DDPM samplers
given in Section 2 with their original definitions.

DDPM Given initial zN , the DDPM sampler constructs the sequence

zt−1 =

√
ᾱt−1(1− αt)

1− ᾱt
ẑt0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt, (16)

where αt := ᾱt/ᾱt−1 and wt ∼ N (0, I). This is interpreted as sampling zt−1 from a Gaussian
distribution conditioned on zt and ẑt0 (Ho et al., 2020).

Proposition A.1 (DDPM change of coordinates). The sampling update (3) is equivalent to the update
(16) under the change of coordinates (15).

Proof. First we write (3) in terms of zt, ϵ′θ(zt, t) and wt using (14):

zt−1 =

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

(
zt −

√
1− ᾱtϵ

′
θ(zt, t)

)
+

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt

=
zt√
αt

+
αt − 1√

αt(1− ᾱt))
ϵ′θ(zt, t) +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt.

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +
αt − 1√
ᾱt(1− ᾱt)

ϵθ(xt, σt) +

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
wt.

Now if we define

η :=

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
= σt−1

√
1− ᾱt/ᾱt−1

1− ᾱt
,

σt′ :=
√
σ2
t−1 − η2 = σt−1

√
ᾱt(1/ᾱt−1 − 1)

1− ᾱt
=

σ2
t−1

σt
,

it remains to check that

σt′ − σt =
σ2
t−1 − σ2

t

σt
=

1/ᾱt−1 − 1/ᾱt√
1− ᾱt/

√
ᾱt

=
αt − 1√
ᾱt(1− ᾱt)

.
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DDIM Given initial zN , the DDIM sampler constructs the sequence

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1ϵ

′
θ(zt, t), (17)

i.e., it estimates ẑt0 from zt and then constructs zt−1 by simply updating ᾱt to ᾱt−1. This sequence
can be equivalently expressed in terms of ẑt0 as

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1

1− ᾱt
(zt −

√
ᾱtẑ

t
0). (18)

Proposition A.2 (DDIM change of coordinates). The sampling update (4) is equivalent to the update
(18) under the change of coordinates (15).

Proof. First we write (17) in terms of zt and ϵ′θ(zt, t) using (14):

zt−1 =

√
ᾱt−1

ᾱt
zt +

(√
1− ᾱt−1 −

√
ᾱt−1

ᾱt

√
1− ᾱt

)
ϵ′θ(zt, t).

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +

(√
1− ᾱt−1

ᾱt−1
−
√

ᾱt−1

1− ᾱt

)
ϵθ(xt, σt)

= xt + (σt−1 − σt)ϵθ(xt, σt).

B FORMAL COMPARISON OF DENOISING AND PROJECTION

Our proof uses local Lipschitz continuity of the projection operator, stated formally as follows.

Proposition B.1 (Theorem 6.2(vi), Chapter 6 of Delfour & Zolésio (2011)). Suppose 0 <
reach(K) < ∞. Consider h > 0 and x, y ∈ Rn satisfying 0 < h < reach(K) and distK(x) ≤ h

and distK(y) ≤ h. Then the projection map satisfies ∥projK(y)− projK(x)∥ ≤
reach(K)

reach(K)−h∥y− x∥.

Decomposing random noise σϵ as

σϵ = wN + wT (19)

for wN ∈ NK(x0) and wT ∈ NK(x0)
⊥ and using Lemma 3.1 allows us to show that projK(xσ) ≈

x0.

Theorem B.1 (Denoising vs Projection). Fix σ > 0 and suppose K and t > 0 satisfies reach(K) >
σ(
√
n + t). Given x0 ∈ K and ϵ ∼ N (0, I), let xσ = x0 + σϵ and w := σϵ = wN + wT by the

decomposition (19). The following statements hold with probability at least 1− exp(−αt2), where
α > 0 is an absolute constant.

• (Backward error) x0 = projK(xσ − wT ).

• (Forward error) ∥projK(xσ)− x0∥ ≤ Cσ(
√
d+ t), where C = reach(K)

reach(K)−σ(
√
n+t)

.

Proof. Let B ∈ Rn×d denote an orthonormal basis for NK(x0)
⊥, such that wT = BBTw, ∥wT ∥ =

∥BTw∥ and we have

E[∥wT ∥2] = E[∥BTw∥]2 +Tr cov(BTw) = Tr cov(BTw) = σ2 TrBTB = σ2d. (20)

Using a standard concentration inequality (Vershynin, 2018, page 44, Equation 3.3), we get that
for a universal constant α, with probability at least 1 − exp(−αt2), we have ∥ϵ∥ ≤

√
n + t and

∥wT ∥ ≤ σ(
√
d+ t). Using Lemma 3.1 and the fact that ∥wN∥ ≤ ∥σϵ∥ ≤ σ(

√
n+ t) < reach(K),

we get
proj(xσ − wT ) = proj(x0 + wN ) = x0,
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proving the first statement. To prove the second statement, we observe that

∥ proj(xσ)− x0∥ = ∥ proj(x0 + wN + wT )− x0∥
= ∥ proj(x0 + wN )− x0 + proj(x0 + wN + wT )− proj(x0 + wN )∥
= ∥ proj(x0 + wN )− proj(x0 + wN + wT )∥
≤ C∥wT ∥
≤ Cσ(

√
n+ t)

where the second-to-last inequality comes from Proposition B.1, the assumption that reach(K) >
σ(
√
n+t), and the inequalities distK(x0+wN ) ≤ ∥wN∥ ≤ σ(

√
n+t) and distK(x0+wN+wT ) ≤

∥w∥ ≤ σ(
√
n+ t).

C DDIM WITH PROJECTION ERROR ANALYSIS

C.1 PROOF OF THEOREM 4.1

Make the inductive hypothesis that dist(xt) =
√
nσt. From the definition of DDIM (4), we have

xt−1 = xt + (
σt−1

σt
− 1)σtϵθ(xt, σt).

Under Assumption 1 and the inductive hypothesis, we conclude

xt−1 = xt + (
σt−1

σt
− 1)∇f(xt)

= xt − βt∇f(xt)

Using Lemma 4.1 we have that

dist(xt−1) = (1− βt) dist(xt) =
σt−1

σt
dist(xt) =

√
nσt−1

The base case holds by assumption, proving the claim.

C.2 PROOF OF LEMMA 4.1

Letting x0 = projK(x) and noting∇f(x) = x− x0, we have

distK(x+) = distK(x+ β(x0 − x))

= ∥x+ β(x0 − x)− x0∥
= ∥(x− x0)(1− β)∥
= (1− β)distK(x)

C.3 PROOF OF LEMMA 4.2

By (Delfour & Zolésio, 2011, Chapter 6, Theorem 2.1), |distK(u)− distK(v)| ≤ ∥u− v∥, which is
equivalent to

distK(u)− distK(v) ≤ ∥u− v∥,distK(v)− distK(u) ≤ ∥u− v∥.
Rearranging proves the claim.

C.4 PROOF OF LEMMA 4.3

We first restate the full version of Lemma 4.3.
Lemma C.1. For K ⊆ Rn, let f(x) := 1

2distK(x)
2. The following statements hold.

(a) If x+ = x− β(∇f(x) + e) for e satisfying ∥e∥ ≤ ηdistK(x) and 0 ≤ β ≤ 1, then

(1− β(η + 1))distK(x) ≤ distK(x+) ≤ (1 + β(η − 1))distK(x).
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(b) If xt−1 = xt − βt(∇f(xt) + et) for et satisfying ∥et∥ ≤ ηdistK(xt) and 0 ≤ βt ≤ 1, then

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + βi(η − 1).)

For Item (a) we apply Lemma 4.2 at points u = x+ and v = x− β∇f(x). We also use dist(v) =
(1− β)distK(x), since 0 ≤ β ≤ 1, to conclude that

(1− β)distK(x)− β∥e∥ ≤ distK(x+) ≤ (1− β)distK(x) + β∥e∥.
Using the assumption that ∥e∥ ≤ ηdistK(x) gives

(1− β − ηβ)distK(x) ≤ distK(x+) ≤ (1− β + ηβ)distK(x)

Simplifying completes the proof. Item (b) follows from Item (a) and induction.

C.5 PROOF OF THEOREM 4.2

We first state and prove an auxillary theorem:
Theorem C.1. Suppose Assumption 2 holds for ν ≥ 1 and η > 0. Given xN and {βt, σt}Ni=1,
recursively define xt−1 = xt + βtσtϵθ(xt, t) and suppose that projK(xt) is a singleton for all t.
Finally, suppose that {βt, σt}Ni=1 satisfies 1

νdistK(xN ) ≤
√
nσN ≤ νdistK(xN ) and

1

ν
distK(xN )

N∏
i=t

(1 + βi(η − 1)) ≤
√
nσt−1 ≤ νdistK(xN )

N∏
i=t

(1− βi(η + 1)). (21)

The following statements hold.

• distK(xN )
∏N

i=t(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )
∏N

i=t(1 + βi(η − 1))

• 1
νdistK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1)

Proof. Since projK(xt) is a singleton, ∇f(xt) exists. Hence, the result will follow from (7) in
Lemma 4.3 if we can show that ∥βtσtϵθ(xt, t)−∇f(xt)∥ ≤ ηdistK(xt). Under Assumption 2, it
suffices to show that

1

ν
distK(xt) ≤

√
nσt ≤ νdistK(xt) (22)

holds for all t. We use induction, noting that the base case (t = N) holds by assumption. Suppose
then that (22) holds for all t, t+ 1, . . . , N . By Lemma 4.3 and Assumption 2, we have

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + (η − 1)βi)

Combined with (21) shows
1

ν
distK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1),

proving the claim.

The proof of Theorem 4.2 follows that of Theorem C.1 by additionally observing η < 1 implies that
distK(xt) < reach(K) for all t, which implies projK(xt) is a singleton.

C.6 PROOF OF THEOREM 4.3

Assuming constant step-size βi = β and dividing (8) by
∏N

i=1(1− β) gives the conditions(
1 + η

β

1− β

)N

≤ ν,

(
1− η

β

1− β

)N

≥ 1

ν
.

Rearranging and defining a = η β
1−β and b = ν

1
N gives

a ≤ b− 1, a ≤ 1− b−1.

Since b−1− (1− b−1) = b+ b−1−2 ≥ 0 for all b > 0, we conclude a ≤ b−1 holds if a ≤ 1− b−1

holds. We therefore consider the second inequality η β
1−β ≤ 1− ν−1/N , noting that it holds for all

0 ≤ β < 1 if and only if 0 ≤ β ≤ k
1+k for k = 1

η (1− ν−1/N ), proving the claim.
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C.7 PROOF OF THEOREM 4.4

The value of σ0/σN follows from the definition of σt and and the upper bound for
distK(x0)/distK(xN ) follows from Theorem 4.3. We introduce the parameter µ to get a general
form of the expression inside the limit:

(1− µβ∗,N )N =

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

.

Next we take the limit using L’Hôpital’s rule:

lim
N→∞

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

= exp

(
lim

N→∞
log

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)
/(1/N)

)
= exp

(
lim

N→∞

ηµ log(ν)

(ν−1/N − η − 1)(ν1/N (η − µ+ 1) + µ− 1)

)
= exp

(
−µ log(ν)

η

)
= (1/ν)

µ/η
.

For the first limit, we set µ = 1 to get

lim
N→∞

(1− β∗,N )N = (1/ν)1/η.

For the second limit, we set µ = 1− η to get

lim
N→∞

(1 + (η − 1)β∗,N )N = (1/ν)
1−η
η .

C.8 DENOISER ERROR

Assumption 2 places a condition directly on the approximation of∇f(x), where f(x) := 1
2distK(x),

that is jointly obtained from σt and the denoiser ϵθ. We prove this assumption holds under a direct
assumption on∇distK(x), which is easier to verify in practice.

Assumption 3. There exists ν ≥ 1 and η > 0 such that if 1
νdistK(x) ≤

√
nσt ≤ νdistK(x) then

∥ϵθ(x, t)−
√
n∇distK(x)∥ ≤ η

Lemma C.2. If Assumption 3 holds with (ν, η), then Assumption 2 holds with (ν̂, η̂), where η̂ =
1√
n
ην +max(ν − 1, 1− 1

ν ) and ν̂ = ν.

Proof. Multiplying the error-bound on ϵθ by σt and using
√
nσt ≤ νdistK(x) gives

∥σtϵθ(x, t)−
√
nσt∇distK(x)∥ ≤ ησt ≤ ην

1√
n
distK(x)

Defining C =
√
nσt − distK(x) and simplifying gives

ην
1√
n
distK(x) ≥ ∥σtϵθ(x, t)−

√
nσt∇distK(x)∥

= ∥σtϵθ(x, t)−∇f(x)− C∇distK(x)∥
≥ ∥σtϵθ(x, t)−∇f(x)∥ − ∥C∇distK(x)∥
= ∥σtϵθ(x, t)−∇f(x)∥ − |C|

Since ( 1ν − 1)distK(x) ≤ C ≤ (ν − 1)distK(x) and ν ≥ 1, the Assumption 2 error bound holds for
the claimed η̂.
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Figure 6: Plot of the cosine similarity between ϵθ(xt, t) and ϵθ(xt′ , t
′) over N = 50 steps of DDIM

denoising on the CIFAR-10 dataset. Each cell is the average result of 1000 runs.

D DERIVATION OF GRADIENT ESTIMATION SAMPLER

To choose W , we make two assumptions on the denoising error: the coordinates et(ϵ)i and et(ϵ)j are
uncorrelated for all i ̸= j, and et(ϵ)i is only correlated with et+1(ϵ)i for all i. In other words, we
consider W of the form

W =

[
aI bI
bI cI

]
(23)

and next show that this choice leads to a simple rule for selecting ϵ̄. From the optimality conditions
of the quadratic optimization problem (11), we get that

ϵ̄t =
a+ b

a+ c+ 2b
ϵθ(xt, σt) +

c+ b

a+ c+ 2b
ϵθ(xt+1, σt+1).

Setting γ = a+b
a+c+2b , we get the update rule (12). When b ≥ 0, the minimizer ϵ̄t is a simple convex

combination of denoiser outputs. When b < 0, we can have γ < 0 or γ > 1, i.e., the weights in
(12) can be negative (but still sum to 1). Negativity of the weights can be interpreted as cancelling
positively correlated error (b < 0) in the denoiser outputs. Also note we can implicitly search over
W by directly searching for γ.

E FURTHER EXPERIMENTS

E.1 DENOISING APPROXIMATES PROJECTION

We test our interpretation that denoising approximates projection on pretrained diffusion models on
the CIFAR-10 dataset. In these experiments, we take a 50-step DDIM sampling trajectory, extract
ϵ(xt, σt) for each t and compute the cosine similarity for every pair of t, t′ ∈ [1, 50]. The results are
plotted in Figure 6. They show that the direction of ϵ(xt, σt) over the entire sampling trajectory is
close to the first step’s output ϵ(xN , σN ). On average over 1000 trajectories, the minimum similarity
(typically between the first step when t = 50 and last step when t′ = 1) is 0.85, and for the vast
majority (over 80%) of pairs the similarity is > 0.99, showing that the denoiser outputs approximately
align in the same direction, validating our intuitive picture in Figure 2.

E.2 DISTANCE FUNCTION PROPERTIES

We test Assumption 1 and Assumption 2 on pretrained networks. If Assumption 1 is true, then
∥ϵθ(xt, σt)∥

√
n = ∥∇distK(xt)∥ = 1 for every xt along the DDIM trajectory. In Figure 7a, we

plot the distribution of norm of the denoiser ϵθ(xt, σt) over the course of many runs of the DDIM
sampler on the CIFAR-10 model for N = 100 steps (t = 1000, 990, . . . , 20, 10, 0). This plot shows
that ∥ϵθ(xt, σt)∥ /

√
n stays approximately constant and is close to 1 until the end of the sampling
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(a) Plot of ∥ϵθ(xt, σt)∥ /
√
n against t. (b) Plot of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n against t.

Figure 7: Plots of the norm of the denoiser at different stages of denoising, as well as the ability of
the denoiser to accurately predict the added noise as a function of noise added.

Figure 8: Plot of FID score against γ for our second-order sampling algorithm on the CIFAR-10 and
CelebA datasets for N = 5, 10, 20 steps.

process. We next test Assumption 3, which implies Assumption 2 by Lemma C.2. We do this by first
sampling a fixed noise vector ϵ, next adding different levels of noise σt, then using the denoiser to
predict ϵθ(x0 + σtϵ, σt). In Figure 7b, we plot the distribution of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n over

different levels of t, as a measure of how well the denoiser predicts the added noise.

E.3 CHOICE OF γ

We motivate our choice of γ = 2 in Algorithm 2 with the following experiment. For varying γ,
Figure 8 reports FID scores of our sampler on the CIFAR-10 and CelebA models for N = 5, 10, 20
timesteps using the σt schedule described in Appendix F.3. As shown, γ ≈ 2 achieves the optimal
FID score over different datasets and choices of N .

F EXPERIMENT DETAILS

F.1 PRETRAINED MODELS

The CIFAR-10 model and architecture were based on that in Ho et al. (2020), and the CelebA
model and architecture were based on that in Song et al. (2020a). The specific checkpoints we
use are provided by Liu et al. (2022). We also use Stable Diffusion 2.1 provided in https:
//huggingface.co/stabilityai/stable-diffusion-2-1. For the comparison ex-
periments in Figure 1, we implemented our gradient estimation sampler to interface with the Hug-
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gingFace diffusers library and use the corresponding implementations of UniPC, DPM++, PNDM
and DDIM samplers with default parameters.

F.2 FID SCORE CALCULATION

For the CIFAR-10 and CelebA experiments, we generate 50000 images using our sampler and cal-
culate the FID score using the library in https://github.com/mseitzer/pytorch-fid.
The statistics on the training dataset were obtained from the files provided by Liu et al. (2022). For
the MS-COCO experiments, we generated images from 30k text captions drawn from the validation
set, and computed FID with respect to the 30k corresponding images.

F.3 OUR SELECTION OF σt

Let σDDIM(N)
1 be the noise level at t = 1 for the DDIM sampler with N steps. For the CIFAR-10 and

CelebA models, we choose σ1 =

√
σ

DDIM(N)
1 and σ0 = 0.01. For CIFAR-10 N = 5, 10, 20, 50 and

CelebA N = 5 we choose σN = 40 and for CelebA N = 10, 20, 50 we choose σN = 80. For Stable
Diffusion, we use the same sigma schedule as that in DDIM.

F.4 TEXT PROMPTS

For the text to image generation in Figure 1, the text prompts used are:

• “A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid
colors”

• “London luxurious interior living-room, light walls”
• “Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli

inspired, 4k”
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