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A All Proofs

We now present the proof of Theorem A.1 which is the key theorem in our paper.

Theorem A.1. For every ϕi as defined above and fixed ψθ,

Wc

(
Pd(XO);Pθ(XO)

)
= inf[

ϕi∈C(Xi)
]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
, (1)

where PAXO
:=

[
[Xij ]j∈PAXi

]
i∈O

.

Proof. Let Γ ∈ P(Pd(XO), Pθ(XO)) be the optimal joint distribution over Pd(XO) and Pθ(XO)
of the corresponding Wasserstein distance. We consider three distributions: Pd(XO) over
A =

∏
i∈O Xi, Pθ(XO)) over C =

∏
i∈O Xi, and Pθ(PAXO

) = Pθ([PAXi
]i∈O) over B =∏

i∈O

∏
k∈PAXi

Xk. Here we note that the last distribution Pθ(PAXO
) = Pθ([PAXi

]i∈O) is the
model distribution over the parent nodes of the observed nodes.

It is evident that Γ ∈ P(Pd(XO), Pθ(XO)) is a joint distribution over Pd(XO) andPθ(XO); let
β = (id, ψθ)#Pθ([PAXi

]i∈O) be a deterministic coupling or joint distribution over Pθ([PAXi
]i∈O)

and Pθ(XO). Using the gluing lemma (see Lemma 5.5 in [7]), there exists a joint distribution α
over A × B × C such that αAC = (πA, πC)#α = Γ and αBC = (πB , πC)#α = β where π is
the projection operation. Let us denote γ = (πA, πB)#α as a joint distribution over Pd(XO) and
Pθ([PAXi ]i∈O).

Given i ∈ O, we denote γi as the projection of γ over Xi and
∏
k∈PAXi

Xk. We further denote
ϕi(Xi) = γi(· | Xi) as a stochastic map from Xi to

∏
k∈PAXi

Xk. It is worth noting that because γi
is a joint distribution over Pd(Xi) and Pθ(PAXi

), ϕi ∈ C(Xi).

Wc (Pd (XO) , Pθ (XO)) = E(XO,X̃O)∼Γ

[
c
(
XO, X̃O

)]
= E(XO,PAXO

,X̃O)∼α

[
c
(
XO, X̃O

)]
=EXO∼Pd,[PAXi

∼γi(·|Xi)]
i∈O

,X̃O∼αBC(·|PAXo )

[
c
(
XO, X̃O

)]
(1)
=EXO∼Pd,[PAXi

=ϕi(Xi)]
i∈O

,X̃O=ψθ(PAXo )

[
c
(
XO, X̃O

)]
=EXO∼Pd,PAXO

=ϕ(XO),X̃O=ψθ(PAXO)

[
c
(
XO, X̃O

)]
(2)
=EXO∼Pd,PAXO

=ϕ(XO) [c (XO, ψθ (PAXO
))]

≥ inf
[ϕi∈C(Xi)]i∈O

EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))] . (2)
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Here we note that we have
(1)
= because αBC is a deterministic coupling and we have

(2)
= because the

expectation is preserved through a deterministic push-forward map.

Let [ϕi ∈ C(Xi)]i∈O be the optimal backward maps of the optimization problem (OP) in (4).
We define the joint distribution γ over Pd (XO) and Pθ(PAXO

) = Pθ([PAXi ]i∈O) as follows.
We first sample XO ∼ Pd(XO) and for each i ∈ O, we sample PAXi

∼ ϕi(Xi), and fi-
nally gather (XO,PAXO

) ∼ γ where PAXO
= [PAXi

]i∈O. Consider the joint distribution γ
over Pd (XO) , Pθ(PAXO

) = Pθ([PAXi
]i∈O) and the deterministic coupling or joint distribution

β = (id, ψθ)#Pθ([PAXi
]i∈O) over Pθ([PAXi

]i∈O) and Pθ(XO), the gluing lemma indicates the
existence of the joint distribution α over A × C × B such that αAB = (πA, πB)#α = γ and
αBC = (πB , πC)#α = β. We further denote Γ = αAC = (πA, πC)#α which is a joint distribu-
tion over Pd(XO) and Pθ(XO). It follows that

inf
[ϕi∈C(Xi)]i∈O

EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))]

=EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))]

(1)
=EXO∼Pd,PAXO

∼ϕ(XO),X̃O=ψθ(PAXO)

[
c
(
XO, X̃O

)]
=EXO∼Pd,PAXO

∼γ(·|XO),X̃O∼αBC(·|PAXo )

[
c
(
XO, X̃O

)]
=E(XO,PAXO

,X̃O)∼α

[
c
(
XO, X̃O

)]
=E(XO,X̃O)∼Γ

[
c
(
XO, X̃O

)]
≥Wc (Pd (XO) , Pθ (XO)) . (3)

Here we note that we have
(1)
= because the expectation is preserved through a deterministic push-

forward map.

Finally, combining (2) and (3), we reach the conclusion.

It is worth noting that according to Theorem A.1, we need to solve the following OP:
inf[

ϕi∈C(Xi)
]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
, (4)

where C (Xi) = {ϕi : ϕi#Pd (Xi) = Pθ (PAXi)} ,∀i ∈ O.

If we make some further assumptions including: (i) the family model distributions Pθ, θ ∈ Θ in-
duced by the graphical model is sufficiently rich to contain the data distribution, meaning that there
exist θ∗ ∈ Θ such that Pθ∗(XO) = Pd(XO) and (ii) the family of backward maps ϕi, i ∈ O has
infinite capacity (i.e., they include all measure functions), the infimum really peaks 0 at an optimal
backward maps ϕ∗i , i ∈ O. We thus can replace the infimum by a minimization as

min[
ϕi∈C(Xi)

]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
. (5)

To make the OP in (5) tractable for training, we do relaxation as

min
ϕ

{
EXO∼Pd(XO),PAXO

∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ ηD (Pϕ, Pθ (PAXO
))
}
, (6)

where η > 0, Pϕ is the distribution induced by the backward maps, and D represents a general
divergence. Here we note that D (Pϕ, Pθ (PAXO

)) can be decomposed into

D (Pϕ, Pθ (PAXO
)) =

∑
i∈O

Di (Pϕi , Pθ (PAXi
)) ,

which is the sum of the divergences between the specific backward map distributions and their
corresponding model distributions on the parent nodes (i.e., Pϕi

= ϕi#Pd (Xi)). Additionally, in
practice, using the WS distance for Di leads to the following OP

min
ϕ

{
EXO∼Pd(XO),PAXO

∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ η
∑
i∈O

Wci (Pϕi
, Pθ (PAXi

))

}
. (7)

The following theorem characterizes the ability to search the optimal solutions for the OPs in (5),
(6), and (7).
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Theorem A.2. Assume that the family model distributions Pθ, θ ∈ Θ induced by the graphical
model is sufficiently rich to contain the data distribution, meaning that there exist θ∗ ∈ Θ such
that Pθ∗(XO) = Pd(XO) and the family of backward maps ϕi, i ∈ O has infinite capacity (i.e.,
they include all measure functions). The OPs in (5), (6), and (7) are equivalent and can obtain the
common optimal solution.

Proof. Let θ∗ ∈ Θ be the optimal solution such that Pθ∗(XO) = Pd(XO) and
Wc (Pd (XO) , Pθ∗ (XO)) = 0. Let Γ∗ ∈ P(Pd(XO), Pθ(XO)) be the optimal joint distri-
bution over Pd(XO) and Pθ(XO) of the corresponding Wasserstein distance, meaning that if
(XO, X̃O) ∼ Γ∗ then XO = X̃O. Using the gluing lemma as in the previous theorem, there
exists a joint distribution α∗ over A × B × C such that α∗

AC = (πA, πC)#α
∗ = Γ∗ and

α∗
BC = (πB , πC)#α

∗ = β∗ where β∗ = (id, ψθ)#P
∗
θ ([PAXi

]i∈O) is a deterministic coupling
or joint distribution over Pθ([PAXi

]i∈O) and P ∗
θ (XO). This follows that α∗ consists of the sample

(XO,PAXO
, XO) where ψθ∗(PAXO

) = XO with XO ∼ Pd(XO) = P ∗
θ (XO).

Let us denote γ∗ = (πA, πB)#α
∗ as a joint distribution over Pd(XO) and P ∗

θ ([PAXi ]i∈O). Let
γ∗i , i ∈ O as the restriction of γ∗ over Pd(Xi) and P ∗

θ (PAXi). Let ϕ∗i , i ∈ O be the functions in the
family of the backward functions that can well-approximate γ∗i , i ∈ O (i.e., ϕ∗i = γ∗i , i ∈ O). For
any XO ∼ Pd(XO), we have for all i ∈ O, PAXi

= ϕ∗i (Xi) and ψθ∗(PAXi
) = Xi. These imply

that (i) EXO∼Pd(XO),PAXO
∼ϕ∗(XO)

[
c
(
XO, ψθ∗(PAXO

)
)]

= 0 and (ii) Pϕ∗
i
= Pθ∗ (PAXi) ,∀i ∈

O, which further indicate that the OPs in (5), (6), and (7) are minimized at 0 with the common
optimal solution ϕ∗ and θ∗.

B Training algorithms

Algorithm 1 provides the pseudo-code for OTP-DAG learning procedure. The simplicity of the
learning process is evident. Figure 1a visualizes our backward-forward algorithm in the empirical
setting, where learning the backward functions for the endogenous variables only is sufficient for
estimation. Regardless of the complexity of the graphical structure, a single learning procedure
is applied. The first step is to identify the observed nodes and their parent nodes; then, for each
parent-child pair, define the appropriate backward map and reparameterize the model distribution
into a set of deterministic forward maps parameterized by θ (i.e., model parameters to be learned).
Finally, one only needs to plug in the suitable cost function and divergence measure, and follow the
backward-forward procedure to learn θ via stochastic gradient descent.

𝑼𝟒𝑼𝟐

𝑼𝟑

𝑼𝟏𝑿𝟏

𝑿𝟐

𝑿𝟑

𝑿𝟒

(a) Algorithmic DAG

𝒁

𝑿

(b) Standard Auto-Encoder

Figure 1

The application of discrete representation learning sheds light on an interesting connection of our
method with auto-encoding models, particularly with Wasserstein auto-encoder [WAE, 9]. Indeed,
WAE can be viewed as an application of OTP-DAG on a simple graphical model with only 2 nodes:
the observed node X and latent variables Z. Likewise, both functions are jointly learned by min-
imizing the reconstruction loss. In this case, the backward mapping ϕ and forward mapping ψ
respectively play the role of the encoder and decoder (See Figure 1b). Regardless, when there are
more parameters and hidden variables interplaying in a more complex structure, the learning proce-
dure of OTP-DAG still applies.
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Algorithm 1 : OTP-DAG Algorithm
Input: Directed graph G with observed nodes O, noise distribution P (U), stochastic backward
maps ϕ = {ϕi(Xi)}i∈O, regularization coefficient η, reconstruction cost function c, and push-
forward divergence measure D.
Output: Point estimate θ.
Re-parameterize Pθ into a set of deterministic mappings ψθ = {ψθi}i∈O where Xi =
ψθi(PAXi , Ui) and Ui ∼ P (U).
Initialize the parameters of the forward ψθ and backward ϕ mapping functions.
while not converged do

for i ∈ O do
Sample batch XB

i = {x1i , ..., xBi };
Sample P̃AXB

i
from ϕi(X

B
i );

Sampling Ui from the prior P (U);
Evaluate X̃B

i = ψθi(P̃AXB
i
, Ui).

end
Update θ by descending

1

B

B∑
b=1

∑
i∈O

c
(
xbi , x̃

b
i

)
+ η D

[
Pϕi

(PAXB
i
|Xi), Pθ(PAXB

i
)
]

end

C Experimental Setup

In the following, we explain how OTP-DAG algorithm is implemented in practical applications,
including how to reparameterize the model distribution, to design the backward mapping and to
define the optimization objective. We also here provide the training configurations for our method
and the baselines. All models are run on 4 RTX 6000 GPU cores using Adam optimizer with a
fixed learning rate of 1e− 3. Our code is anonymously published at https://anonymous.4open.
science/r/OTP-7944/.

C.1 Latent Dirichlet Allocation

For completeness, let us recap the model generative process. We consider a corpus D of M
independent documents where each document is a sequence of N words denoted by W1:N =
(W1,W2, · · · ,WN ). Documents are represented as random mixtures over K latent topics, each
of which is characterized by a distribution over words. Let V be the size of a vocabulary indexed
by {1, · · · , V }. Latent Dirichlet Allocation (LDA) [1] dictates the following generative process for
every document in the corpus:

1. Choose θ ∼ Dir(α),
2. Choose γk ∼ Dir(β) where k ∈ {1, · · · ,K},
3. For each of the word positions n ∈ {1, · · · , N},

• Choose a topic zn ∼ Multi-Nominal(θ),
• Choose a word wn ∼ Multi-Nominal(zn, γk),

where Dir(.) is a Dirichlet distribution, α < 1 and β is typically sparse. θ is a K−dimensional
vector that lies in the (K − 1)−simplex and γk is a V−dimensional vector represents the word
distribution corresponding to topic k. Throughout the experiments, K is fixed at 10.

Parameter Estimation. We consider the topic-word distribution γ as a fixed quantity to be esti-
mated. γ is a K×V matrix where γkn := P (Wn = 1|Zn = 1). The learnable parameters therefore
consist of γ and α. An input document is represented with a N × V matrix where a word Wi is
represented with a one-hot V−vector such that the value at the index i in the vocabulary is 1 and
0 otherwise. Given γ ∈ [0, 1]K×V and a selected topic k, the deterministic forward mapping to
generate a document W is defined as
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Figure 2: 30 topic-word distributions inferred by OTP-DAG from the third set of synthetic data.
OTP-DAG recovers the ground-truth successfully.

W1:N = ψ(Z) = Cat-Concrete
(
softmax(Z ′γ)

)
,

where Z ∈ {0, 1}K is in the one-hot representation (i.e., Zk = 1 if state k is the selected and 0
otherwise) and Z ′ is its transpose. By applying the Gumbel-Softmax trick [4, 6], we re-parameterize
the Categorical distribution into a function Cat-Concrete(.) that takes the categorical probability
vector (i.e., sum of all elements equals 1) and output a relaxed probability vector. To be more
specific, given a categorical variable of K categories with probabilities

[
p1, p2, ..., pK

]
, for every

the Cat-Concrete(.) function is defined on each pk as

Cat-Concrete(pk) =
exp

{
(log pk +Gk)/τ

}∑K
k=1 exp

{
(log pk +Gk)/τ

} ,
with temperature τ , random noises Gk independently drawn from Gumbel distribution Gt =
− log(− log ut), ut ∼ Uniform(0, 1).

We next define a backward map that outputs for a document a distribution over K topics as follows

ϕ(W1:N ) = Cat(Z).

Given observations W1:N , our learning procedure begins by sampling Z̃ ∼ Pϕ(Z|W1:N ) and pass
Z̃ through the generative process given by ψ to obtain the reconstruction. Notice here that we have
a prior constraint over the distribution of θ i.e., θ follows a Dirichlet distribution parameterized by
α. This translates to a push forward constraint in order to optimize for α. To facilitate differentiable
training, we use softmax Laplace approximation [5, 8] to approximate a Dirichlet distribution with a
softmax Gaussian distribution. The relation between α and the Gaussian parameters

(
µk,Σk

)
w.r.t

a category k where Σk is a diagonal matrix is given as

µk(α) = logαk −
1

K

K∑
i=1

logαi, Σk(α) =
1

αk

(
1− 2

K

)
+

1

K2

K∑
i=1

1

αi
. (8)

Let us denote Pα := N
(
µ(α),Σ(α)

)
≈ Dir(α) with µ = [µk]

K
k=1 and Σ = [Σk]

K
k=1 defined as

above. Our empirical optimization objective is given as

min
α,γ

EW1:N ,Z̃

[
c
(
W1:N , ψ(Z̃)

)
+ η Wc

[
Pϕ(Z|W1:N ), θ

]]
, (9)

where W1:N ∼ D, Z̃ ∼ Pϕ(Z|W1:N ), θ ∼ Pα, c is cross-entropy loss function and Wc is ex-
act Wasserstein distance1. The sampling process θ ∼ Pα is also relaxed using standard Gaussian
reparameterization trick whereby θ = µ(α) + uΣ(α) with u ∼ N (0, 1).

1https://pythonot.github.io/index.html
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Topic Evaluation. In this experiment, we apply OTP-DAG on real-world topic modeling tasks.
We here revert to the original generative process where the topic-word distribution follows a Dirich-
let distribution parameterized by the concentration parameters β, instead of having γ as a fixed
quantity. In this case, β is initialized as a matrix of real values i.e., β ∈ RK×V representing the log
concentration values. The forward process is given as

W1:N = ψ(Z) = Cat-Concrete
(
softmax(Z ′γ)

)
,

where γk = µk
(
exp(βk)

)
+ukΣk

(
exp(βk)

)
and uk ∼ N (0, 1) is a Gaussian noise. This is realized

by using softmax Gaussian trick as in Eq. (8), then applying standard Gaussian reparameterization
trick. The optimization procedure follows one described in the previous application.

Table 1: Topics inferred for 3 real-world datasets.

20 News Group

Topic 1 car, bike, front, engine, mile, ride, drive, owner, road, buy
Topic 2 game, play, team, player, season, fan, win, hit, year, score
Topic 3 government, public, key, clipper, security, encryption, law, agency, private, technology
Topic 4 religion, christian, belief, church, argument, faith, truth, evidence, human, life
Topic 5 window, file, program, software, application, graphic, display, user, screen, format
Topic 6 mail, sell, price, email, interested, sale, offer, reply, info, send
Topic 7 card, drive, disk, monitor, chip, video, speed, memory, system, board
Topic 8 kill, gun, government, war, child, law, country, crime, weapon, death
Topic 9 make, time, good, people, find, thing, give, work, problem, call
Topic 10 fire, day, hour, night, burn, doctor, woman, water, food, body

BBC News

Topic 1 rise, growth, market, fall, month, high, economy, expect, economic, price
Topic 2 win, play, game, player, good, back, match, team, final, side
Topic 3 user, firm, website, computer, net, information, software, internet, system, technology
Topic 4 technology, market, digital, high, video, player, company, launch, mobile, phone
Topic 5 election, government, party, labour, leader, plan, story, general, public, minister
Topic 6 film, include, star, award, good, win, show, top, play, actor
Topic 7 charge, case, face, claim, court, ban, lawyer, guilty, drug, trial
Topic 8 thing, work, part, life, find, idea, give, world, real, good
Topic 9 company, firm, deal, share, buy, business, market, executive, pay, group
Topic 10 government, law, issue, spokesman, call, minister, public, give, rule, plan

DBLP

Topic 1 learning, algorithm, time, rule, temporal, logic, framework, real, performance, function
Topic 2 efficient, classification, semantic, multiple, constraint, optimization, probabilistic, domain, process, inference
Topic 3 search, structure, pattern, large, language, web, problem, representation, support, machine
Topic 4 object, detection, application, information, method, estimation, multi, dynamic, tree, motion
Topic 5 system, database, query, knowledge, processing, management, orient, relational, expert, transaction
Topic 6 model, markov, mixture, variable, gaussian, topic, hide, latent, graphical, appearance
Topic 7 network, approach, recognition, neural, face, bayesian, belief, speech, sensor, artificial
Topic 8 base, video, content, code, coding, scalable, rate, streaming, frame, distortion
Topic 9 datum, analysis, feature, mining, cluster, selection, high, stream, dimensional, component
Topic 10 image, learn, segmentation, retrieval, color, wavelet, region, texture, transform, compression

Training Configuration. The underlying architecture of the backward maps consists of an LSTM
and one or more linear layers. We train all models for 300 and 1, 000 epochs with batch size of 50
respectively for the 2 applications. For OTP-DAG, we set τ = 1.0, 2.0 and η = 1e − 4, 1e − 1
respectively. The qualitative examples for both applications are given in Figure 2 and Table 1.

C.2 Hidden Markov Models

Poisson Time-series Data Segmentation. We here attempt to learn a Poisson hidden Markov
model underlying a data stream. Given a time series D of T steps, the task is to segment the data
stream into K different states, each of which is associated with a Poisson observation model with
rate λk. The observation at each step t is given as

P (Xt|Zt = k) = Poi(Xt|λk), for k = 1, · · · ,K.
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The Markov chain stays in the current state with probability p and otherwise transitions to one of
the other K − 1 states uniformly at random. The transition distribution is given as

Z1 ∼ Cat

({
1

4
,
1

4
,
1

4
,
1

4

})
, Zt|Zt−1 ∼ Cat

({
p if Zt = Zt−1
1−p
4−1 otherwise

})
Let P (Z1) and P (Zt|Zt−1) respectively denote these prior transition distributions. We first apply
Gaussian reparameterization on each Poisson distribution, giving rise to a deterministic forward
mapping

Xt = ψt(Zt) = Z ′
t exp(λ) + ut

√
Zt exp(λ),

where λ ∈ RK is the learnable parameter vector representing log rates, uk ∼ N (0, 1) is a Gaussian
noise, Zt ∈ {0, 1}K is in the one-hot representation and Z ′

t is its transpose. We define a global
backward map ϕ that outputs the distributions for individual Zt as ϕ(Xt) := Cat(Zt).

The first term in the optimization object is the reconstruction error given by a cost function c. The
push forward constraint ensures the backward probabilities for the state variables align with the prior
transition distributions. Putting everything together, we minimize the following empirical objective

EX1:T ,Z̃1:T

[
c
(
X1:T , ψ(Z̃1:T )

)
+η KL

[
Pϕ(Z1|X1), P (Z1)

]
+η

T∑
t=2

KL
[
Pϕ(Zt|Xt), P (Zt|Zt−1)

]]
,

(10)
where X1:T ∼ D, Z̃1:T ∼ Pϕ(Z1:T |X1:T ) and ψ = [ψt]

T
t=1.

In this case, θ := λ1:K , T = 200, smooth L1 loss [2] is chosen as the cost function and KL refers
to the Kullback-Leibler divergence. We additionally compute MAP estimates of the Poisson rates
using stochastic gradient descent, using a log −Normal(5, 5) prior for p(λ).

Polyphonic Music Modeling. In this section, we consider another application of HMM to model
sequences of polyphonic music. The training set consists of N = 229 sequences, each of which
has a maximum length of T = 129 and D = 51 notes. The data matrix is a Boolean tensor of size
N × T ×D. The observation at each time step is modeled using a factored observation distribution
of the form

P (Xt|Zt = k) =

D∏
d=1

Ber(Xtd|Bd(k)),

where Bd(k) = P (Xtd = 1|Zt = k) and k = 1, · · · ,K.

The transition probabilities are sampled from a Dirichlet distribution with concentration parameters
α1:K , where αk = 1 if the state remains and 0.1 otherwise

Z1 ∼ Cat
({

1/K
})
, Zt|Zt−1 ∼ Cat

(
p
)
, p ∼ Dir

({
1.0 if Zt = Zt−1

0.1 otherwise

})
.

The parameter set θ is a matrix size D ×K where each element θij ∈ [0, 1] parameterize Bdk(.).
If we view the Bernoulli distribution as a Categorical distribution of 2 categories, one can apply the
Gumbel-Softmax trick [4, 6] to relax it into the following forward mapping

Xt = ψt(Zt) = Bin-Concrete
(
Z ′
tθ
)
,

where Zt ∈ {0, 1}K is in the one-hot representation, Z ′
t is its transpose and the Bin-Concrete

function is defined over a binary vector s as follows: with temperature τ , random noises Gi0 and
Gi1 ∼ Gt = − log(− log ut), ut ∼ Uniform(0, 1),

Bin-Concrete(s) =
exp{

(
log s+Gi1

)
/τ}

exp{
(
log(1− s) +Gi0

)
}/τ}+ exp{

(
log s+Gi1

)
/τ)}

.

A global backward map ϕ is defined as ϕ(Xt) := Cat(Zt) as in the Poisson HMM, and we learn θ
by optimizing Eq. (10) using cross-entropy loss function for c.
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Training Configuration. The underlying architecture of the backward maps in both applications
is a 3− layer fully connected perceptron. The Poisson HMM is trained for 20, 000 epochs with
η = 1e − 1 and the Bernoulli HMM is trained for 5, 000 epochs on training batches of size 200 at
η = 1e− 4. For both applications, we set τ = 0.1.

C.3 Learning Discrete Representations

To understand vector quantized models, let us briefly review Quantization Variational Auto-Encoder
(VQ-VAE) [10]. The practical setting of VQ-VAE in fact considers a M−dimensional discrete
latent space CM ∈ RM×D that is the M−ary Cartesian power of C with C = {ck}Kk=1 ∈ RK×D

i.e., C here is the set of learnable latent embedding vectors ck. The latent variable Z = [Zm]Mm=1
is an M−component vector where each component Zm ∈ C. VQ-VAE is an encoder-decoder, in
which the encoder fe : X 7→ RM×D maps the input data X to the latent representation Z and
the decoder fd : RM×D 7→ X reconstructs the input from the latent representation. However,
different from standard VAE, the latent representation used for reconstruction is discrete, which is
the projection ofZ onto CM via the quantization processQ. Let Z̄ denote the discrete representation.
The quantization process is modeled as a deterministic categorical posterior distribution such that

Z̄m = Q(Zm) = ck,

where k = argmin
k

d
(
Zm, ck

)
, Zm = fme (X) and d is a metric on the latent space.

In our language, each vector ck can be viewed as the centroid representing each latent sub-space (or
cluster). The quantization operation essentially searches for the closet cluster for every component
latent representation zm. VQ-VAE minimizes the following objective function:

Ex∼D

[
dx

[
fd
(
Q(fe(x))

)
, x

]
+ dz

[
sg
(
fe(x)

)
, z̄
]
+ βdz

[
fe(x), sg

(
z̄
)]]

,

where D is the empirical data, sg is the stop gradient operation for continuous training, dx, dz are
respectively the distances on the data and latent space and β is set between 0.1 and 2.0 in the original
proposal [10].

In our work, we explore a different model to learning discrete representations. Following VQ-
VAE, we also consider Z as a M−component latent embedding. On a kth sub-space (for k ∈
{1, · · · ,K}), we impose a Gaussian distribution parameterized by µk,Σk where Σk is diagonal.
We also endow M discrete distributions over C1, . . . ,CM , sharing a common support set as the set
of sub-spaces induced by {(µk,Σk)}Kk=1:

Pk,πm =

K∑
k=1

πmk δµk
, for m = 1, . . . ,M.

with the Dirac delta function δ and the weights πm ∈ ∆K−1 = {α ≥ 0 : ∥α∥1 = 1} in the
(K − 1)-simplex. The probability a data point zm belongs to a discrete kth sub-space follows a
K−way categorical distribution πm = [πm1 , · · · , πmK ]. In such a practical setting, the generative
process is detailed as follows

1. For m ∈ {1, · · · ,M},
• Sample k ∼ Cat(πm),
• Sample zm ∼ N (µk,Σk),
• Quantize µmk = Q(zm),

2. x = ψθ([z
m]Mm=1, [µ

m
k ]Mm=1).

where ψ is a highly non-convex function with unknown parameters θ. Q refers to the quantization
of [zm]Mm=1 to [µmk ]Mm=1 defined as µmk = Q(zm) where k = argmink dz

(
zm;µk

)
and dz =√

(zm − µk)TΣ
−1
k (zm − µk) is the Mahalanobis distance.

The backward map is defined via an encoder function fe and quantization process Q as

ϕ(x) =
[
fe(x), Q(fe(x))

]
, z = [zm]Mm=1 = fe(x), [µmk ]Mm=1 = Q(z).
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The learnable parameters are {π, µ,Σ, θ} with π = [[πmk ]Mm=1]
K
k=1, µ = [µk]

K
k=1,Σ = [Σk]

K
k=1.

Applying OTP-DAG to the above generative model yields the following optimization objective:

min
π,µ,Σ,θ

EX∼D

[
c
[
X,ψθ(Z, µk)

]]
+

η

M

M∑
m=1

[
Wc

(
Pϕ(Z

m), P (Z̃m)
)
+ Wc

(
Pϕ(Z

m),Pk,πm

)]
+ ηr

M∑
m=1

KL
(
πm,UK

)
,

where Pϕ(Zm) := fme #P (X) given by the backward ϕ, P (Z̃m) =
∑K
k=1 π

m
k N (Z̃m|µk,Σk) is

the mixture of Gaussian distributions. The copy gradient trick [10] is applied throughout to facilitate
backpropagation.

The first term is the conventional reconstruction loss where c is chosen to be mean squared error.
Minimizing the second term Wc

(
Pϕ(Z

m), P (Z̃m)
)

forces the latent representations to follow the
Gaussian distribution N (µmk ,Σ

m
k ). Minimizing the third term Wc

(
Pϕ(Z

m),Pk,πm

)
encourages

every µk to become the clustering centroid of the set of latent representations Zm associated with
it. Additionally, the number of latent representations associated with the clustering centroids are
proportional to πmk , k = 1, ...,K. Therefore, we can use the fourth term

∑M
m=1 KL

(
πm,UK

)
to

guarantee every centroid is utilized.

Training Configuration. We use the same experiment setting on all datasets. The models have
an encoder with two convolutional layers of stride 2 and filter size of 4 × 4 with ReLU activation,
followed by 2 residual blocks, which contained a 3 × 3, stride 1 convolutional layer with ReLU
activation followed by a 1 × 1 convolution. The decoder was similar, with two of these residual
blocks followed by two de-convolutional layers. The hyperparameters are: D = M = 64,K =
512, η = 1e− 3, ηr = 1.0, batch size of 32 and 100 training epochs.

Evaluation Metrics. The evaluation metrics used include (1) SSIM: the patch-level structure sim-
ilarity index, which evaluates the similarity between patches of the two images; (2) PSNR: the pixel-
level peak signal-to-noise ratio, which measures the similarity between the original and generated
image at the pixel level; (3) feature-level LPIPS [11], which calculates the distance between the
feature representations of the two images; (4) the dataset-level Fr’echlet Inception Distance (FID)
[3], which measures the difference between the distributions of real and generated images in a high-
dimensional feature space; and (5) Perplexity: the degree to which the latent representations Z
spread uniformly over K sub-spaces i.e., all K regions are occupied.

We present the reconstructed samples from CIFAR10 dataset for qualitative evaluation. From Fig-
ure 3, it can be seen that the reconstructions from OTP-DAG have higher visual quality than VQ-
VAE. The high-level semantic features of the input image and colors are better preserved with OTP-
DAG than VQ-VAE from which some reconstructed images are much more blurry.
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(a) Original images.

(b) VQ-VAE.

(c) OTP-DAG.

Figure 3: Random reconstructed images from CIFAR10 dataset.
.
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