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ABSTRACT

In a living cell, DNA replication begins at multiple genomic sites, called replica-
tion origins. Identifying these origins and their underlying base sequence compo-
sition is crucial for understanding replication process. Existing machine learning
methods for origin prediction often require labor-intensive feature engineering or
lack interpretability. Here, we employ DNABERT to predict yeast replication ori-
gins and uncover sequence motifs by combining attention maps with MEME, a
classical bioinformatics tool. Our approach eliminates manual feature extraction
and identifies biologically relevant motifs across datasets of varying complexity.
This work advances interpretable machine learning in genomics, offering a poten-
tially generalizable framework for origin prediction and motif discovery.

1 INTRODUCTION

DNA replication is a biological process of producing two identical copies of DNA from one original
DNA molecule. It is essential for all living organisms, ensuring accurate transmission of the genetic
material from one generation to the next. A thorough understanding of this process is crucial, since
any impairment in the DNA replication may lead to organism dysfunction and disease (Schmit &
Bielinsky, 2021). In eukaryotes, DNA replication begins at multiple genomic sites called replica-
tion origins (ORIs), distributed across the genome. Identifying their locations and sequence base
composition behind them is key to understanding DNA replication mechanisms.

Although in most eukaryotes, the underlying origin motif sequence remains elusive, there are hun-
dreds of well-characterized replication origins in S. cerevisiae (budding yeast) with known locations
and consensus sequences (Ekundayo & Bleichert, 2019), referred to as autonomously replicating
sequences (ARSs).

The ARS consensus sequence (ACS) was first identified by Broach et al. (1983) through the align-
ment of known essential elements and later refined by Marahrens & Stillman (1992). An extended
representation as a 17-basepair motif, WWW-WTTTAYRTTTW-GTT1 , was proposed by Theis &
Newlon (1997). However, not all experimentally identified origins contain an ACS, and fewer than
5% of ACS matches in the budding yeast genome correspond to actual replication origins, as noted
by Siow et al. (2012). Thus, the presence of ACS is neither sufficient nor necessary for determin-
ing origin locations, leaving this as an unresolved issue and presenting a compelling challenge for
machine learning (ML) techniques.

Current ML approaches for identifying ORIs often depend on manually extracted features. For
example, Do & Le (2020) uses XGBoost (Chen & Guestrin, 2016) on a hybrid feature set combining
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biological and sequence-based properties, improving accuracy over a number of methods (Chen
et al., 2012; Li et al., 2015; Dao et al., 2018) but requiring intensive feature selection. Similarly,
yORIpred (Manavalan et al., 2021) employs multiple classifiers and feature encoding techniques,
achieving high accuracy but relying on manual intervention, high-dimensional feature engineering,
and costly iterative steps. To address the limitations of the previous research, Wu et al. (2021)
developed a convolutional neural network incorporating sequence segmentation and the Word2Vec
representations for ORI identification. The proposed method achieved an impressive accuracy of
97% for S. cerevisiae but required training of the model from scratch, making it computationally
expensive and negatively affecting the model’s interpretability, the latter being of crucial importance
for DNA replication origin motif identification.

In this study, we aim to tackle the problem of identifying budding yeast replication origins using
large language models (LLMs). By leveraging pre-training, LLMs automatically capture complex
genomic patterns, eliminating the need for extensive feature engineering and manual extraction.
The attention mechanism further enables the recognition of important sequence dependencies and
patterns. Recently, genome-based pre-trained LLMs have gained popularity, allowing fine-tuning
for a wide range of downstream genomic tasks.

Here, we fine-tune the pre-trained DNABERT model (Ji et al., 2021) to predict replication origins in
budding yeast and develop a comprehensive pipeline for identifying the underlying sequence motifs
using attention maps and bioinformatics post-processing. To ensure robustness, we employ a data
engineering strategy, evaluating the model’s performance across datasets of varying complexity.

2 MATERIALS AND METHODS

2.1 DATASETS

OriDB (Siow et al., 2012) offers highly curated, experimentally validated data, ideal for benchmark-
ing across studies. For our training dataset, we selected 325 confirmed ORIs no longer than 500 bp
as positive instances, meeting DNABERT’s input size requirements. To standardize the lengths, we
randomly asymmetrically extended shorter sequences to 500 bp.

Our earlier efforts to identify ORIs using negative instances from the whole genome with DeepGRN
(Chen et al., 2021) yielded a low true positive (TP) rate, primarily due to a significant class imbalance
(data not shown). To address this issue, we curated four balanced datasets of varying complexity,
designed to answer specific research questions regarding the ORI base composition, described as
follows:

• Random-Neg dataset: 325 negative instances were randomly selected from regions of the
genome that do not intersect with any of the 325 positive instances.

• ACS-Neg dataset: Only the positive instances containing ACS were considered (298 over-
all). The same number of negative instances were subsampled from 11500 ACS matches
found by Homer (Heinz et al., 2010) which were not in proximity of any ORI. We thereby
aimed to identify discriminative factors beyond ACS motifs.

• Shuffled-Neg Dataset: 325 negative instances were created by randomly shuffling the
positive instances, thereby breaking both local and global patterns within the positive se-
quences. Here, we assess the importance of the base order for ORI identification, while
keeping the base frequency the same across positive and negative instances.

• Block-5-Shuffled-Neg Dataset: 325 negative instances were created by splitting the pos-
itive instances into the blocks of five bp and subsequently shuffling these blocks, thereby
disrupting only the global patterns within the positive instances, while the local ones stayed
preserved. This way we assess the relative importance of short- versus long-range sequence
features in origin recognition.

2.2 METHODS

For ORI classification, we selected DNABERT, an early genome-focused LLM adapted from the
original BERT architecture for genomic tasks and pre-trained on human genome using overlapping
k-mer tokenization.
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While larger DNA LLMs are available (Dalla-Torre et al., 2025; Nguyen et al., 2024), we opted for
DNABERT due to the straightforward process for extracting attention maps, often regarded as a tool
to focus on the most relevant input components, potentially capturing meaningful correlations that
explain model predictions (Vaswani et al., 2017). This is of crucial importance, as the main focus
of our study is the explainability of the results, rather than the performance analysis. We used the
DNABERT model pre-trained on the overlapping 4-mers. Notably, varying the k-mer length did not
result in any significant difference in model performance.

DNABERT’s built-in motif analysis tool, effective for transcription factor binding sites (Ji et al.,
2021), proved unsuitable for identifying ORI motifs due to their longer length. While it detected
motifs resembling ACS or A/T-rich flanking regions, the results lacked robustness in p-value and
motif length. This limitation likely stems from its reliance on continuous high-attention regions as
the initial search space. Since the model does not consistently assign high attention across entire
continuous regions, significant portions of motifs may be missed by the algorithm. Furthermore, the
tool’s lack of advanced clustering strategies, such as hierarchical or multiple sequence alignment,
resulted in fragmented and less comprehensive motif representations. To overcome these issues, we
developed an alternative pipeline using high-attention sequence fragments and the bioinformatics
tool MEME (Multiple Expectation Maximization for Motif Elicitation by Bailey & Elkan (1994)).

(a) (b)

Figure 1: (a) The schematic of the attention mechanism of DNABERT. Attention scores being
extracted from the multi-head attention layer, (b) Attention scores across a positive origin in-
stance. Motif discovery targets are fragments of 20 bps around peaks (red crosses) of the attention
scores (values along the Y axis). Vertical lines correspond to origin start (green) and end (red) with
sequence position along the X axis.

We extracted the attention scores for the [CLS] token—which serves as a global representation of
the input sequence—from the final hidden layer of our fine-tuned model (Figure 1). To obtain a
single vector of attention scores per token and translate the attention scores from the token level
to the resolution of individual nucleotides, we follow the approach proposed by Ji et al. (2021).
Visualization of attention scores for origin and non-origin sequences revealed a recurring pattern,
with sharp attention peaks specifically within the actual range of origin sequences. These peaks were
identified as target regions for motif discovery, Figure 1b. Of note, is that the presence of more than
one ACS within a positive instance has a biological meaning, corresponding to A and B2 elements
of the ARS (Lee et al., 2023).

To enhance the robustness of attention-based motif discovery, we refined the search space by con-
centrating on 20 bp fragments around high-attention peaks. For each input sequence, we selected
up to four top peaks based on an attention score threshold, ensuring that the total length of selected
fragments stayed below 16% of the sequence. Only peaks separated by at least 10 bp were included,
limiting the fragment overlap to a maximum of 10 bp. High-attention fragments were extracted from
both train and test sets and independently processed using MEME. This approach was evaluated on
the Rand-Neg and ACS-Neg datasets, using models fine-tuned for each, since they better represent
real-world origin prediction with diverse non-origin samples. In contrast, non-origin samples in
Shuffled-Neg and Block-5-Shuffled-Neg were artificially generated through shuffling. While per-
formance analysis of DNABERT on these datasets is important for understanding model learning,
the results of the motif analysis may be misleading, and therefore we omit them.
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3 PERFORMANCE ANALYSIS

We evaluated DNABERT fine-tuned models on four datasets as described in section 2.1, employing
seven distinct data splits (70% / 10% / 20% for train/val/test respectively) per dataset to ensure
robustness and reliability. For each split, the model was fine-tuned independently, yielding seven
fine-tunned models per dataset (training parameters were 400 epochs, using a batch size of 32 and a
learning rate of 2e-4). Performance was assessed on the corresponding test sets for each split, and
the average results across all splits are reported in Table 1.

Table 1: DNABERT Performance on datasets

Dataset Accuracy AUC Precision Recall
Random-Neg 0.83 0.90 0.83 0.83
ACS-Neg 0.74 0.82 0.74 0.74
Shuffled-Neg 0.90 0.96 0.90 0.90
Block-5-Shuffled-Neg 0.77 0.86 0.77 0.77

As anticipated, performance on the ACS-Neg dataset declined compared to the Random-Neg one.
This is because origin and non-origin sequences in ACS-Neg share greater similarity due to the
presence of ACS matches in both, making discrimination more challenging. This result confirms
that DNABERT learns the ACS pattern as an important feature for classification. Nonetheless, the
model achieved an accuracy of 0.74, indicating its ability to utilize additional discriminative features
beyond the ACS matches.

DNABERT achieved its highest performance on the Shuffled-Neg dataset, with an accuracy of 0.90
and an AUC of 0.96. This indicates that ordered nucleotide patterns are critical for distinguishing
origin sequences. Disrupting both local and global patterns in non-origin sequences creates a clearer
boundary between classes, enhancing the model’s discriminative ability. These results highlight
the strength of BERT-style models with overlapping k-mer tokenization in capturing both local and
global sequence dependencies, particularly for identifying ordered patterns in replication origins.

On the Block-5-Shuffled-Neg dataset, where local patterns are preserved but global ones are dis-
rupted, performance declined compared to the Shuffled-Neg dataset. This suggests that long-range
sequence patterns also play a significant role in DNABERT’s ability to classify origin sequences
effectively.

4 EXPLAINABILITY OF RESULTS

We applied our motif discovery pipeline to the train and test sets of the Rand-Neg and ACS-Neg
datasets, and present the most significant motifs. High-attention fragments (20 bps) from TP cases
were analyzed using MEME in the classic mode. For the Rand-Neg dataset, motifs from the test and
train sets are shown in Figure 2 a, b, as ’TTTTTWTTTATRTTT’ (E-value=2.6e-006) and ’TATATT-
TATRTWTWT’ (E-value=2.3e-032), respectively. These motifs closely resemble the ACS pattern,
specifically the motif from test set shows a strong agreement with the experimentally confirmed ACS
pattern 5’-WTTTATRTTTW-3’ (Broach et al., 1983), underscoring its biological relevance. The dif-
ference stems from greater variability in the training set, resulting in broader motif representations
than in the test set.

(a) (b) (c)

Figure 2: Motifs discovered from high-attention fragments, by MEME

For the ACS-Neg dataset, motif discovery on the test set yielded no significant results, likely due to
the small sample size (<45 instances) and worse model performance. However, analysis of the train
set revealed the motif ’ATATATATRTR’ (E-value=5.7e-059, Figure 2c), characterized by alternating
A/T bases, a pattern associated with the intergenic origins (Wang & Gao, 2019). These findings
further validate DNABERT’s ability to capture biologically relevant sequence patterns.
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5 CONCLUSION

In this study, we present an interpretable pipeline combining DNABERT with the MEME motif
discovery tool for identifying DNA replication origins, focusing on budding yeast due to the well-
defined ACS motif, which serves as a gold standard for motif analysis. While our work centers on
yeast, the principles of DNA replication initiation are highly conserved across eukaryotes (Wang &
Gao, 2019), suggesting that the insights gained from S. cerevisiae and the developed pipeline could
be potentially applied to higher eukaryotes as the logical next step.
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