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(1) Real action movies

(2) Combat games

(3) Text-to-motion

(3) Creating by Unity

A person is walking
forwards, but stumbles
and steps back, then
carries on forward.

| 1

Figure 1: Comparison of dataset creation candidates. Real action videos in film and television have blurry picture quality and
large camera shifts, and they are hard to extract pose maps. Synthesised combat videos in games have blurred picture quality,
messy backgrounds, the presence of Ul parts that obscure characters (blood bars, skills, etc.), and flat graphics. Text-to-motion
generation (such as MotionGPT) did not address different character IDs modeling, so the motion has no texture. We chose to
create a two-person martial arts video (column 4) by combining character, motion, and scene models using Unity.

1 DETAILS OF DATASET CREATION
1.1 Four Candidate Options

Here we detail our proposed 4 candidate options to create a combat
dataset and explain their advantages and differences as shown in
Fig. 1.

1) Use of a pure martial arts movie and television video dataset.
The limited amount and diversity of video content available on the
web may not fully meet the training needs. Besides, the problem of
pose prediction accuracy in complex scenes affects the data quality.

2) Creating synthetic videos based on existing martial arts games
can be limited by the content of the game itself (e.g., characters,
actions, scenes, shots, etc.). The most serious problem is that almost
all action games have Ul parts that obscure the main screen, such as
common blood bars, air bars, character names, skill move buttons,
etc., which seriously affects the realism of the screen and model
training.

3) Constructing datasets based on Text-to-Motion technology.
We can create a motion dataset by utilizing Text-to-Motion tech-
nique, especially by using advanced models such as MotionGPT [4],
which is a scheme to convert text descriptions directly into motion
sequences. The structure of a motion sequence is defined as [frames,
22, 3], where "frames" represents the number of frames, "22" refers
to the number of keypoints in the human body, and "3" represents
the position of each keypoint in the 3D world coordinate system.
The goal of this scheme is to use these generated action sequences
as conditions for video generation, thus enabling precise control
of the video content of a two-person fight scene. However, it is a
technical challenge to further transform these motion sequences
into RGB videos with a realistic feel. This process involves multiple
complex steps such as motion rendering, character model building,
environment setting, etc., and requires interdisciplinary expertise
and technology. In addition, higher computational resources and
specialized graphics processing software may be required to realize
this process.
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Figure 2: The interface of Unity, the dataset creation tool. A combination of character, action and scene models can be rendered
to create a video of a character executing an action, which we use to simulate a live action martial arts video.

4) The last candidate is our Unity-based way, which is the fi-
nal option to create our dataset in the main paper. We give some
example images of the video in our KFF dataset in Fig. 3.

1.2 Our Unity-Based Way

After a detailed analysis of the different dataset creation options, we
finally chose this option: using the physics modeling tool Unity and
its action and character libraries to construct a two-person combat
video and export it as a composite dataset as shown in Fig. 2. This
decision was based on several key considerations, and the reasons
for this choice are explained in detail below.

Technical feasibility and controllability: Unity, as a mature game
development platform, provides a wealth of resources and tools that
can help us efficiently build and render fight scenes with diverse
perspectives and action representations. Compared with other so-
lutions, Unity has a clear advantage in the controllability of actions
and scenes, making the process of building data sets more flexible
and precise. We were able to design specific fight moves, adjust
character interactions, and even control lighting and environmental
effects to create the ideal dataset for our training needs.

Diversity and Consistency: the datasets built through Unity are
not only highly diverse in terms of viewpoints and actions, but
also maintain a high degree of consistency in terms of visual style
and action execution. This is crucial for training high-performance
video generation models, as datasets with high consistency can
reduce noise during model training and improve learning efficiency.

2 DETAIL ABOUT BACKGROUND
CONTROLLING

As discussed in the main paper, our approach incorporates two
distinct methods for background conditioning to accommodate
user preferences in video generation. 1) Users have the option to
directly provide a background image. This simple background can
be incorporated seamlessly into the video through an end-to-end
process, where the denoising U-Net is conditioned with the pro-
vided image, allowing precise background control throughout the
video generation. This method ensures that the user’s chosen back-
ground is accurately reflected in the generated video, enhancing
the visual consistency and thematic relevance of the final output. 2)
For users preferring text input, the initial conditioned background
is set to pure white. This setup simplifies the initial generation pro-
cess, where the denoising U-Net produces a video with a uniformly
white background during the first stage. In the subsequent stage,
the Background Crafter, developed specifically for more complex
background generation, comes into play. Here, users can input a
text prompt describing the desired background, which the Back-
ground Crafter then uses to generate detailed and contextually
appropriate backdrops for the two-person combat scenes.
Recognizing the limitations of our MagicFight model in gener-
ating intricate backgrounds directly, we designed the Background
Crafter to enhance user control over the background aesthetics.
Based on the SDXL-Inpainting [3] with minor modifications, the
Background Crafter utilizes three key elements: the original fore-
ground image of the two-person fight, a background mask—readily
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Figure 3: Examples video frame of our KFF dataset.

obtained from the initial white background but refined using a
robust video matting method [1]—, and the user’s text prompt.
However, given that the original SDXL-Inpainting model [3]
was not tailored for dual-person background tasks and fell short
of our requirements, we finetuned it on a specialized dataset. This
dataset included two-person foregrounds and complex scene back-
grounds described by text. To address video temporal modeling,
we integrated a temporal layer from AnimateDiff into the SDXL-
Inpainting framework, transforming it into our Background Crafter.
During sampling, we adopted a method similar to the one described
in [2] to ensure inter-frame background consistency, employing
shared latent space variables (z1) across all frames and transmit-
ting Key and Value information through the self-attention layers
to maintain uniformity and continuity in the background across
the video sequence. This integration not only enhances the model’s
ability to handle dynamic backgrounds but also ensures that the

backgrounds are visually coherent throughout the video, aligning
with the evolving narrative and actions within the scene.

3 MORE VIDEO RESULTS

In Figs. 4-8, we further showcase a variety of generated combat
videos with IDs in an open-set situation. Our method excels in
producing these results, demonstrating exceptional quality and
creativity. The videos generated not only exhibit a high degree of
diversity, capturing a range of dynamic interactions and combat
styles, but also underscore the robustness of our approach under
varying conditions and scenarios. This ability to consistently pro-
duce realistic and varied content highlights the advanced capabili-
ties of our model, making it a significant contribution to the field
of video generation.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

Figure 4: More testing results of our MagicFight.
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Figure 5: More testing results of our MagicFight.
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Figure 7: More testing results of our MagicFight.
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Figure 8: More testing results of our MagicFight.
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