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A Background on permutation-invariant neural network architectures

A.1 Background on graph neural networks

Many GNN architectures iteratively update node features following a neighborhood aggregation
scheme. Concretely, a graph network layer has the following structure:

a(k)v = AGG(k)({h(k−1)u : u ∈ N (v)})
h(k)v = COMB(k)(h(k−1)v , a(k)v )

where h(k−1)v is the feature vector at node v at layer k−1,N (v) is a function that returns the neighbors
of v, AGG(k) is a permutation-invariant function that aggregates the features of the neighbor nodes
and COMB(k) is a function that produces the next layer features by processing the features at the
previous layer h(k−1)v and the result of the aggregation a(k)v [Xu et al., 2018]. Once the node features
are refined through multiple GNN layers, the graph level embedding is obtained by pooling all the
node features using a permutation-invariant function.

hG = POOL({hfinalv : v ∈ V})

where hfinalv is the final node embeddings and V is the set of all nodes in the graph.

A.1.1 Graph Isomorphism Network (GIN)

The GIN architecture updates the node features as follows:

h(k)v = MLP(k)((1 + ε(k)) · h(k−1)v +
∑

u∈N (v)

h(k−1)u ) (1)

Xu et al. [2018] show that the GIN architecture is at least as powerful as the Weisfeiler-Lehman (WL)
graph isomorphism test [Leman and Weisfeiler, 1968] in distinguishing graph structures. We use this
result to prove that the GIN architecture is a universal approximator of set-input functions in Section
3.2.

Instead of just using the last layer node features as inputs to the graph-level pooling operation, GIN
uses a concatenation of the node features across all layers:

hG = CAT(POOL(h(k)v |v ∈ V)|k ∈ {1 . . .K})
where K is the index of the last GIN layer and CAT is the concatenation operation along the feature
dimension.

A.2 Background on the Set Transformer

The Query-Key-Value (QKV) attention operation takes in three tensors as input (query, key and value
tensors of shape Rnq×dkq , Rnkv×dkq and Rnkq×dv respectively), and produces one tensor as output
of shape Rnq×dv :

QKV(Q,K, V ;w) = (ω(QKT ))V (2)

where ω is a normalization function such as softmax. The the rows of Q, K and V can be interpreted
as query, key and value vectors, and the QKV operation can be interpreted as implementing a
differentiable dictionary retrieval operation. To give the neural network the ability to control both the
output space of the QKV operation, as well as the space in which query-key similarities are computed,
it is common to pre-and-post-multiply all of the input and output tensors by learnable weight matrices.
This gives rise to multihead attention operation. This operation is described as follows:

MULTIHEAD(Q,K, V ;W, ω) = CAT(O1, . . . , Oh)W
O

Oj = QKV(QWQ
j ,KW

K
j , V W

V
j ;ω)

where WQ ∈ Rdkq×dkq ,WK
j ∈ Rdkq×dkq ,WV

j ∈ Rdv×dv and WO
j ∈ Rdh∗dv×dout are the learnable

parameters, ω is the normalization operation, h is the total number of attention heads and CAT is the
concatenation operation.

The properties of Multihead attention make it suitable for set-input network architectures:
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Property 3. Multihead attention is equivariant under the permutation of the query vectors and
invariant under the joint permutation of the key-value vectors [Lee et al., 2019].

The Set Transformer architecture makes use of these equivariance/invariance properties to build
highly expressive permutation equivariant/invariant encoder and decoder networks. Details of these
encoder and decoder architectures are described in Section A.2.1.

Set transformers can also learn set-level pooling operations using the multihead attention instead
of using static operations such as mean or sum-pooling. This can be done by learning seed vectors
which are used as queries to the Query-Key-Value attention operation [Lee et al., 2019].

A.2.1 Full Set Transformer architecture

The encoder is comprised of a chain of "Set-Attention-Blocks" (SAB), defined as,

SAB(X) :=MAB(X,X),

where MAB(X,Y ) = LayerNorm(H + rFF (H)),

H = LayerNorm(X +Multihead(X,Y, Y )).

Here, LayerNorm stands for the Layer Normalization operation proposed by [Ba et al., 2016] and
rFF stands for a single layer of feed-forward neural network simultaneously applied to the value
vectors.

The decoder is comprised of a chain of Self-Attention Blocks, as well as "Pooling by Multihead
Attention (PMA)" operation that are defined as PMAk(Z) =MAB(S, rFF (Z))where S ∈ Rkxd
is a learned query matrix.

The full encoder and decoder architectures can be characterized as follows:

SetTrans(X) = rFF (SAB(PMAk︸ ︷︷ ︸
decoder

(SAB(SAB(X))︸ ︷︷ ︸
encoder

))) (3)

In our experiments, we used 4 layers of SAB blocks inside the encoder instead of 2.

B Proof of Theorem 1 - universality of GIN

Proof. To prove the theorem, it is sufficient to show that for any fully-connected, non-isomorphic
graphs G1 and G2, the Weisfeiler-Lehman test will decide them as non-isomorphic. In other words,
even though the WL test is not complete for the general graph isomorphism problem, it is complete
when the graphs are fully-connected.

Let vi, vj be two nodes in a fully-connected graph G. Because they share all other neighbours in G,
vi and vj will have the same label in the first iteration of the WL test if and only if their initial labels
(i.e. features) are equal. This implies that the WL test for fully-connected graphs terminates after the
first iteration. The WL test decides G1 and G2 are non-isomorphic if and only if the multi-sets of
their node features are different, which for fully-connected graphs is equivalent to G1 and G2 being
non-isomorphic.

C Input-output representations

To convert preference profiles #�σ = (σi, . . . , σn) ∈ (Sm)n into a representation that can be fed
in set-input neural networks, we first define a candidate id function c : A 7→ Rnc that maps each
alternative to a unique nc dimensional real-valued vector. An obvious choice of c is assigning a unique
integer between 0 and the number of candidates to each alternative, in which case nc is equal to 1.
Another alternative is assigning a unique one-hot vector to each candidate, in which case nc is at least
as large as the number of candidates. Using the candidate id function, we then compute vote vectors
vi = [c(σ−1(a1)), . . . , c(σ

−1(am))] ∈ R(m·nc) for each candidate and finally concatenate the vote
vectors to prepare the input that can be fed to a neural network: X = [v1, . . . , vn] ∈ R(n×m·nc).

PINs support elections with an arbitrary number of voters; however, the vote vectors they receive
must have a fixed dimensionality. Therefore, if the sampled election has lesser number of candidates
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than the maximum number the network is trained to support, we simply zero-pad the vote vectors,
so that they have a fixed dimensionality. When training fixed-input architectures such as multilayer-
perceptron for benchmarking, we also use zero-padding along the voter dimension.

While information theoretically equivalent, the one-hot candidate ids approach often outperforms
integer ids in our experiments. This is likely due to the fact that it avoids imposing an arbitrary
ordering between the candidates.

The output of the neural networks ŷ ∈ Rm can be used to compute each candidate’s probability
of winning. For representing single-winner elections, the probability of candidate aj being the
winner can be computed using Pr[winner = aj ] = [softmax(ŷ)]j . For multiple winner elections, the
probability of candidate aj being one of the winners can be computed using Pr[aj ∈ winners] =
sigmoid([ŷ]j). In this paper, we only work with single-winner elections.

C.1 Anonymity and neutrality of learned rules

If one uses the input representation described above, PINs will automatically learn anonymous voting
rules. While this might be a desirable property for many use cases, certain applications — such as the
ones where voters have persistent identities as in recommender systems — might require violating
this property. This can easily be achieved by appending the vote vectors with unique “voter id"
vectors so that the neural network can process which ranking was submitted by which voter.

Neutrality (the property of being agnostic to candidate identities) is also easy to achieve using PINs
by simply re-tiling the input tensor so that the network is permutation-invariant across the candidate
dimension. However, this strategy prevents the network from being anonymous. We focus on
anonymous architectures in this paper.

D Experiment details

D.1 Network architecture details

We now explain the network architectures we used in our experiments in depth.

DeepSets: Both the encoder and decoder networks have a 5 layer fully connected structure with
the LeakyReLU activation [Maas et al., 2013] and LayerNorm [Ba et al., 2016] normalization. The
width of the hidden layers were set at 1065 neurons so that the whole network has roughly 10 million
parameters in total.

GIN: We used the GIN implementation provided by the Deep Graph Library [Wang et al., 2019]
without much modification in our experiments. The whole network had 6 neighborhood aggregation
layers. Each aggregation layer used a different 2 layer fully connected network with ReLU activations
and LayerNorm normalizer [Ba et al., 2016].12 We also set the ε parameter (the weighing of the
node’s own features before the aggregation scheme) to be learnable. We used the sum pooling inside
the aggregation scheme, and the mean pooling scheme for the graph-level readout. We did not use
Dropout [Srivastava et al., 2014] as originally proposed by the authors. We set the hidden layer with
to be 995, so that the whole network had roughly 10 million parameters.

Set Transformer: We used an encoder with 4 self attention blocks, and a decoder with 1 pooling
by multihead attention (PMA) layer followed by another self-attention layer. Our self-attention block
implementation differs slightly from the one the authors provide [Lee et al., 2019] in that it makes use
of the “pre-layer norm" self-attention block configuration [Xiong et al., 2020], which helped improve
training stability. We used LayerNorm as the default normalized and the ReLU activation throughout
the network. We used 20 heads in all attention operations and computed query-key similarities in a
28 dimensional space. When added together, this results in roughly 10 million parameters.

12We replaced all the Batch normalization layers [Ioffe and Szegedy, 2015] in the original GIN architecture
with Layer normalization. We empirically confirmed that this modification did not lead to any performance
degradation, and led to improved training stability.
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MLP: We used a standard 5 layer fully connected network with ReLU activations and LayerNorm
normalizer. Due to the very large input dimensionality (83259 units), most of the parameters of this
network are stored in the first layer. Setting the hidden layer width to be 120 results in the model
having roughly 10 million parameters.

Training Setup We ran experiments with the Lookahead optimizer [Zhang et al., 2019] with its
default hyperparameters, and found that it significantly helps with training DeepSet models, while its
effect on other architectures is minimal. We didn’t use any form of regularization — at no point in
our experiments we observed overfitting behaviour thanks to the infinite supply of synthetic data. We
also clipped gradients whose L2 norm surpassed 1 for increase training stability. We trained all of the
networks using the PyTorch framework [Paszke et al., 2017], on NVIDIA T4 GPUs. Depending on
the task and model, each training run took about 1 to 8 days to complete.

D.2 Real-world test data details

Netflix Prize Data datasets [Bennett et al., 2007] Netflix Prize Data were collected by encourag-
ing Netflix subscribers to rate the movies they watch, and express how much they liked or disliked
them. We used the first ten elections in the Netflix Prize Data dataset.13 These elections have 3
candidates, and 448 - 1860 voters. The dataset contains the complete ranking information in strict
order for each election. Since we aim to evaluate the generalization performance on different data
distributions, rather than on unseen number of voters, we sub-sampled each of the elections to contain
2-99 voters (the same numbers of voters that the networks are trained on). For each of the ten
elections, we generated 16,384 “sub-elections” of voter size 2 to 99 via random sampling. In total,
the test dataset contains 163,840 elections.

Sushi dataset [Kamishima, 2003] The sushi dataset was collected by surveying 5000 individuals
for their preferences about various kinds of sushi.14 We used the “Sushi 10 rank” dataset, which
contains the 5000 individuals’ complete strict rank orders of 10 different kinds of sushi. We randomly
sampled 16,384 "sub-elections" of voter size 2 to 99 for our experiments.

Mechanical Turk Puzzle datasets [Mao et al., 2013] The datasets were collected using Mechani-
cal Turk, and contain 4 elections, each with 4 candidates and 793-797 voters.15 For each of the 4
elections, we randomly sampled 16,384 “sub-elections” of voter size 2 to 99. In total, the test dataset
contains 65,536 elections.

E Additional experiment results

E.1 Mimicking existing voting rules

E.1.1 Similarity of traditional voting rules

Table 5 shows the accuracy of predicting the winner of a traditional voting rule using another
traditional voting rule.

E.1.2 Zero-shot generalization to other utility distributions

Table 6 and 7 show the zero-shot generalization performance of learned voting rules that are trained
on the uniform utility distribution, but tested on other utility distributions (polarized, indecisive).

E.1.3 Generalization to Unseen Numbers of Voters

We include additional experiment results for generalization to unseen numbers of voters in this
section. The performance of the PIN models on mimicking the Borda voting rule is included in the

13We downloaded the election data from https://www.preflib.org/data/election/netflix. Li-
censing information of the Netflix Prize Data can be found at https://www.kaggle.com/netflix-inc/
netflix-prize-data.

14We downloaded the data from https://www.preflib.org/data/election/sushi. Licensing infor-
mation can be found at https://www.kamishima.net/sushi.

15We downloaded the datasets from https://www.preflib.org/data/election/puzzle.
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Target Alternative

Plurality Borda Copeland Maximin

Plurality 1.0 0.387 0.383 0.385
Borda 0.298 1.0 0.736 0.654
Copeland 0.355 0.815 1.0 0.771
Maximin 0.358 0.769 0.817 1.0
Kemeny 0.511 0.754 0.828 0.911

Table 5: The accuracy of predicting the winner of a traditional voting rule (“target”) using another
traditional voting rule (“alternative”). Each value is computed using 16,384 sampled elections from
the synthetic training distribution. Note that 1) Kemeny is not used as an alternative voting rule,
because its computation complexity prevents it from being applied to the election sizes of other target
voting rules (up to 29 candidates); 2) the fact that the table is not symmetric is an artifact of tie
elimination in our data generation process. When a tie is present using the target voting rule, we
discard the election and repeat the sampling process until a tie is not present. This causes a practical
disparity among the data distributions for different target voting rules and results in the asymmetry of
this table.

Architect. Mimicking Accuracy

Plurality Borda Copeland Maximin Kemeny

Set Trans. 1.000 0.985 0.828 0.794 0.928
GIN 1.000 0.989 0.811 0.772 0.816
DeepSets 1.000 0.960 0.811 0.761 0.900
MLP 0.995 0.945 0.810 0.759 0.763

Table 6: Mimicking accuracy of learned voting rules trained on the uniform utility distribution, but
tested on the polarized utility distribution.

main paper (Table 2). We include the generalization results for mimicking the Plurality, Copeland
and Maximin rules in Table 8, 9 and 10.

E.2 Maximizing social welfare

We show the histograms of the ratio between the social welfare following a voting rule and the
optimal social welfare for the “polarized” and “indecisive” distributions in Figure 2 and 3.
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Figure 2: Normalized histogram of the ratio between the social welfare following different voting
rules and the optimal social welfare, for the utilitarian and egalitarian social-welfare functions. Data
are sampled from the “polarized” distribution.
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Architect. Mimicking Accuracy

Plurality Borda Copeland Maximin Kemeny

Set Trans. 1.000 0.984 0.813 0.797 0.926
GIN 1.000 0.990 0.807 0.775 0.814
DeepSets 1.000 0.963 0.809 0.784 0.889
MLP 0.996 0.943 0.796 0.762 0.759

Table 7: Mimicking accuracy of learned voting rules trained on the uniform utility distribution, but
tested on the indecisive utility distribution.

Architect. Mimicking Accuracy for
Different Number of Voters

(within-domain) (out-of-domain)
2-49 50-99 100-149 150-199

Set Trans. 1.0 1.0 1.0 1.0
GIN 1.0 1.0 1.0 1.0
DeepSets 1.0 1.0 1.0 1.0
MLP 1.0 0.99 N/A N/A

Table 8: The test accuracy of permutation-invariant networks on guessing the Plurality winner with
different number of voters. The networks are trained with 2-99 voters.

Architect. Mimicking Accuracy for
Different Number of Voters

(within-domain) (out-of-domain)
2-49 50-99 100-149 150-199

Set Trans. 0.83 0.81 0.81 0.80
GIN 0.82 0.80 0.80 0.80
DeepSets 0.84 0.82 0.80 0.79
MLP 0.81 0.79 N/A N/A

Table 9: The test accuracy of permutation-invariant networks on guessing the Copeland winner with
different number of voters. The networks are trained with 2-99 voters.

Architect. Mimicking Accuracy for
Different Number of Voters

(within-domain) (out-of-domain)
2-49 50-99 100-149 150-199

Set Trans. 0.83 0.77 0.76 0.74
GIN 0.79 0.74 0.73 0.72
DeepSets 0.81 0.75 0.73 0.74
MLP 0.79 0.73 N/A N/A

Table 10: The test accuracy of permutation-invariant networks on guessing the Maximin winner with
different number of voters. The networks are trained with 2-99 voters.
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Architect. Mimicking Accuracy for
Different Number of Voters

(within-domain) (out-of-domain)
2-49 50-99 100-149 150-199

Set Trans. 0.94 0.94 0.93 0.92
GIN 0.82 0.81 0.79 0.76
DeepSets 0.91 0.89 0.89 0.87
MLP 0.78 0.77 N/A N/A

Table 11: The test accuracy of permutation-invariant networks on guessing the Kemeny winner with
different number of voters. The networks are trained with 2-99 voters.
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Figure 3: Normalized histogram of the ratio between the social welfare following different voting
rules and the optimal social welfare, for the utilitarian and egalitarian social-welfare function. Data
are sampled from the “indecisive” distribution.
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