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A DETAILED DISCUSSION ON FUTURE WORK

A.1 EXPLORATION OF MORE PRE-TRAINING METHODS AND OOD SCENARIOS

Our current work predominantly evaluates representative pre-training and OOD methods/scenarios.
However, the field abounds with numerous other methodologies, as summarized in several surveys (Li
et al., 2022c; Xia et al., 2022). Due to computational constraints, we could not explore each one
exhaustively, leaving a potential avenue for future research.

A.2 DEVELOPMENT OF MODEL SELECTION APPROACHES

Our empirical evaluations, especially those concerning learning rate experiments, lead us to believe
that developing pre-trained model selection strategies (e.g., (You et al., 2022)) for OOD generalization
is a promising direction for future research.
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A.3 COMBINATION OF METHODS FOR ENHANCED PERFORMANCE

Future studies could potentially combine pre-trained models with invariant learning or data augmen-
tation techniques to attain improved OOD generalization performance.

A.4 POTENTIAL THEORETICAL UNDERSTANDING

Based on our current evaluations, there exists an opportunity to explore theoretical connections
between graph pre-training and OOD, providing a richer, more in-depth understanding of the empirical
performance. One potential direction is exploring some theoretical findings in self-supervised learning
and pre-train models (Lee et al., 2021).

B DETAILS ON DATASETS

B.1 DATASET STATISTICS

Table 1 summarizes the important key factors and statistics of the molecular datasets. Table A1 and
A2 give the full dataset and graph statistics of molecular and general graph datasets used in the paper,
respectively.

Table A1: Split statistics of general graph datasets.

Datasets Domain Shift #. Graphs
(training/validation/testing)

Avg. #. Node
(training/validation/testing)

Avg. #. Edge
(training/validation/testing) #. Classes Metrics

Motif
Basis Covariate 18,000/3,000/3,000 17.1/15.8/14.9 48.9/33.0/31.5

3 AccuracyConcept 12,600/6,000/6,000 16.9/17.0/17/0 48.5/48.9/48.7
Size Covariate 18,000/3,000/3,000 16.9/39.2/87.2 43.6/107.0/239.6

Concept 12,600/6,000/6,000 51.8/51.5/51.6 141.8/140.2/141.5
CMNIST Color Covariate 42,000/7,000/7,000 75.0/75.0/75.0 1392.8/1393.7/1392.6 10 AccuracyConcept 29,400/14,000/14,000 75.0/75.0/75.0 1392.8/1393.5/1392.9

Table A2: Split statistics of molecular datasets.

Datasets Domain Shift #. Graphs
(training/validation/testing)

Avg. #. Node
(training/validation/testing)

Avg. #. Edge
(training/validation/testing) #. Classes / Task #. Task Metrics

DrugOOD
Scaffold

Covariate

21,519/19,041/19,048 39.4/26.8/22.5 85.8/58.4/47.7 2
1

ROC-AUC

Assay 34,179/19,028/19,032 34.5/30.7/29.7 75.2/66.8/64.7 2
Size 36,597/17,660/16,415 38.0/25.6/20.0 82.8/56.0/43.3 2

BBBP

Scaffold

1,631/204/204 22.5/33.4/27.5 48.4/72.3/59.8 2 1
Tox21 6,264/783/784 16.5/26.8/26.6 33.7/58.1/57.8 2 12

ToxCast 6,860/858/858 16.7/26.2/28.2 33.5/56.2/60.8 2 617
SIDER 1,141/143/143 30.0/43.2/53.3 62.8/91.8/112.7 2 27
ClinTox 1,181/148/148 25.5/32.6/24.6 54.2/71.0/53.4 2 2
MUV 74,469/9,309/9,309 24.0/25.3/25.3 51.8/55.6/55.5 2 17
HIV 32,901/4,113/4,113 25.3/27.8/25.3 54.1/61.1/55.6 2 1

BACE 1,210/151/152 33.6/37.2/34.8 72.6/81.3/75.1 2 1

OGBG-
MolHIV

Scaffold Covariate 24,682/4,113/4,108 26.2/24.9/19.8 56.7/54.5/40.6
2 1Concept 15,274/9,382/9,927 24.6/26.5/26.6 53.1/56.9/57.1

Size Covariate 26,169/2,773/3,961 27.8/15.5/12.1 60.1/32.8/24.9
Concept 14,483/9,676/10,762 31.3/20.0/19.4 67.7/42.8/41.5

OGBG-
MolPCBA

Scaffold Covariate 262,764/44,019/43,562 26.9/23.7/20.9 58.2/51.6/44.6
2 128 APConcept 159,158/90,740/119,821 25.5/26.4/26.7 55.2/57.0/57.7

Size Covariate 269,990/48,430/31,925 27.9/19.1/15.0 60.5/40.9/31.5
Concept 150,121/108,267/115,205 27.6/24.5/24.4 59.8/53.0/52.6

NCI1

Size Covariate

1,942/215/412 20.8/20.7/61.1 44.6/44.6/132.9 2 1

MCCNCI109 1,872/207/421 20.4/20.3/61.1 43.8/43.6/133.1 2 1
PROTEINS 511/56/112 15.4/15.7/138.9 57.4/58.5/504.6 2 1

DD 533/59/118 143.2/156.1/746.4 707.1/746.4/3814.7 2 1

B.2 DETAILS ON DATASET INTRODUCTION

DrugOOD (Ji et al., 2023). This benchmark supports AI-driven drug discovery with realistic
molecular graph datasets. It automates OOD dataset curation using ChEMBL (Mendez et al., 2019)
and offers diverse dataset splitting criteria, including scaffold, assay type and size, for tailored domain
alignment. The task focus on drug target binding affinity prediction.

MoleculeNet (Wu et al., 2018). MoleculeNet stands as a comprehensive benchmark for molecular
machine learning. It curates diverse public datasets, sets up evaluation standards, and offers open-
source tools for different molecular learning methods, all accessible via the DeepChem open source
library (Ramsundar et al., 2019).

15



Under review as a conference paper at ICLR 2024

The benchmark comprises multiple binary graph classification datasets, each designed to evaluate
model performance across different facets of molecular interaction. Specifically, BBBP (Martins
et al., 2012) evaluates the crucial measure of blood-brain barrier penetration, vital for understanding
membrane permeability. Tox21 (Abdelaziz et al., 2016) offers toxicity data encompassing 12
biological targets, including nuclear receptors and stress response pathways. Toxcast (Richard et al.,
2016) provides toxicology measurements based on over 600 in vitro high-throughput screenings,
serving as a rich resource for understanding toxicity. SIDER (Kuhn et al., 2016) features a database
detailing marketed drugs and adverse drug reactions, categorized into 27 system organ classes,
offering insights into drug safety. ClinTox (Novick et al., 2013) (AAC) consists of qualitative data
classifying drugs approved by the FDA and those that have failed clinical trials due to toxicity
concerns. MUV (Gardiner et al., 2011) represents a subset of PubChem BioAssay (Kim et al., 2023),
refined through nearest neighbor analysis, and tailored for validating virtual screening techniques. The
HIV dataset originates from the Drug Therapeutics Program (DTP) AIDS Antiviral Screen (Riesen &
Bunke, 2008), a comprehensive screening effort that evaluated the effectiveness of more than 40,000
compounds in inhibiting HIV replication. BACE (Subramanian et al., 2016) is a dataset that provides
qualitative binding results for a collection of inhibitors targeting human β-secretase 1.

OGBG (Hu et al., 2020). OGBG is a specific subset within Open Graph Benchmark (OGB),
containing representative datasets like OGBG-Molhiv, OGBG-Molpcba, and OGBG-PPA. OGBG-
Molhiv and OGBG-Molpcba challenge graph property prediction with distribution shifts, specifically
focusing on predicting molecular properties. They use a scaffold splitting approach, separating
structurally distinct molecules into different subsets for a realistic evaluation of graph generalization.
The dataset split follows GOOD benchmark (Gui et al., 2022). Specifically, for covariate shift with
a distribution source of size, we arranged the molecules in descending order based on the number
of nodes and split them into a ratio of 8 ∶ 1 ∶ 1 for the training set, validation set, and testing set,
respectively. Similarly, the entire dataset was ordered based on the Bemis-Murcko scaffold string
of SMILES, maintaining the same ratio. For concept shift, exemplified by size, we categorized
molecules into different groups based on different numbers of molecular nodes. Following this
categorization, we selected samples from each group with different labels, forming the training set,
validation set, and testing set, respectively, with a ratio of 3 ∶ 1 ∶ 1. This grouping approach aligns
with the scaffold-wise distribution, where molecules are categorized based on the Bemis-Murcko
scaffold string of SMILES.

TU Datasets. (Morris et al., 2020) It is a collection of benchmark datasets for graph classification
and regression. Among these datasets, NCI1, NCI109, PROTEINS, and DD stand out as important
and representative graph classification datasets, each offering unique characteristics and complexities.
NCI1 and NCI109 datasets are prominent in chemoinformatics. NCI1 is a binary graph classification
dataset that focuses on anticancer compound classification. It comprises molecular graphs, with
nodes representing atoms and edges indicating chemical bonds. NCI109 extends the challenge by
expanding the number of classes and compounds. PROTEINS is a dataset focused on protein graphs,
where each node represents a specific protein, and the edges signify various biologically relevant
connections or associations between these proteins. The task is to predict the presence or absence of
specific protein functions. DD is a real-world graph classification dataset, comprising 1,178 protein
network structures, each of which features 82 distinct node labels. The task is to classify each graph
into one of two classes: an enzyme or a non-enzyme.

Motif. Motif is a synthetic dataset (Wu et al., 2022b). It has been created to address structural shifts
in graph data. In this dataset, each graph is composed of a base and a motif. The bases are categorized
into three distinct types: Tree (S = 0), Ladder (S = 1), and Wheel (S = 2). On the other hand, the
motifs include Cycle (C = 0), House (C = 1), and Crane (C = 2), introducing various structural
complexities into the dataset. The ground truth label Y for each graph is exclusively dictated by the
motif (C). The primary objective in this dataset is to accurately classify the graphs into one of three
classes: Cycle, House, or Crane.

CMNIST. CMNIST is a special dataset with graphs showcasing handwritten digits. These graphs are
created from the MNIST dataset (Arjovsky et al., 2019) but preprocessed with superpixel (Monti
et al., 2017). The goal is to classify each graph into one of the ten-digit categories, from 0 to 9.
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C DETAILS ON EVALUATED METHODOLOGIES

Fig. A1 gives the evaluation pipeline on pre-trained GNNs for graph OOD secenarios with a showing
case on molecular graphs.
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Figure A1: PodGenGraph pipeline for molecular graph pre-training and fine-tuning for downstream
datasets.

C.1 HYPERPARAMETER DETAILS FOR BASELINE METHODS

CIGA. We used default hyperparameters as specified in the original paper for DrugOOD, TU datasets,
Motif, and CMNIST. Specifically, in DrugOOD, the causal substructure size is set to 80% of each
graph size for DrugOOD-Scaffold and DrugOOD-Assay, while it’s 10% for DrugOOD-Size. The
dropout rate is 0.5 for DrugOOD-Scaffold and DrugOOD-Assay, and 0.1 for DrugOOD-Size. For
DrugOOD-Assay with CIGA-v1 and CIGA-v2, the coefficient for contrastive loss is set to 8 and 1,
respectively. For DrugOOD-Scaffold with CIGA-v1 and CIGA-v2, it’s 32 and 16, respectively. For
DrugOOD-Size with CIGA-v1 and CIGA-v2, it’s 16 and 2, respectively.

For TU datasets, we use a causal substructure size of 60% for NCI1, 70% for NCI109, and 30% for
DD and PROTEINS. The coefficient for contrastive loss is 0.5 for NCI1 with CIGA-v1 and 1 for
NCI1 with CIGA-v2. It’s 2 for both NCI109 and DD with all CIGA versions. For PROTEINS, the
coefficient for contrastive loss is 0.5 with both CIGA-v1 and CIGA-v2.

In Motif, the causal substructure ratio is 25%, and in CMNIST, it’s 80%. For Motif, the coefficient of
contrastive loss is chosen from {0.5, 1, 4, 8, 16, 32}, and for CMNIST, it’s 32 with CIGA-v1 and 16
with CIGA-v2.

For datasets in MoleculeNet and scaffold distribution shift in OGBG datasets, we use hyperpa-
rameters similar to those in DrugOOD-Scaffold. For size distribution shift in OGBG datasets, the
hyperparameters are aligned with those in DrugOOD-Size.

MoleOOD. We employed default hyperparameters as provided in the code release. Specifically, we
selected the prior distribution from uniform, Gaussian distribution for all datasets. In DrugOOD, we
utilized 20 domains for the domain prior across three datasets. For MoleculeNet and OGBG datasets,
we varied the number of domains among {10, 15, 20}.

LiSA. We utilized the default hyperparameters provided in the code release. The inner loop was set
to 20 for all datasets. We employed 3 subgraph generators and a coefficient loss regularization term
of 0.1 across all datasets.
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D FULL RESULTS

D.1 RESULTS ON DIFFERENT DATASETS.

Appendix Table A3-A9 give the full results on the OOD performances of all evaluated methods
sperated by datasets.

Table A3: Testing ROC-AUC on Drug-OOD datasets (Ji et al., 2023) with covariate shift. Blue
shaded rows indicate pre-training strategies. The first and second best-performing methods (except
the ID training) are in bold and bold, respectively.

DrugOOD-Scaffold DrugOOD-Assay DrugOOD-Size Avg

CIGA-v1 69.27±0.81 72.36±0.60 67.08±0.82 69.57
CIGA-v2 69.68±0.21 73.28±0.35 68.02±0.51 70.32
MoleOOD 68.01±0.39 71.18±0.63 66.61±0.36 68.60

LiSA 65.71±0.25 67.66±0.63 65.78±0.46 66.38
ContextPred 70.01±0.13 72.80

±0.55 68.42±0.10 70.41
AttrMask 70.68±0.31 71.56±0.43 68.22

±0.15 70.15
Mole-BERT 70.04

±0.25 71.19±0.09 67.92±0.19 69.60
GIN-OOD 67.31±0.50 71.20±0.29 66.67±0.26 68.39

GIN-ID 84.36±0.15 87.07±0.62 87.69±0.77 86.37

Table A4: Testing ROC-AUC on MoleculeNet datasets (Wu et al., 2018) with covariate shift. Blue
shaded rows indicate pre-training strategies.

BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg

CIGA-v1 65.50±1.62 73.87±0.54 62.81±0.55 57.40±4.40 55.00±1.60 68.10±1.30 75.79±1.09 73.60±4.30 67.75
CIGA-v2 68.69±1.37 72.25±1.46 58.53±1.85 54.90±2.13 66.37±3.22 70.99±1.34 73.19±4.22 78.56±2.34 68.16

MoleOOD 69.71
±1.56 73.65±0.85 62.90±0.96 62.01

±0.58 89.93±3.90 67.79±2.46 78.29±0.51 81.10±1.97 73.36
LiSA 65.26±2.01 66.32±0.76 59.56±0.57 57.28±0.66 65.00±2.60 67.91±1.13 62.57±1.30 69.97±3.06 64.92

ContextPred 69.32±1.03 74.47±0.36 63.43
±0.40 60.45±0.60 57.40±3.16 77.36

±1.11 77.56±0.95 79.41±1.96 68.38
AttrMask 64.95±3.40 76.22

±0.41 63.36±0.50 60.15±0.57 70.47±3.43 74.93±2.07 76.41±0.70 79.88
±0.61 71.37

Mole-BERT 71.88±1.12 76.90±0.33 64.18±0.31 62.74±0.89 78.88
±2.24 78.62±1.51 78.10

±0.65 80.88±1.45 74.62
GIN-OOD 65.78±4.90 73.95±0.28 62.13±0.71 57.38±1.65 57.29±5.91 70.40±1.80 75.06±2.06 70.78±5.29 66.70

GIN-ID 93.13±0.58 82.60±0.20 70.93±0.28 62.57±0.81 84.91±2.10 79.49±1.44 80.86±1.11 86.73±1.72 80.55

Table A5: Performance evaluation on OGBG datasets (Hu et al., 2020) with covariate shift. OGBG-
MolPCBA is evaluated by AP, while OGBG-MolHIV is evaluated by ROC-AUC. Blue shaded rows
indicate pre-training strategies. The first and second best-performing methods (except the ID training)
are in bold and bold, respectively.

OGBG-MolPCBA OGBG-MolHIV
Size Scafflod Size Scafflod

CIGA-v1 10.51±0.17 10.24±1.98 61.81±1.68 69.40±2.39
CIGA-v2 9.65±0.12 10.62±1.04 59.55±2.56 69.40±1.97

LiSA 6.52±0.20 8.67±0.24 59.65±1.44 68.92±0.92
ContextPred 13.30±0.37 22.14±0.43 60.47±0.88 70.69±1.12

AttrMask 13.50
±0.38 21.89

±0.27 62.29
±0.91 70.29

±1.57
Mole-BERT 16.19±0.24 17.33±0.12 66.95±0.93 69.63±0.96
GIN-OOD 12.85±0.34 13.03±0.43 60.06±1.63 65.41±1.70

GIN-ID 28.10±0.69 30.80±0.54 79.49±0.55 80.86±1.11
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Table A6: Testing Matthews correlation coefficient on TU datasets with covariate shift. Blue shaded
rows indicate pre-training strategies. The first and second best-performing numbers (except the ID
training) are in bold and bold, respectively.

NCI1 NCI109 PROTEINS DD

CIGA-v1 0.22±0.07 0.23±0.09 0.40±0.06 0.29±0.08
CIGA-v2 0.27

±0.07 0.22±0.05 0.31±0.12 0.26
±0.08

LiSA 0.24±0.01 0.26±0.02 0.43
±0.05 0.37±0.07

InfoGraph 0.39±0.01 0.38±0.01 0.53±0.07 0.35
±0.04

GIN-OOD 0.21±0.06 0.16±0.05 0.23±0.05 0.25±0.09
GIN-ID 0.45±0.03 0.44±0.02 0.46±0.03 0.40±0.04

Table A7: Testing accuracy on general graph datasets with covariate shift. Blue shaded rows indicate
pre-training strategies. The first and second best-performing numbers (except the ID training) are in
bold and bold, respectively.

Motif CMNISTBasis Size

CIGA-v1 66.43±11.31 49.14±8.34 32.22
±2.67

CIGA-v2 67.15±8.19 54.42
±3.11 32.11±2.53

LiSA 82.55
±7.18 62.90±8.30 33.21±13.43

InfoGraph 86.85±2.43 53.43±8.09 24.39±2.09
GIN-OOD 62.01±3.92 52.94±2.93 26.28±5.95

GIN-ID 92.15±0.04 92.16±0.07 77.80±0.20

D.2 DIFFERENT STATISTICAL METRICS

Appendix Fig. A2-A3 show the additional statistical evaluation on the performances of all approaches
on Drug-OOD and Molecule-Net datasets. The metrics include median, IQM, mean, and the
optimality gap. Results also reveal that the pre-trained models achieve well-performance results
compared with baseline approaches.

66.0 67.5 69.0 70.5
CIGA-v1
CIGA-v2

GIN-OOD
ContextPred

Mask Pre-training
LiSA

Mole-BERT
MoleOOD

Median

66.0 67.5 69.0 70.5

IQM

67.5 69.0 70.5

Mean

16.5 18.0 19.5

Optimality Gap

ROC-AUC

Figure A2: Aggregate performance on DrugOOD averaged across three datasets:
DrugOOD-lbap-core-ic50-assay, DrugOOD-lbap-core-ic50-scaffold, and
DrugOOD-lbap-core-ic50-size. Better results are indicated by higher mean, median, and
IQM scores, along with a lower optimality gap.
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Table A8: Performance evaluation on OGBG datasets (Hu et al., 2020) with concept shift. OGBG-
MolPCBA is evaluated by AP, while OGBG-MolHIV is evaluated by ROC-AUC. Blue shaded rows
indicate pre-training strategies. The first and second best-performing numbers (except the ID training)
are in bold and bold, respectively.

OGBG-MolPCBA OGBG-HIV
Size Scafflod Size Scafflod

CIGA-v1 9.22±0.09 8.33±0.06 72.80±1.35 70.79±1.55
CIGA-v2 8.31±0.12 8.71±0.12 73.62

±1.33 71.65
±1.33

LiSA 5.05 ± 0.32 8.55±0.63 72.36±4.75 69.46±0.83
ContextPred 11.39±0.21 15.71±0.38 70.41±0.38 68.77±0.90

AttrMask 11.87
±0.24 16.14

±0.49 70.59±0.58 71.50±0.55
Mole-BERT 15.71±0.26 21.29±0.53 75.94±0.91 76.13±0.39
GIN-OOD 12.76±0.62 17.27±0.63 70.20±1.12 62.36±2.20

GIN-ID 28.10±0.69 30.80±0.54 79.49±0.55 80.86±1.11

Table A9: Testing accuracy on general graph datasets with concept shift. Blue shaded rows indicate
pre-training strategies. The first and second best-performing numbers (except the ID training) are in
bold and bold, respectively.

Motif CMNISTbasis size

CIGA-v1 72.50±4.02 58.63±6.66 34.80±3.33
CIGA-v2 77.48±2.54 70.65±4.81 39.39±3.30

LiSA 87.89±1.61 70.36
±2.61 36.56

±0.40
InfoGraph 79.36

±1.12 64.79±1.68 19.19±2.17
GIN-OOD 72.12±1.89 58.23±1.73 29.53±0.50

GIN-ID 92.15±0.04 92.16±0.07 77.80±0.20

68 72 76
CIGA-v1
CIGA-v2

GIN-OOD
ContextPred

Mask Pre-training
LiSA

Mole-BERT
MoleOOD

Median

68 72 76

IQM

66 69 72

Mean

6 9 12 15

Optimality Gap

ROC-AUC

Figure A3: Aggregate performance on MoleculeNet averaged across eight datasets: BBBP, Tox21,
ToxCast, SIDER, ClinTox, MUV, HIV, BACE. Better results are indicated by higher mean, median,
and IQM scores, along with a lower optimality gap.
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D.3 DIFFERENT BACKBONES

Appendix Fig. A4-A7 show the performance on molecular prediction with different GNN architectures
(GIN and GAT).

Figure A4: Comparison of ROC-AUC performance (%) on the DrugOOD dataset using the GIN and
GAT backbones, respectively.

Figure A5: Comparison of ROC-AUC performance (%) on the MoleculeNet dataset using the GIN
and GAT backbones, respectively.
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Figure A6: Comparison of AP on the OGBG-PCBA dataset using the GIN and GAT backbones,
respectively.

Figure A7: Comparison of ROC-AUC performance (%) on the OGBG-HIV dataset using the GIN
and GAT backbones, respectively.

E REPRODUCIBILTY STATEMENT

E.1 DETAILS

The experiments are implemented on an 8 Intel Xeon Gold 5220R and 4 NVidia A100 GPUs. We use
the publicly accessible code libraries of all evaluated methods. The detailed implementation can be
found through this anonymous link: https://sites.google.com/view/podgengraph/.
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E.2 USED LIBRARIES AND LICENSES

In our implementation, we have used the following libraries which are covered by the corresponding
licenses:

• Tensorflow (Apache License 2.0)
• Pytorch (BSD 3-Clause ”New” or ”Revised” License)
• Numpy (BSD 3-Clause ”New” or ”Revised” License)
• RDKit (BSD 3-Clause ”New” or ”Revised” License)
• scikit-image (BSD 3-Clause ”New” or ”Revised” License)
• wilds (MIT License)
• Codebase of CIGA: link, (MIT license)
• Mole-OOD: link, (MIT license )
• Codebase of LiSA: link
• Codebase of Mask pretraining and context prediction: link, (MIT Liecense)
• Codebase of InfoGraph: link
• Codebase of Molecule-BERT: link
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https://github.com/LFhase/CIGA
https://github.com/yangnianzu0515/MoleOOD
https://github.com/Samyu0304/LiSA#code-for-mind-the-label-shift-of-augmentation-based-graph-ood-generalization-lisa-in-cvpr-2023
https://github.com/snap-stanford/pretrain-gnns
https://github.com/sunfanyunn/InfoGraph#infograph-unsupervised-and-semi-supervised-graph-level-representation-learning-via-mutual-information-maximization
https://github.com/zhang-xuan1314/Molecular-graph-BERT

