
Efficient Scheduling of Data Augmentation
for Deep Reinforcement Learning

Byungchan Ko∗

NALBI
kbc@nalbi.ai

Jungseul Ok
GSAI, POSTECH

jungseul@postech.ac.kr

Abstract

In deep reinforcement learning (RL), data augmentation is widely considered as
a tool to induce a set of useful priors about semantic consistency and to improve
sample efficiency and generalization performance. However, even when the prior
is useful for generalization, distilling it to RL agent often interferes with RL
training and degenerates sample efficiency. Meanwhile, the agent is forgetful of
the prior due to the non-stationary nature of RL. These observations suggest two
extreme schedules of distillation: (i) over the entire training; or (ii) only at the
end. Hence, we devise a stand-alone network distillation method to inject the
consistency prior at any time (even after RL), and a simple yet efficient framework
to automatically schedule the distillation. Specifically, the proposed framework first
focuses on mastering train environments regardless of generalization by adaptively
deciding which or no augmentation to be used for the training. After this, we
add the distillation to extract the remaining benefits for generalization from all the
augmentations, which requires no additional new samples. In our experiments, we
demonstrate the utility of the proposed framework, in particular, that considers
postponing the augmentation to the end of RL training. https://github.com/kbc-
6723/es-da

1 Introduction

Deep reinforcement learning (RL) aims at finding a neural network to represent policy or value
functions taking raw observation as input, of which the most common form in practice is visual
data or images of high-dimensionality, e.g., video games [24], board games [31, 30], and robot
controls [34, 19]. RL handling high-dimensional input often suffers from poor sample efficiency and
generalization capability, mainly due to the curse of dimensionality [4, 16]. To overcome these issues,
it has been widely considered to augment data based on prior knowledge that a set of transformations
preserve the meaning or context of input observations, e.g., cropping out unimportant parts of images,
and changing colors [21, 20, 22, 15]. On one hand, RL agent can be directly fed with the original and
augmented data so that it implicitly learns a representation with the prior and improves the sample
efficiency and generalization [21]. On the other hand, the prior knowledge in data augmentation can
be explicitly distilled via a self-supervised learning, which introduces additional regularization to
ensure consistency between responses to original and augmented inputs [26, 15].

However, data augmentation shows highly task-dependent effect in RL, and it is prone to generate
severe interference with the training even when it truly conveys a useful prior to train and test environ-
ments [21, 26, 15]. We address the problem of alleviating the interference between data augmentation
and RL training to improve sample efficiency for acquainting train tasks, and generalization capability
for unseen test environments. This problem in (online) RL is more critical and challenging than that
in supervised learning (SL) since the objective function and data distribution are time-varying in RL,
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while they are not in SL. Indeed, according to [1, 11], it is sufficient to partly apply data augmentation
just for a short period of SL at any time. Meanwhile, we empirically observe that the prior from data
augmentation can be easily forgotten in RL of the non-stationary nature (see Section 5.3), i.e., the
effect of augmentation is time-sensitive.

Based on our observation about the interference and the time-sensitivity, we propose two simple yet
effective methods according to timings of data augmentation : Intra Distillation with Augmented
observations (InDA) and Extra Distillation with Augmented observations (ExDA). Data augmentation
beneficial for the sample efficiency needs to be applied over the entire RL training, i.e., InDA.
Conversely, data augmentation useful only for the generalization should be postponed to the end of
RL training, i.e., ExDA, so that we can minimize the interference in the training, while enjoying the
benefit in the testing. InDA and ExDA are equipped with Distillation with Augmented observation
(DA). DA is a stand-alone self-supervised learning which enables us to induce the prior after RL
training, and shows a relatively small interference with RL training by explicitly preserving the
response of RL agent to the original input.

The best timing (InDA or ExDA) depends on traits of train task and augmentation. We hence suggest
a framework of adaptive scheduling, named UCB-ExDA, that (i) first aims at maximizing the sample
efficiency by adaptively selecting which or no augmentation to be used during RL training; and then,
(ii) distill the priors from all the augmentations after RL training. Specifically, inspired by [26], we
devise UCB-InDA for the adaptive selection in the first part by modifying the upper confidence bound
(UCB) algorithm [3] for multi-armed bandit, where differently from [26], the set of arms includes all
the augmentations and the option to not augment. In summary, UCB-ExDA is nothing but executing
UCB-InDA followed by ExDA. Our experiment demonstrates the utility of the proposed framework.

Our contributions are summarized as follows:

(i) We devise DA (Section 4.1) which explicitly preserves the knowledge of RL agent so that
enables distilling the consistency prior of augmentation into RL agent not only during but
also after RL training, while other methods [21, 26, 15] need to be applied concurrently with
RL training and thus show relatively strong interference in our experiments (Section 5.2).

(ii) We identify the simple yet effective timings of data augmentation: either InDA or ExDA
(Section 4.2, Section 4.3), based upon the discovery of the time-sensitivity (Section 5.3) that
has not been observed in SL [11], i.e., the proposed timings are effective particularly for RL.

(iii) We finally establish UCB-ExDA which automatically decides the best timing of augmenta-
tion, and demonstrate its superiority compared to others (Section 5.4). The advantage of
UCB-ExDA is particularly substantial when the best strategy is ExDA postponing augmen-
tation to the end of RL training.

2 Related Works

Augmented experience in RL. To solve the problem of poor generalization and sparse data, a
popular approach is to fabricate virtual experiences and train the RL agent to learn with them.
Domain randomization is a technique to produce such experiences from a simulator of a targeted
system, [34, 25, 27]. Accurate simulators of practical systems are difficult to obtain, and it has
limited applicability. However, visual augmentation has no such limit because the method uses simple
image transformations such as cropping, tilting, and color jitter, although applications require a
careful understanding of the targeted system to guide the design of an appropriate image transformer.
A method of curriculum learning for domain randomization, in which the difficulty is gradually
increasing [27] provided insights that coincide with some of our findings. However, we provide a
further understanding of the types of visual augmentation that should be early or late during training.

Regularization from augmented data in vision-based RL has been implemented in various learning
frameworks, including but not limited to representation [15, 33], self-supervised [26], and contrast
[32]. One proposed algorithm [26] applies the UCB algorithm [3] to automatically select the most
effective augmentations over RL training, where each augmentation is considered as an arm and then
evaluate the effectiveness of augmentation by using a sliding window average. The idea of adapting
augmentation concurs with our main message regarding the timing of augmentation. In [26], ’not
augmenting’ is not an option, whereas our findings indicate that it should be. In addition, [26] does
not consider post augmentation followed by RL training, as in ExDA.
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Other time-sensitivity in deep learning. During deep learning, the early stage of training often has
a significant effect [7, 1]. Therefore, we devised time-sensitive methods that adapt to the progress of
training, such as learning rate decay [37] and curriculum learning [35]. Golatkar et al. [11] studied
such a time-sensitivity of regularization techniques for SL, where the effect of data augmentation
in different time does not change much. We find that the time-sensitivity of augmentation can be
significant in RL. This contrast may occur because of the non-stationary nature of RL, which SL
does not have. Although a set of techniques originally developed for SL such as convolutional neural
network, weight decay, batch normalization, dropout and self-supervised learning improve deep RL
[17, 6, 23, 9, 32, 36, 14], a thorough study should be conducted before introducing a method from
different learning frameworks, because we find the contrasting time-sensitivities of data augmentation.
This spirit is also shared with an application [18] of implicit bias in SL [13, 2, 10] to RL.

3 Background

Notation. We consider a standard agent-environment interface of vision-based reinforcement
learning in a discrete Markov decision process of state space S, action space A, and kernel P =
P (st+1, rt|st, at) which determines the state transition and reward distribution. The goal of the RL
agent is to find a policy that maximizes the expectation of cumulative reward

∑t′−1
t=0 γtrt, where

t′ is terminating time and γ ∈ [0, 1] is discount factor. At each timestep t, the agent selects an
action at ∈ A and receives a reward rt and an image ot+1 = O(st+1) ∈ Rk×k′

as an observation
of the next state st+1. Data augmentation can be described by an image transformation function
ϕ : Rk×k′ 7→ Rk×k′

of which output is presumed to have the same or similar semantics of the input.

Baseline RL algorithm. Throughout this paper, we use Proximal Policy Optimization (PPO) [28]
as a baseline, although we believe our findings and methods can be easily adjusted to others. PPO is a
representative on-policy RL algorithm to learn policy πθ(a | o) and value function Vθ of neural agent
parameterized by θ. Storing a set of recent transitions τt := (ot, at, rt, ot+1) in experience buffer D,
the agent is updated to minimize the following loss function:

LPPO(θ) = −Lπ(θ) + αLV (θ) , (1)

where α is a hyperparameter and canonical regularization terms are omitted. The clipped policy
objective function Lπ and value loss function LV are defined as:

Lπ(θ) = Ê
[
min(ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2)

LV (θ) = Ê
[(
Vθ(ot)− V targ

t

)2]
, (3)

where the expectation Ê is taken with respect to τt ∼ D, we denote by θold the parameter before the
update, ρt(θ) is the importance ratio πθ(at|ot)

πθold (at|ot) , and Ât is the generalized advantage estimation [28].

4 Method

In what follows, we present our methods: Distillation with Augmented observations (DA; Section 4.1),
Intra DA (InDA; Section 4.2), Extra DA (ExDA; Section 4.3), and then the adaptive scheduling
frameworks based on UCB (UCB-InDA and UCB-ExDA; Section 4.4). DA is a stand-alone knowl-
edge distillation method, which can be used at any time to instill the underlying prior of augmentation
into a given RL agent. InDA and ExDA conduct either DA or PPO in each epoch but have different
schedules (Figure 1), where InDA interleaves PPO and DA, whereas ExDA performs PPO first then
DA. UCB-InDA adaptively decides which or no augmentation to be used in each DA epoch of InDA
based on the UCB of estimated gain from each option. UCB-ExDA performs ExDA preceded by
UCB-InDA.

4.1 Distillation with augmented observations (DA)

The underlying prior of augmentation can be infused by minimizing a measure of inconsistency
between the agent’s responses to original and augmented inputs (resp. ot and ϕ(ot)). For instance,
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Figure 1: An illustration of InDA and ExDA
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Figure 2: An illustration of distillation losses.

with PPO agent learning policy πθ and value Vθ, Raileanu et al. [26] proposes the following measure:

Ldis(θ, ϕ) := Êot∼D [KL[πθ(·|ot), πθ(·|ϕ(ot))]] + Êot∼D
[
(Vθ(ot)− Vθ(ϕ(ot)))

2
]
, (4)

which uses Kullback-Leibler divergence (first term) and mean squared deviation (second term) for
policy and value inconsistencies, respectively. Noting that Ldis(θ;ϕ) can be minimized to be zero by
a constant response to all inputs, the distillation with Eq (4) can distort the RL agent, in particular,
when applying it outside of RL training.

We hence devise a network distillation technique (DA) which explicitly preserves the RL agent’s
response to original input and thus is applicable even after RL training. DA distills the knowledge of
RL agent θold into θ using not only original but also augmented observations. More formally, the loss
of DA is written as:

LDA(θ, ϕ; θold) := Ldis(θ, I; θold) + Ldis(θ, ϕ; θold) . (5)

We here denote the identity transformation by I such that I(o) = o for all o, and extend the definition
of Ldis in Eq (4) as follows:

Ldis(θ, ϕ; θold) = Êot∼D [KL[πθold(·|ot), πθ(·|ϕ(ot))]] + Êot∼D
[
(Vθold(ot)− Vθ(ϕ(ot)))

2
]
. (6)

In Eq (5), the first term ensures that θ and θold behave identically for the original inputs, and the
second one infuses the consistency prior. In Figure 2, Ldis(θ, I; θold), Ldis(θ, ϕ; θold), and Ldis(θ, ϕ; θ)
graphically correspond to (A), (B), and (C), respectively. From this, it follows that minimizing LDA
in Eq (5) eventually reduces Ldis(θ, ϕ; θ) in Eq (4). In addition, the minimization of LDA secures the
responses of θ to the original inputs (which can be pre-computed to reduce computation cost) to the
those of θold, while the alternatives (e.g., (A)+(C): Ldis(θ, I; θold) + Ldis(θ, ϕ; θ)) does not and thus
may generate interference with RL training. Our experiments (Section 5.2; Figure 4) justifies the
design of DA by showing substantial advantage compared to the other alternatives such as DrAC
[26] using Ldis(θ, ϕ; θ) in Eq (4). We note that this advantage becomes much clearer when a wrong
augmentation is given, c.f., the supplementary material.

4.2 Intra distillation with augmented observations

InDA (Algorithm 1) alternates between minimizing LPPO and LDA, i.e., PPO and DA are explicitly
separated, whereas they are often executed simultaneously in other methods [26]. Such a clear
separation reduces the interference [15]. We can control the frequency and timing of applying
distillation with hyperparameters I , S and T , where we perform DA after each I rounds of RL
training only if the current epoch n is in the interval of [S, T ], i.e., S and T are the epochs to begin
and terminate DA, respectively. We vary S and T to study the time-dependency of data augmentation.
We denote InDA[S, T ] to indicate the period to apply DA, while we omit the indication when DA is
applied over the entire period. We provide further details on InDA in the supplementary material.
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Algorithm 1 InDA
Require: N, I, ϕ, S, T

1: Initialize θ close to origin.
2: for n = 1, 2, . . . , N do
3: // RL training
4: Store sampled transitions to D;
5: Optimize RL objective LPPO(θ) with D;
6: // Distillation
7: if n ∈ [S, T ] and mod(n − 1, I) = 0

then
8: Store θold ← θ;
9: Minimize LDA(θ) for D, θold and ϕ;

10: end if
11: end for

Algorithm 2 ExDA
Require: N , M , ϕ

1: Initialize θ close to origin.
2: //Pre-training phase with RL algorithm
3: for n = 1, 2, . . . , N do
4: Store sampled transitions to D;
5: Optimize RL objective LPPO(θ) with D;
6: end for
7:
8: Store θold ← θ;
9: // Distillation at the end of RL training

10: for m = 1, 2, . . . ,M do
11: Minimize LDA(θ) for D, θold and ϕ;
12: end for

4.3 Extra distillation with augmented observations

ExDA (Algorithm 2) performs the distillation after the end of RL training, where the lengths of DA
and RL training are parameterized by M and N , respectively. We note that computational cost can
be reduced by removing the value inconsistency measure Êot∼D

[
(Vθold(ot)− Vθ(ϕ(ot)))

2
]

from
Ldis in Eq (6) because the value consistency is not necessary for RL training nor distillation in the
actor-critic framework and including it has a potential risk of generating additional interference. In the
supplementary material, it is empirically verified that this reduction does not degrade RL performance.
We leave more interesting details in the supplementary. For instance, one can consider re-initializing
θ before starting DA as a part of exploiting the implicit bias [13, 18] to improve generalization.
However, test performance is often dropped. This is mainly because the dataset to distill πθold has
much less diversity than that observed along the trajectory. Thus, we use no re-initialization for the
experiments in the main paper.

4.4 UCB-based adaptive scheduling frameworks

The training benefit by augmentation differs depending on the task. This dependency complicates the
choice of whether to use InDA or ExDA for augmentation. Hence, we devise an auto-augmentation
method, called UCB-InDA, inspired by UCB-DrAC [26], where each augmentation is corresponded
to an arm in multi-armed bandit (MAB) problem and assessed its potential gain in training with
upper confidence bound (UCB) [3]. More formally, in UCB-InDA, the set of arms is the set of
augmentations, Φ = {ϕ1, . . . , ϕK}, which must include the identity function I, i.e., the option not to
augment. The inclusion of identity function is small but makes crucial difference than UCB-DrAC
[26] since we observe that using augmentation sometimes needs to be postponed after RL training for
the sake of better sampling complexity and test performance.

A round of MAB corresponds to every I epoch of InDA, where we let ϕk(s) ∈ Φ be the augmentation
selected at the s-th round of DA. Let G(s) be the average return, the sum of estimated advantage Â
and predicted value Vθ, over (I−1) epochs of PPO followed by the s-th DA. UCB algorithm assumes
that each arm generates reward independently drawn from a fixed distribution, and estimates the
empirical mean over the entire sampling process. However, in RL, the return G(s) is non-stationary,
so UCB-InDA computes moving average gain Ḡk(s), instead, taken over a certain number (chosen
to be 3 in our experiment) of most recent rounds selecting ϕk as Raileanu et al. [26] proposed. Then,
inspired by UCB1 algorithm [3], UCB-InDA selects action k(s) at round s as follows:

k(s) = argmax
k∈{1,...,K}

Ḡk(s) + c

√
log(s)

Nk(s)
(7)

where c is the UCB exploration coefficient, and Nk(s) is the number of times selecting ϕk up to round
s. We refer to the supplementary material for the hyperparameter choice. We remark that compared to
UCB-DrAC [26], the proposed UCB-InDA has subtle but important differences, summarized in two
folds: (i) the inclusion of identity transformation (i.e., no augmentation) and (ii) the distillation with
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(b) conflicting: ⟨gaux, gmain⟩ < 0

Figure 3: An illustration of gradient conflicting and PAGrad. We here let gmain and gaux denote
the gradients of main (shown in red; e.g., ∇LPPO) and auxiliary (shown in blue; e.g., ∇Ldis) losses,
respectively. In the computation of PAGrad (shown in black), the component of gaux conflicting to
gmain only when it exists (i.e., ⟨gaux, gmain⟩ < 0).

augmentation via InDA. The gain of each component is numerically studied in Section 5. Finally, we
note that UCB-ExDA is nothing but UCB-InDA followed by ExDA.

4.5 PAGrad

Inspired by [38], we devise an alternative approach to reduce the interference by interpreting RL
training with data augmentation as a multi-task learning, where LPPO and Ldis correspond to the
main and auxiliary task losses, respectively. In [38], the degree of conflict from task A to task B
is estimated by the inner product of the gradient of task A and the negative gradient of task B, c.f.,
Figure 3. From this, we propose PAGrad (Projecting Auxiliary Gradient) to compute a modified
gradient of LPPO excluding the conflict from the auxiliary gradient ∇Ldis to the main one ∇LPPO.
Formally, PAGrad computes the gradient given as follows:

∇LPPO +
(
∇Ldis − min{0,⟨∇Ldis,∇LPPO⟩}

∥∇LPPO∥2 ∇LPPO

)
, (8)

where min{0,⟨∇Ldis,∇LPPO⟩}
∥∇LPPO∥2 ∇LPPO is the components of∇Ldis opposite to∇LPPO which may disturb

optimizing the main objective LPPO. Based on this, we devise DrAC+PAGrad that updates the model
parameter toward the negative direction of (8). This is an alternative of InDA, while it concurrently
optimizes LPPO and Ldis differently from InDA adopting the time-separation of optimizing LPPO and
Ldis. We also note that it differs from the original method proposed in [38] alternating the main and
auxiliary tasks to accomplish every task at equal priority, while we have a clear priority on RL task.

5 Experiment

5.1 Setups
Train and test tasks. We use the OpenAI Procgen benchmark of 16 video games [5], where a
main character tries to achieve a specific goal, e.g., finding exit (Maze) or collecting coins (Coinrun),
while avoiding enemies given a 2D map. At each time t, visual observation ot is given as an image
of size 64× 64. A train or test task is to achieve a high score on a set of environments configured
by game and mode, where a mode describes predefined sets of levels (e.g., complexity of map) and
backgrounds. Cobbe et al. [5] provide easy mode for each game, consisting of 200 levels and a
certain set of backgrounds.

We simplify easy mode and train agents in easybg mode, of which the only difference from easy
mode [5] is showing only a single background. This is useful to investigate the case that using
visual augmentation is helpful for testing but not for training. We denote the task configuration by
game_name(mode), e.g., Coinrun(easybg). Then, we evaluate generalization capabilities using two
modes: test-bg and test-lv, which contain unseen backgrounds and levels, respectively, in addition to
easybg mode that we use for training.

Types of augmentation. For clarity, we mainly focus on two types of visual augmentation, each of
which conveys distinguishing inductive bias:
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(a) Random color transforms an image by passing through either color jitter layer or random
convolutional layer proposed in [22]. From this, we can impose the consistency to color
changes, which may provide a strong generalization to diverse backgrounds of test-bg mode.

(b) Random crop leaves a randomly-selected rectangle and pads zeros to the rest of the image
[26]. This augmentation is particularly useful in fully-observable games (e.g., Chaser and
Heist), because it imposes an efficient attention mechanism.

We also report the result with other augmentations including color jitter, random convolution, gray,
and cutout color in the supplementary material, from which the same messages can be interpreted.

Baseline methods for RL with data augmentation. We mainly compare the proposed methods
(InDA and ExDA) to the following baselines:

(a) RAD [21] simply feeds PPO with experiences of original and augmented observations.

(b) DrAC [26] is a method to simultaneously minimizing LPPO in Eq (1) and Ldis in Eq (4).

(c) DrAC+PAGrad is a variant of DrAC, which we devise to investigate another mechanism to
relieve the interference between RL training and augmentation in Section 4.5.

The supplementary material presents further details and experiments, which we omitted for simplicity.
All results in the main paper are averaged over five runs.

Figure 4: Benefit of separating distillation from RL training. We compare InDA, ExDA, DrAC,
DrAC+PAGrad and ExDrAC when we start to apply each of them to distill the prior of random crop
after 20M timesteps of PPO. ExDrAC is a variant of DrAC without RL training, i.e., minimizing only
Ldis in Eq (4).

5.2 Benefit of separating distillation from RL training.

In Figure 4, after training PPO agent up to 20M timesteps, we start to suddenly apply one of the
different distillation methods with random crop. We report averaged scores over 6 environments
(Bigfish, Dodgeball, Plunder, Chaser, Heist, Maze) after normalized by the highest train score of PPO
on each environment. After 20M timesteps, ExDA and ExDrAC have no RL training but minimize
LDA in Eq (5) and Ldis in Eq (4), respectively. The substantial gap between ExDA and ExDrAC
justifies the design of DA explicitly preserving the knowledge from RL when distilling the prior.
More importantly, it is remarkable that ExDA promptly learns the generalization ability once it starts
to distill the prior. This validates the idea of postponing the distillation after RL training.

We now compare the distillation methods (InDA, DrAC, and DrAC+PAGrad) concurrently optimizing
the RL objective and distilling the prior in Figure 4. Each method has performance degeneration due
to the interference generated by distillation. However, InDA and DrAC+PAGrad have clearly smaller
degeneration than DrAC which is the only one without any separation of optimizing the RL objective
and distillation loss. We note that DrAC+PAGrad has more interference than InDA, and it seems to
fail to impose the prior since there is not much difference to PPO in testing. Hence, this verifies the
superiority of InDA which enables distilling the prior while alleviating the interference.

7



(a) train (easybg) (b) test-lv (c) Policy Distance

(d) train (easybg) (e) test-lv (f) Policy Distance

Figure 5: Time-sensitivity of applying augmentation. We compare train and test performance of
InDA[S, T ] with random crop, where the timing of applying DA is governed by starting time S and
terminating time T , and we evaluate four different pairs of [S, T ] = [0, 0], [0, 5], [20, 25], [0, 25] up
to 25M timesteps. Furthermore, we show the change of distance between two policies on an original
observation and an augmented observation. Note that InDA with [S, T ] = [0, 0] means RL training
with no augmentation, i.e., vanilla PPO. We focus on Chaser and Heist since they exemplify two
representative time-dependencies. Each train task uses easybg mode. We present further details and
results with other games in the supplementary material.

5.3 Effective timings of distillation

In what follows, we aim to identifying effective timings of distillation. To this end, in Figure 5, we
test several schedules of applying DA on two representative environments of distinguishing traits.
The supplementary material presents the result on more environments, which is similar one of the
representatives.

An effective timing: InDA. Chaser with random crop (Figure 5(a) and 5(b)) represents the case
when augmentation improves the sample efficiency of training and thus the generalization ability
in training. To compare the generalization ability, we measure policy distance between original
and augmented observations using Jenson-Shannon divergence (Figure 5(c)). InDA[0, 5]’s policy
distance is increased after it stops using DA. Thus, the generalization ability is degraded, if we do
not continue to use DA. In this case, it is clear that InDA should be applied during the entire RL
training, as InDA[0, 25] shows the best performance in both training and testing. In addition, it is
also important to apply DA as soon as possible since the effect of InDA[0,5] applying DA in the
beginning is relatively prompt and significant comparing to that of InDA[20,25]. This suggests that
the automatic framework needs to explore more in the early stage.

An effective timing: ExDA. Heist with random crop (Figure 5(d) and 5(e)) shows the opposite
use of data augmentation to what Chaser case suggests, i.e., postponing data augmentation as much
as possible. Random crop generates a slight interference, although it immediately improves the
generalization ability. We remark that the inductive bias from the random crop is easily forgotten,
as the test performance of InDA[0, 5] is saturated right after stopping the distillation. This can be
explained by the time-varying nature of sample distribution and objective in RL. Interestingly, it
is in contrast to the data augmentation in SL, where an early distillation is sufficient to impose the
prior [11]. On the other hand, the test performance curve of InDA[20, 25] soars right after DA.
Furthermore, Figure 5(f) shows that InDA[20, 25] narrows the gap between two policies on the
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original and augmented observation. Recalling the interference between RL training and distillation,
this suggests postponing the distillation at the end of RL training, and motivates our ExDA.

Performance benchmark on InDA and ExDA. In Table 1, we summarize the train and test
performances of InDA and ExDA on a set of games with different augmentations and modes. ExDA
outperforms other baselines with random color on test-bg. Moreover, we note that ExDA consumes
only 0.5M timesteps to inject the prior at the end of RL training, whereas the others use all the training
data. ExDA in both sample efficiency and generalization ability with random crop on test-lv. It is
worth noting that DrAC+PAGrad is slightly better than DrAC, while there is a substantial gap between
InDA and each DrAC-based algorithm. This again confirms the benefit from the separated distillation
of InDA observed in Figure 4. These results demonstrate that each combination of environment and
augmentation has a suitable time at which to apply augmentation, and the gain from using the right
distillation timing, i.e., online (InDA, DrAC, or DrAC+PAGrad) or offline (ExDA), is rigid regardless
of the choice of algorithms.

Augmentation Task PPO RAD DrAC DrAC+PAGrad InDA ExDA

Rand
color

Rand conv
Train 1.00 0.98 0.88 0.89 0.88 0.98

Test-bg 1.00 1.08 1.86 1.88 1.92 2.11
Test-lv 1.00 0.81 0.84 0.84 0.7 0.87

Color jitter
Train 1.00 0.94 0.95 0.95 0.96 0.98

Test-bg 1.00 1.37 1.44 1.44 1.43 1.48
Test-lv 1.00 0.83 0.86 0.86 0.84 0.88

Rand crop
Train 1.00 0.28 1.08 1.09 1.25 0.91

Test-bg 1.00 0.64 0.87 0.94 0.94 0.95
Test-lv 1.00 0.46 1.52 1.53 1.80 1.09

Table 1: Benchmark of InDA and ExDA. We report normalized train and test scores of InDA, ExDA
and DrAC with PAGrad on Open AI Procgen, compared to baselines PPO, DrAC [26], RAD [21].
Boldface indicates the best performance. We average the score among several environments [(Rand
color: coinrun, ninja, climber, fruitbot, jumper, heist, maze), (Rand crop: Bigfish, Dodgeball, Plunder,
Heist, Chaser, Maze)] after normalization considering PPO score to be 1. Every method is trained
on 200 levels, using easybg mode. We evaluate test performance on both test-bg and test-lv. The
results can be interpreted as an upper bound of potential gain from using data augmentation at perfect
timing.

5.4 Adaptive scheduling methods

Adaptive selecting of timings: UCB-InDA and UCB-ExDA. It is hard to know in advance
whether a certain augmentation helps the training or not [26]. We hence employ UCB-InDA which
estimates the gain or damage from each augmentation from trial and error and identifies the one

(a) Chaser (b) Heist

Figure 6: Exploration & exploitation to find the most beneficial augmentation. We show that selected
augmentation during training with UCB-InDA for each Chaser and Heist. UCB-InDA automatically
selects the augmentation among three options, random color, identity and random crop.
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Env Method PPO DrAC UCB-DrAC InDA ExDA UCB-InDA UCB-ExDA

Heist
Train 9.2 ± 0.46 3.53 ±0.3 7.41± 2.09 4.9 ± 0.79 9.14 ± 0.56 9.67± 0.23 9.45 ± 0.29

Test-bg 5.18 ± 1.53 3.58 ± 0.31 3.76± 0.54 4.9 ± 0.87 7.05 ± 1.29 6.23± 1.29 7.86± 0.83
Test-lv 4.13 ± 1.39 3.07 ± 0.33 3.49±0.48 1.47± 0.77 5.05 ± 0.98 4.8± 1.24 5.74± 0.67

Chaser
Train 5.63± 1.12 0.16±0.02 4.6± 1.22 5.69± 1.42 5.58± 1.33 7.49±1.27 7.23± 1.15

Test-bg 0.87± 0.06 0.1± 0.02 0.57±0.12 3.51± 1.33 1.02± 0.04 1.08± 0.08 3. 18± 0.79
Test-lv 4.83± 0.88 0.14±0.01 4.14±1.01 4.96± 1.21 5.11± 1.05 6.45± 0.8 6.43± 1.28

Table 2: Full exploitation of augmentation to improve generalization on both test-bg and test-lv. We
compare InDA, ExDA, DrAC, UCB-DrAC, UCB-InDA, UCB-ExDA and PPO about train, test-bg
and test-lv. Boldface indicates the best method. InDA and DrAC use both random color and random
crop during RL training. ExDA use both augmentation after RL training. UCB-InDA and UCB-DrAC
are trained as automatically selecting the augmentation during training. UCB-ExDA trains ExDA
after UCB-InDA with both augmentation.

with most help. Recall Table 2 where PPO (without augmentation) shows much better training
performance than InDA in Heist. As shown in Figure 6(b), UCB-InDA is able to identify that no
augmentation is best for training in Heist. This implies that ExDA is more appropriate than InDA.
Conversely, random crop is selected on Chaser (Figure 6(a)). As the result, we can automatically
select InDA or ExDA appropriately for each task.

Fully exploitation of augmentation In Table 2, when both random color and random crop are used
to improve generalization on both test-bg and test-lv, we report numerical evaluation of UCB-InDA
and UCB-ExDA with other baselines on train and test tasks. Decreased train performance of DrAC
and InDA compare to PPO show the difficulty of simultaneous training with several augmentations.
Train performance of UCB-InDA and UCB-DrAC are improved by adaptive selecting, especially,
UCB-InDA is better than UCB-DrAC. The gap is made due to the robustness about the change of
augmentation during training. In terms of generalization, UCB-ExDA clearly surpasses UCB-InDA
thanks to ExDA to extract all the priors from the complete set of data augmentations at the end of RL
training.

6 Discussion

We have identified two most effective yet simple timings (InDA and ExDA) of data augmentation for
RL, and proposed UCB-ExDA framework to adaptively select the best scheduling augmentations. We
note that the effectiveness of this framework is restricted but specialized for RL with the unique non-
stationary nature. Indeed, in SL without shift of data distribution and objective, it is sufficient to apply
data augmentation at the beginning [11]. Our framework employs the most basic multi-armed bandit
algorithm with a finite set of data augmentation. It is interesting to investigate a room to improve by
further optimizing continuous parameters of data augmentation for RL, c.f., an auto-augmentation
technique to optimize continuous augmentation parameter per sample for SL [12]. Another promising
direction is to accelerate the distillation process of DA by data condensation with augmentation [39].
This is possible with our framework clearly separating between RL training and distillation, and may
be particularly useful to train distributed RL agents since a condensed data for an agent’s distillation
is usable for the other.
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A Modified Procgen Environments

(a) train (partial) (b) test-bg (partial) (c) test-lv (partial)

(d) train (fully) (e) test-bg (fully) (f) test-lv (fully)

Figure 7: An example set of training and testing environments in Procgen benchmark: (upper row)
an example of partially observable environment with Coinrun; (lower row) an example of fully
observable environment with Heist; (left column) train: a set of levels and backgrounds for training;
(center column) test-bg: the same training levels on unseen backgrounds; (right column) test-lv: a set
of unseen levels on the same training backgrounds

This section explains Modified Procgen Environments, which is designed to verify different types of
generalization, backgrounds, and levels. Open AI Procgen environments [5] share background themes
such as space_backgrounds, platform_backgrounds, topdown_backgrounds, water_backgrounds,
water_surface_backgrounds. We create new difficulties as Easybg, Easybg-test, Easy-test. Easybg
generates environments which contain only one for each background, wall and agent theme. Easybg-
test and Easy-test are for test about background change after trained on Easybg and Easy. Wall theme
in (Climber, Coinrun, Jumper, Ninja) and Agent theme in (Climber, Coinrun) also compose with only
one image resource in Easybg. Figure 7 presents an example set of modes that we use in evaluation.
Furthermore, We fix the exit_wall_choice and enemy theme in Dodgeball. We describe the usage
themes in each environment, which are grouped by backgrounds theme as below:

• space_backgrounds (Bossfight, Starpilot)
Background: "space_backgrounds/deep_space_01.png"

• platform_backgrounds (Caveflyer, Climber, Coinrun, Jumper, Miner, Ninja)
Background:"platform_backgrounds/alien_bg.png", Coinrun (Agent color: Beige, Wall
themes: Dirt), Climber (Agent color: Blue, Wall themes: tileBlue), Jumper (Wall theme:
tileBlue), Ninja (Wall theme: bricksGrey)

• topdown_backgrounds (Chaser, Dodgeball, Fruitbot, Heist, Leaper, Maze)
Background:"topdown_backgrounds/floortiles.png", Dodgeball (Enemy theme:
"misc_assets/character1.png", Exit_wall_choice: 0)

• water_backgrounds (Bigfish)
Background:"water_backgrounds/water1.png"

• water_surface_backgrounds (Plunder)
Background:"water_backgrounds/water1.png"

Easybg-test uses backgrounds in each background group, except the one used in Easybg. Easy-test is
only defined for Climber, Jumper, Ninja, and they compose with topdown_backgrounds.
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B Implementation details

In this section, we explain about InDA, ExDA, UCB-InDA and other baselines. We train the agent
with IMPALA-CNN [8] in every experiment.

B.1 InDA

We use PPO [29] as a base RL algorithm, For data efficiency, we store the observations during RL
training in buffer DO. Before DA phase, we also make policy buffer DΠ, value function buffer DV

and augmented observation buffer Dϕ for distillation, because we only use one network model. We
randomly sample pairs of (o, π, V ) from buffer, and minimize loss function LDA(θ). We reuse the
sample three times like PPO, it can be controlled by # Epochs of DA. We did a greed searches
for learning rate of DA lDA ∈ [1 × 10−3, 5 × 10−4, 2 × 10−4, 1 × 10−4, 5 × 10−5] and interval
I ∈ [1, 5, 10] and found the best combination lDA = 10−4 and interval I = 5. We fix the buffer
size DO = 40960, because we collect the observations during five RL phases (5× 256× 32). We
describe the every hyperparameter as below:

Hyperparamter Value

γ 0.999
λ 0.95

# Timesteps per rollout 256
# Epochs per rollout 3

# Minibatches per epoch 8
Reward Normalization Yes

# Workers 1
# Environments per worker 32

Total timesteps 25M
LSTM No

Frame Stack No
Optimizer Adam optimizer

Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5× 10−4

Interval I 5
Size of DO 40960

# Epochs of DA 3
Learning rate of DA lDA 1× 10−4

Image transformation ϕ Any augmentation

B.2 ExDA

In ExDA, we generate and store (o, π, V ) using fθold in buffer D. The optimal buffer size depends
on the episode length of each environment. However, we standardize the buffer size as 0.5M in
every environment. We augment the observation with three epochs intervals when using randomized
augmentation methods. We did greed searches for # minibatches [1024, 2048, 4096] and learning rate
[5 × 10−4, 1 × 10−3, 2 × 10−3]. As a result, we select # of minibatches 4096 and a learning rate
1e− 3.We describe every hyperparameter as below:

Hyperparameter Value

Size of DO 0.5M
# Epoch 30

# Minibatches per epoch 4096
Learning rate 1× 10−3

# Workers 1
Optimizer Adam optimizer

Image transformation ϕ Any augmentation
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B.3 UCB-InDA

We use UCB-InDA as a discriminator to determine the necessity of augmentation during the training.
The gain of an augmentation is a mean of return during interval I, G(s) = 1

I

∑j−1
i=0 R(s+ j). The

return is computed by the sum of estimated advantage and predicted value, which are expected value
of the agent trajectory, R(s) = Ê(ot,at)∼πθ

[Ât + Vθ(ot)]. The Ât is advantage from Generalized
Advantage Estimator [28]. Thus, we can evaluate how augmentation affects the return on the agent
trajectory. However, the distribution of return is non-stationary, as the agent policy is changed.
Therefore, we use the window average gain Ḡϕ rather than the whole gain from the past evaluation.
Furthermore, the drastic change of return causes the gap of gain between the augmentation according
to sampling time at the transient time of training and leads to poor exploration about some augmen-
tation methods. For stable exploration, we fix the minimum exploration frequency and use forced
exploration method after the minimum exploration as below:

Ḡϕmax
(s) + c

√
log(s)

Nϕmax
(s)
≤ Ḡϕmin

(s) + c

√
log(s)

Nϕmin
(s)

(9)

c =
Ḡϕmax

− Ḡϕmin
+ ϵ√

log(s)×max( 1√
Nϕmin

(s)
− 1√

Nϕmax (s)
, 1√

W−1
− 1√

W
)

(10)

where ϕmax = argmaxϕ∈Φ Ḡϕ, ϕmin = argminϕ∈Φ Ḡϕ. We set the hyperparameter as below
table:

Hyperparameter Value

Window size of gain W 3
Minimum exploration frequency 15

B.4 Baselines

We compare ExDA and InDA with PPO [5], DrAC [26], Rand-FM [22], RAD [21]. Every baseline is
based on PPO [5] and we adopt the implementation of PPO in [5].

• DrAC [26] regularizes both policy and value function as self-supervised learning.
Regularization term have hyperparameter αr for ratio with PPO objective. We use the
hyperparameter recommended by the author.

• Rand-FM [22] is composed with random convolution networks and feature matching. They
also need hyperparameter β for ratio between feature matching and PPO objective. We use
same β with author.

• RAD [21] naively use augmented observations in state distribution. Thus, there are no
additional hyperparameters.

We describe the hyperparameter of baselines in below table:
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Hyperparameter Value

γ 0.999
λ 0.95

# of timesteps per rollout 256
# of epochs per rollout 3

# of Minibatches per epoch 8
Reward Normalization Yes

# of Workers 1
# of environments per worker 64

Total timesteps 25M
LSTM No

Frame Stack No
Optimizer Adam optimizer

Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5× 10−4

αr (DrAC) 0.1
β (Rand-FM) 0.002

C Data augmentation

In our experiments, we use five augmentation methods: crop, grayscale, cutout color, random
convolution and color jitter. We refer the implementation of augmentations from Lee et al. [22]
(random convolution), Laskin et al. [21] (cutout color, color jitter) and Raileanu et al. [26] (grayscale,
crop). We expect the generalization about background change from random convolution, color jitter,
gray, cutout color. About the change of levels, we use crop and cutout color for generalization.
Examples of data augmentation are represented below:

(a) Original (b) Rand Conv (c) Crop

(d) Color jitter (e) Gray (f) Cutout color

Figure 8: Examples of visual augmentations
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Figure 9: Interference from increased complexity of learning. We present train performance when
training agent on Heist(easybg-B), where easybg-B is a variant of easybg mode with B backgrounds.
We plot the train performance curves of PPO and InDA with random convolution over training epochs
in absolute score.

D Interference from increased complexity of learning

Even if the policy for the original observation is fixed and augmentation is used, learning may still
be hindered. In Figure 9, we report training curves of the agents on train tasks of different degree
of background diversity. InDA with random convolution is anticipated to lead the prior on color
consistency, which seems helpful to handle background diversity. However, PPO outperforms InDA
in terms of the sample complexity to master train tasks, while the gap is decreasing as the background
diversity increases.This implies that diverse backgrounds make hard to train by increased complexity
of learning, and also data augmentation can cause similar difficulty even with right prior, when using
it during RL training. We further remark that ExDA using random convolution after PPO trained on
Heist(easybg-1) achieves 8.15 on Heist(easybg-15), which is much higher than PPO’s 6.53 trained on
Heist(easybg-15). This suggests the importance of simplifying the train task and the utility of ExDA
which completely separates RL training and distillation with augmentation.

E Robustness in loss function change

In ExDA, we transfer the policy after training 20M time steps with PPO. Thus, we explain why other
augmentations are not used after pre-training. We compare the results of training and test performance
with Drac [26], Rand-FM [22], Rad [21] when we train each method for 5M after training PPO for
20M time steps. We use random convolution and crop as data augmentation methods, and we do
not compare with RAD when we use crop in Figure 12 and Figure 13. The crop method used in our
paper do not work well in RAD, because they use a different crop method with [26] in their paper
[21]. InDA is more stable than others in training, and it affects generalization performance.

Every training curves decline immediately after starting training with augmented observations at 20M
time steps. The objective function is changed to each baseline, and augmented data is newly added to
data distribution. Thus, the optimizer should find a new optimal point for new objective function and
data. During find the new optimal points, the agent learns along with the different directions from
the optimization direction in pure PPO. Thus, performance can be degraded because the learning
direction on loss landscape is different from maximizing rewards on non-augmented data in PPO.
In spite of using self-supervised learning or representation learning, the policy is changed because
they update the same network’s parameter for matching policy or latent features, such as DrAC [26]
and Rand-FM [22]. However, InDA is more stable than the others because we distill the fixed policy
and value using DA. It does the stable training through conserving the policy on non-augmented
observations during optimizing for augmented data.

19



Coinrun

0 5 10 15 20 25
Timesteps (M)

0

1

2

3

4

5

6

7

8

9

10

Sc
or

e

Maze

0 5 10 15 20 25
Timesteps (M)

2

3

4

5

6

7

8

9

10

Sc
or

e

Fruitbot

0 5 10 15 20 25
Timesteps (M)

-10

-5

0

5

10

15

20

25

30

35

Sc
or

e

Climber

0 5 10 15 20 25
Timesteps (M)

0

2

4

6

8

10

12

14

Sc
or

e
Ninja

0 5 10 15 20 25
Timesteps (M)

-2

0

2

4

6

8

10

Sc
or

e

Jumper

0 5 10 15 20 25
Timesteps (M)

1

2

3

4

5

6

7

8

9

10

Sc
or

e

Heist

0 5 10 15 20 25
Timesteps (M)

0

1

2

3

4

5

6

7

8

9

10

Sc
or

e

Figure 10: Comparison of the training performance when random convolution is applied after 20M
timesteps with various augmentation methods.
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Figure 11: Comparison of the test performance when random convolution is applied after 20M
timesteps with various augmentation methods.
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Figure 12: Comparison of the training performance when crop is applied after 20M timesteps with
InDA and Drac.
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Figure 13: Comparison of the test performance when crop is applied after 20M timesteps with InDA
and Drac.

F Robustness against wrong augmentation

In this section, we verify the robustness of ExDA from an obvious wrong augmentation: just making
an black image, denoted by black. Using this clearly interferes with RL training. We compare PPO,
InDA, ExDA, UCB-InDA, UCB-ExDA and DrAC. The hyperparameter is almost the same with
Section 5.4 except we use black instead of random color and random crop. For UCB-based methods,
we use 4 arms: black, random color, random crop, and no aug. As expected, ExDA preserves the PPO
score, but InDA and DrAC degrade the score. Furthermore, UCB-InDA improves the performance in
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Chaser, and also it almost preserves the score in Heist. Lastly, UCB-ExDA also maintains the score
from UCB-InDA.

Env PPO DrAC InDA ExDA UCB-InDA UCB-ExDA

Heist 9.2 ± 0.46 7.35 ± 0.684 6.72 ±0.419 8.6 ± 0.189 8.84 ± 0.307 8.64± 0.264

Chaser 5.63± 1.12 1.49±0.036 5.43± 0.633 5.1±0.331 6.74±0.588 6.28± 0.436

Table 3: Robustness from the wrong augmentation

G Ablation study of ExDA

G.1 Initialization and regularization term

In this section, we do an ablation study about the factor of ExDA. We mention the loss function and
re-initialization issue in subsection 4.3. ExDA does not have to minimize LV D because the value
function is useless after RL training. The below results show that LV D cannot give any benefit in
ExDA. Thus, we only use LPD for computational complexity. Furthermore, we also compare to
verify the effect of non-stationarity with a re-initialized agent before distillation. Igl et al. [18] argued
that the non-stationarity causes the reduction of generalization. However, the re-initialization is not
critical in test performance, as shown in Figure 15. Moreover, sometimes re-initialization makes
it difficult to distill training performance such as Fruitbot and Ninja in Figure 14. We use random
convolution as an augmentation method in here.
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Figure 14: Training performance of ExDA with re-initialization or regularization with value funtion.
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Figure 15: Test performance of ExDA with re-initialization or regularization with value funtion on
unseen backgrounds.

G.2 ExDA after InDA with various backgrounds

When augmentation helps the training, ExDA struggle to follow the training performance of InDA
because ExDA’s training performance is limited by pre-trained agent’s policy. Thus, we use InDA for
ExDA’s pre-training , and call it as ExDA (InDA). As shown in Table 5, ExDA (InDA) is comparable
to InDA, but not beyond. Thus, unless there is a meaningful difference in training performance,
ExDA has no better generalization than InDA. However, in computational complexity, ExDA is more
efficient than others such as InDA and DrAC when they have a similar performance. In the following
section, we discuss computational complexity.

Easy PPO InDA ExDA (PPO) ExDA (PPO) + reinit ExDA (InDA) ExDA (InDA) + reinit

Jumper 8.55 8.94 8.5 8.6 8.83 8.83
±0.17 ±0.09 ±0.183 ±0.156 ±0.215 ±0.126

Ninja 7.49 8.88 7.03 7.23 8.71 8.56
±0.42 ±0.34 ±0.058 ±0.159 ±0.344 ±0.394

Climber 8.63 8.5 8.1 8.09 8.16 7.99
±0.46 ±0.29 ±0.268 ±0.268 ±0.441 ±0.383

Table 4: The comparison with diverse agents which are trained with ExDA

Easy PPO InDA ExDA (PPO) ExDA (PPO) + reinit ExDA (InDA) ExDA (InDA) + reinit

Jumper 6.85 7.94 7.54 7.48 7.98 7.67
±0.19 ±0.19 ±0.158 ±0.154 ±0.148 ±0.155

Ninja 6.29 6.5 5.56 5.73 6.27 5.94
±0.19 ±0.19 ±0.158 ±0.154 ±0.148 ±0.155

Climber 6.96 7.28 7.06 6.89 6.8 5.45
±0.65 ±0.35 ±0.541 ±0.237 ±0.441 ±0.383

Table 5: Test performance of agents, which is trained on easy mode with random convolution.

G.3 Computational complexity

We compare the computational complexity with ExDA and InDA. InDA do DA for every 25M
observations during training and reuse the sample in three times. However, ExDA only use 0.5M for
DA during 30 epochs. Thus, ExDA is almost 5 times more efficient than InDA by rough calculation.
Furthermore, the ExDA saves the time for augmentation compared to InDA. When we train with
same computational setting (GPU: GeForce RTX 2080 TI), ExDA only consumes 5 hours + 2 hours
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(PPO) when using random convolution, but, InDA consumes 18 hours. Thus, we recommend ExDA
when InDA cannot give a meaningful gain in training performance.

H Comparison between InDA and ExDA using the same steps of RL training

In every experiment in the paper, we set the evaluation setup to be somewhat unfavorable to ExDA
(using 20M time steps of RL training followed by additional 0.5M steps of distillation; denoted
by ExDA(20M)) compared to InDA or other baselines (25M time steps of RL training) to clearly
avoid potential complaint about the extra 0.5M steps for ExDA, It is obvious that the performance of
ExDA is improved if we put more time steps for RL training, and thus the benefit of ExDA compared
to InDA becomes more conspicuous if ExDA is the effective timing. Thus, we do an additional
experiment evaluating ExDA (25M) using 25M RL time steps and 0.5M distillation time steps as
below table:

Easybg PPO DrAC RAD InDA ExDA(20M) ExDA(25M)

Heist
Train 9 5.95 7.94 5.15 8.72 8.93

Test-bg 5.18 5.47 4.78 4.96 8.15 8.26
Test-lv 4.13 5.4 3.81 5.91 5.35 5.41

Table 6: Additional RL training before ExDA

The result of ExDA(25M) reinforces our main message: postponing data augmentation when it
generates a severe interference with RL training in Table 6. ExDA(25M) has a slight drop in train
score compared to PPO, but it could be eventually removed if we put (slightly) more steps for
distillation.
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I UCB with a large set of augmentation

In Figure 6, we only use three arms such as random color, random crop and no augmentation. Thus,
we try to select the usuful augmentations at each time among a large set of augmentation, which
contains gray, cutout color, random convolution, color jitter, random crop and no augmentation. In
Figure 16(a), we show the result of arm selection with UCB-InDA. The identity function is most
frequently used in the same as Figure 6. On the other hand, we ablate the neccesity of identity
function in UCB-InDA, it shows that the identity function is needed.

0 5 10 15 20 25

Timesteps (M)

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r 

of
 c

ho
ic

es

Heist

crop
rand conv
identity
grayscale
cutout color
color jitter

(a) Augmentation selection
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Figure 16: Figure 16(a) show the selected number of augmentations by UCB on Heist. We compare
two UCB-InDAs, w/ and w/o identity function with PPO, InDA, ExDA, UCB-ExDA on Heist easybg
in Figure 16(b). UCB-InDA is trained after UCB-InDA w/ identity, we use random convolution as
a data augmentation in InDA, ExDA. Solid line: train performance; dotted line: test performance.
ExDA achieves larger test performance than InDA by preserving train performance. Moreover,
UCB-InDA w/ identity outperforms UCB-InDA w/o identity in the training.

J Time matter in training

This section shows every result of Figure 5 about time dependency with InDA. We experiment
with random convolution, crop, color jitter and evaluate the test on unseen backgrounds (random
convolution, color jitter) and levels (random crop). However, the effect of generalization is hard
to recognize in most cases, as shown in Appendix K. Thus, we mainly discuss the most effective
augmentation, such as random convolution and crop in the main paper, and only represent some
environments that have helped the generalization by color jitter. easybg mode is used as default mode
with three easy mode (Climber, Jumper, Ninja) in our experiments. The shaded regions and solid line
represent the standard deviation and mean, across five runs.
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J.1 Random convolution
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Figure 17: Comparison of training performance according to usage period of augmentation with
InDA (random convolution): The easybg is disturbed by random convolution, but, easy mode is
improved training performance by random convolution.
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Figure 18: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (random convolution): Most cases’ tendencies are coincidence with the
jumper, which is mentioned in the main paper.
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J.2 Crop
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Figure 19: Comparison of training performance according to usage period of augmentation with InDA
(crop): Crop improve the training performance in Bigfish, Chaser, Dodgeball, Plunder. Furthermore,
interrupted augmentation is also improved similarly with (0, 25).
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Figure 20: Comparison of generalization on unseen levels according to usage period of augmentation
with InDA (crop): The generalization is improved by crop, and it is conserved after interrupted in
Heist and Maze. Bigfish, Chaser, Dodgeball, and Plunder have similar curves with training.
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J.3 Color jitter
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Figure 21: Comparison of training performance according to usage period of augmentation with
InDA (color jitter): Color jitter does not impede the training as much as random convolution in most
environments. However, color jitter helps the training in easy mode.
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Figure 22: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (color jitter): Test performance is influenced by color jitter as the trend,
which is similar to random convolution.

K Benchmark on Modified Open AI Procgen

We compare the training and test performance on various environments with each augmentation. We
also use DrAC [26], RAD [21], DrAC+PAGrad as baselines. In every result, we train the agent for
25M timesteps, except the ExDA. ExDA is trained with 0.5M after training 20M with PPO. We also
compare the average score after normalized by PPO’s score and indicate the best score as bold. Mean
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and standard deviation is calculated after five runs. We show the result about random conv, color
jitter, random crop in Table 1. Additionally, we evaluate benchmark with gray and cutout color in
Table 7. For benchmark, we classify Procgen environments with each characteristic as Figure 23.
Furthermore, we attach detail results on each environments with Oracle and Rand-FM [22]. Red one
is the Oracle score, which is trained on test environments such as easybg-test, easy-test. For your
information, RAD does not work well when using crop, because we use [26]’s crop method which is
different with [21].

Figure 23: Group of OpenAI Procgen environments: We classify environments according to charac-
teristics about a type of observation window and the importance of color. For Group1, we do not use
random crop because they have agent centered window, thus the random crop can make hard to find
agent. For Group3, we do not use random color, because they have important meaning in the color of
objects, thus the transformation of color would make hard to learn information in color. Group2 can
apply both of the transformations.

Augmentation Task PPO RAD DrAC DrAC+PAGrad InDA ExDA

Grayscale
Train 1.00 0.94 0.93 0.94 0.95 0.99

Test-bg 1.00 1.04 1.03 1.04 0.97 1.13
Test-lv 1.00 0.81 0.84 0.84 0.84 0.86

Cutout color
Train 1.00 0.72 0.82 0.84 0.76 0.94

Test-bg 1.00 1.33 1.27 1.29 1.19 1.53
Test-lv 1.00 0.69 0.83 0.83 0.69 0.93

Table 7: Train and test score of InDA and ExDA on Open AI Procgen, compared to baselines PPO,
Drac [26], RAD [21], DrAC+PAGrad. Boldface indicates the best method.

K.1 Random convolution

Easy PPO DrAC Rand_FM RAD InDA ExDA

Climber 8.63 8.33 8.27 7.93 8.5 8.1
±0.462 ±0.407 ±0.187 ±0.37 ±0.291 ±0.268

Jumper 8.55 8.62 8.47 8.51 8.94 8.5
±0.168 ±0.075 ±0.13 ±0.102 ±0.09 ±0.183

Ninja 7.49 8.57 7.69 7.9 8.88 7.03
±0.421 ±0.069 ±0.529 ±0.652 ±0.343 ±0.058

Avg 1.00 1.04 0.99 0.99 1.07 0.96
Table 8: Training performance benchmark on easy with random convolution.
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Easy PPO DrAC Rand_FM RAD InDA ExDA

Climber 6.96 7.21 6.63 6.08 7.28 7.06
±0.651 ±0.447 ±0.39 ±0.264 ±0.341 ±0.541

Jumper 6.85 7.97 6.7 6.74 7.94 7.54
±0.192 ±0.128 ±0.167 ±0.299 ±0.185 ±0.158

Ninja 6.29 6.18 6.22 6.22 6.5 5.56
±0.529 ±0.193 ±0.57 ±0.324 ±0.191 ±0.158

Avg 1.00 1.06 0.97 0.95 1.08 1
Table 9: Test performance benchmark on unseen backgrounds (easy, random convolution).

Easybg PPO Oracle DrAC Rand-FM RAD InDA ExDA

Climber 12.35 9.78 11.23 12.2 12.15 10.89 12.07
±0.083 ±0.306 ±0.353 ±0.128 ±0.09 ±0.162 ±0.073

Coinrun 9.64 7.11 9.17 9.57 9.56 8.81 9.44
±0.07 ±0.205 ±0.161 ±0.126 ±0.107 ±0.992 ±0.149

Fruitbot 29.78 29.74 26.07 30.19 29.92 26.17 28.76
±0.899 ±0.443 ±0.658 ±0.512 ±0.623 ±0.575 ±0.79

Heist 9 7.21 5.95 7.7 7.94 5.15 8.72
±0.513 ±0.27 ±0.343 ±0.6 ±0.919 ±0.614 ±0.533

Jumper 8.95 8.72 8.86 8.91 9.04 8.78 8.94
±0.066 ±0.119 ±0.088 ±0.13 ±0.135 ±0.172 ±0.048

Maze 9.75 8.56 8.1 9.61 9.51 9.12 9.73
±0.513 ±0.27 ±0.343 ±0.6 ±0.919 ±0.614 ±0.533

Ninja 9.75 7.81 9.43 9.75 9.78 9.53 9.7
±0.073 ±0.422 ±0.109 ±0.084 ±0.03 ±0.113 ±0.062

Avg 1.00 0.85 0.98 0.98 0.88 0.88 0.98
Table 10: Training performance benchmark on easybg with random convolution.

Easybg PPO Oracle DrAC Rand-FM RAD InDA ExDA

Climber 1.97 9.78 7.13 2 2.34 7.36 8.11
±0.51 ±0.306 ±0.419 ±0.59 ±1.258 ±0.273 ±0.457

Coinrun 5.48 7.11 7.54 5.65 5.48 7.14 7.81
±0.583 ±0.205 ±0.188 ±0.216 ±0.542 ±0.479 ±0.388

Fruitbot 10.83 29.74 19.77 15.19 11.61 21.93 23.57
±1.908 ±0.443 ±0.77 ±3.363 ±4.615 ±0.664 ±0.745

Heist 5.18 7.21 5.47 5.03 4.78 4.96 8.15
±0.838 ±0.27 ±0.326 ±0.6 ±0.785 ±0.777 ±0.633

Jumper 3.38 8.72 8.14 4.12 3.77 8.16 7.87
±0.368 ±0.119 ±0.17 ±0.514 ±0.435 ±0.231 ±0.485

Maze 6.48 8.56 6.4 6.6 6.29 8.41 8.92
±0.523 ±0.665 ±0.419 ±0.494 ±0.466 ±0.436 ±0.155

Ninja 3.83 7.81 6.8 3.36 3.98 6.61 6.85
±0.462 ±0.422 ±0.243 ±0.505 ±0.44 ±0.327 ±0.25

Avg 1.00 2.33 1.86 1.08 1.04 1.92 2.11
Table 11: Test performance benchmark on unseen backgrounds (easybg, random convolution).
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K.2 Crop

Easybg PPO DrAC RAD InDA ExDA

Bigfish 14.08 15.92 5.05 19.35 11.07
±2.229 ±1.535 ±3.718 ±2.792 ±3.683

Chaser 5.63 3.97 1.24 6.52 4.81
±0.467 ±0.642 ±0.253 ±0.825 ±0.325

Dodgeball 7.71 10.74 1.23 12.74 6.74
±0.678 ±0.711 ±0.944 ±1.729 ±0.815

Heist 9 7.58 4.53 8.15 8.79
±0.513 ±0.11 ±0.266 ±0.57 ±0.424

Maze 9.75 9.03 3.95 9.63 9.72
±0.033 ±0.348 ±3.418 ±0.143 ±0.026

Plunder 7.18 10.73 0 10.29 6.59
±0.73 ±1 ±0 ±0.285 ±1.108

Avg 1.00 1.08 0.28 1.25 0.91
Table 12: Training performance benchmark on easybg with crop.

Easybg PPO DrAC RAD InDA ExDA

Bigfish 7.43 13.63 4.93 15.19 6.35
±1.65 ±1.504 ±3.696 ±2.724 ±2.466

Chaser 4.83 3.59 1.2 5.86 4.48
±0.56 ±0.519 ±0.259 ±0.745 ±0.379

Dodgeball 3.78 9.26 1.11 11.92 3.79
±0.659 ±0.685 ±0.831 ±1.556 ±0.748

Heist 4.13 5.4 3.81 5.91 5.35
±0.146 ±0.448 ±0.412 ±0.516 ±0.22

Maze 6.79 7.77 3.9 8.01 7.74
±0.158 ±0.328 ±3.377 ±0.288 ±0.054

Plunder 5.94 9.49 0 8.98 5.98
±0.698 ±0.605 ±0 ±0.369 ±0.944

Avg 1.00 1.519 0.459 1.798 1.094
Table 13: Test performance benchmark on unseen levels (easybg, crop).

K.3 Color jitter

Easy PPO DrAC RAD InDA ExDA

Climber 8.5 9.33 8.64 9.43 8.18
±0.575 ±0.212 ±0.156 ±0.21 ±0.45

Jumper 8.54 8.64 8.63 8.92 8.44
±0.22 ±0.135 ±0.17 ±0.174 ±0.185

Ninja 7.48 8.69 8.24 9.23 7.37
±0.324 ±0.331 ±0.251 ±0.081 ±0.212

Avg 1.00 1.09 1.04 1.13 0.98
Table 14: Training performance benchmark on easy with color jitter.
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Easy PPO DrAC RAD InDA ExDA

Climber 6.92 8.53 8.37 8.66 8.14
±0.761 ±0.422 ±0.023 ±0.24 ±0.477

Jumper 6.89 7.58 7.86 7.97 7.25
±0.223 ±0.053 ±0.297 ±0.292 ±0.131

Ninja 6.39 6.79 7.31 7.57 6.2
±0.585 ±0.32 ±0.613 ±0.555 ±0.085

Avg 1.00 1.13 1.16 1.2 1.07
Table 15: Test performance benchmark on unseen backgrounds (easy, color jitter).

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.31 9.85 11.84 12 11.94 12.04
±0.092 ±0.298 ±0.223 ±0.256 ±0.071 ±0.152

Coinrun 9.61 7.2 8.94 8.62 9.74 9.45
±0.074 ±0.195 ±0.285 ±0.091 ±0.05 ±0.09

Fruitbot 30.2 29.69 30.05 29.48 26.87 29
±0.691 ±0.619 ±0.611 ±0.507 ±0.912 ±0.878

Heist 8.82 7.33 7.22 6.89 7.63 8.53
±0.523 ±0.308 ±0.76 ±0.348 ±0.338 ±0.307

Jumper 8.97 8.67 8.9 8.94 9.03 9.03
±0.075 ±0.132 ±0.05 ±0.029 ±0.123 ±0.086

Maze 9.75 8.08 9.46 9.46 9.3 9.67
±0.035 ±0.101 ±0.404 ±0.184 ±0.379 ±0.111

Ninja 9.74 7.56 9.52 9.65 9.75 9.54
±0.087 ±0.286 ±0.393 ±0.112 ±0.046 ±0.171

Avg 1.00 0.85 0.95 0.94 0.96 0.98
Table 16: Training performance benchmark on easbg with color jitter.

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 1.82 9.85 5.05 4.31 4.25 4.34
±0.605 ±0.298 ±0.407 ±0.492 ±0.338 ±0.856

Coinrun 5.42 7.2 6.46 6.47 7.13 6.53
±0.744 ±0.195 0±.526 ±0.194 ±0.372 ±0.375

Fruitbot 11.78 29.69 9.49 8.51 10.88 18
±1.949 ±0.619 ±8.098 ±1.941 ±2.263 ±7.442

Heist 4.79 7.33 5.65 5.39 5.66 5.43
±0.323 ±0.308 ±0.984 ±0.745 ±0.271 ±0.508

Jumper 3.3 8.6 5.65 5.67 5.81 5.31
±0.467 ±0.132 ±0.09 ±0.953 ±0.369 ±0.351

Maze 6.52 8.08 8.22 8.26 8.35 8.65
±0.304 ±0.101 ±0.455 ±0.175 ±0.238 ±0.017

Ninja 3.56 7.56 4.22 4.18 4.34 4.07
±0.363 ±0.286 ±0.487 ±0.475 ±0.345 ±0.332

Avg 1.00 2.4 1.44 1.37 1.43 1.48
Table 17: Test performance benchmark on unseen backgrounds (easybg, color jitter).
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Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.31 9.85 11.12 11.84 11.9 12.06
±0.092 ±0.298 ±0.26 ±0.505 ±0.115 ±0.03

Coinrun 9.61 7.2 9.53 9.49 9.74 9.48
±0.074 ±0.195 ±0.135 ±0.188 ±0.046 ±0.08

Fruitbot 30.2 29.69 30.01 29.6 28.03 29.32
±0.691 ±0.619 ±0.572 ±0.27 ±0.994 ±0.937

Heist 8.82 7.33 6.24 6.53 5.51 8.51
±0.523 ±0.308 ±0.214 ±0.474 ±0.146 ±0.225

Jumper 8.54 8.67 8.91 8.93 9.18 8.95
±0.22 ±0.132 ±0.19 ±.247 ±0.18 ±0.075

Maze 9.75 8.08 9.46 9.48 9.2 9.75
±0.035 ±0.101 ±0.192 ±0.08 ±0.367 ±0.087

Ninja 9.74 7.56 9.73 9.61 9.6 9.72
±0.087 ±0.286 ±0.045 ±0.096 ±0.081 ±0.021

Avg 1 0.85 0.93 0.94 0.95 0.99
Table 18: Training performance benchmark on easybg with gray.

K.4 Gray

Easybg PPO Oracle RAD DrAC InDA ExDA

Climber 1.82 9.85 1.75 1.81 1.24 2.45
±0.605 ±0.298 ±0.654 ±0.211 ±0.502 ±0.727

Coinrun 5.42 7.2 5.34 5.31 6.05 5.79
±0.744 ±0.195 ±0.751 ±0.501 ±0.465 ±0.061

Fruitbot 11.78 29.69 17.57 15.47 15.12 15.81
±1.949 ±0.619 ±0.191 ±1.449 ±0.958 ±0.11

Heist 4.79 7.33 5.43 5.15 4.32 5.1
±0.323 ±0.308 ±0.18 ±0.172 ±0.112 ±0.504

Jumper 6.89 8.67 2.7 4.07 3.55 4.47
±0.223 ±0.132 ±0.894 ±0.46 ±0.992 ±0.415

Maze 6.52 8.08 7.77 7.93 7.67 8.33
±0.304 ±0.101 ±0.611 ±0.104 ±0.312 ±0.119

Ninja 3.56 7.56 3.72 3.91 4.02 4.03
±0.363 ±0.286 ±0.131 ±0.62 ±0.666 ±0.071

Avg 1 2.2 1.03 1.04 0.97 1.13
Table 19: Test performance benchmark on unseen backgrounds (easybg, gray).

Easy PPO DrAC RAD InDA ExDA

Climber 8.5 6.95 7.55 7.22 8.05
±0.575 ±0.547 ±0.256 ±0.312 ±0.461

Jumper 8.54 8.4 8.58 8.85 8.5
±0.22 ±0.224 ±0.199 ±0.015 ±0.224

Ninja 7.48 6.67 7.1 8.91 7.05
±0.324 ±0.435 ±0.718 ±0.165 ±0.24

Avg 1 0.9 0.95 1.026 0.96
Table 20: Training performance benchmark on easybg with gray.
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Easy PPO DrAC RAD InDA ExDA

Climber 6.92 4.49 5.57 5.11 7.24
±0.761 ±0.332 ±0.307 ±0.483 ±0.721

Jumper 6.89 5.38 6.59 6.35 6.87
±0.223 ±0.215 ±0.055 ±0.234 ±0.182

Ninja 6.39 5.67 5.14 6.84 6.01
±0.585 ±0.318 ±0.628 ±0.206 ±0.651

Avg 1 0.77 0.86 0.91 0.99
Table 21: Test performance benchmark on unseen backgrounds (easy, gray).

K.5 Cutout color

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.31 9.85 11.92 8.26 11.76 12.07
±0.092 ±0.298 ±0.158 ±0.663 ±0.027 ±0.127

Coinrun 9.61 7.2 9.23 8.07 9.7 9.39
±0.074 ±0.195 ±0.323 ±0.645 ±0.084 ±0.012

Fruitbot 30.2 29.69 29.73 29.2 27.18 28.95
±0.691 ±0.619 ±0.898 ±0.64 ±1.302 ±0.907

Heist 8.82 7.33 8.47 6.25 6.1 8.65
±0.523 ±0.308 ±0.397 ±0.704 ±0.693 ±0.21

Jumper 8.97 8.67 8.87 8.75 9.1 8.91
±0.075 ±0.132 ±0.123 ±0.131 ±0.081 ±0.053

Maze 9.75 8.08 9.41 9.17 9.27 9.74
±0.035 ±0.101 ±0.134 ±0.118 ±0.125 ±0.133

Ninja 9.74 7.56 9.65 7.17 9.72 9.7
±0.087 ±0.286 ±0.138 ±1.993 ±0.02 ±0.02

Bigfish 13.89 13.22 2.54 5.19 1.95 11.22
±3.127 ±1.488 ±0.13 ±3.658 ±0.311 ±3.66

Chaser 5.49 3.04 2.88 1.98 3.34 5
±0.562 ±0.183 ±0.699 ±0.112 ±0.755 ±0.187

Dodgeball 7.76 5.74 5.71 5.98 2.79 6.57
±0.859 ±1.118 ±1.008 ±0.103 ±1.612 ±0.693

Plunder 7.15 6.05 5.43 4.34 4.92 6.87
±0.95 ±0.58 ±0.082 ±0.24 ±0.625 ±1.255

Avg 1.00 0.82 0.82 0.72 0.76 0.94
Table 22: Training performance benchmark on easybg with cutout color.

Easy PPO Oracle DrAC RAD InDA ExDA

Climber 8.5 9.85 7.69 6.67 9.02 8.02
±0.575 ±0.298 ±0.237 ±0.381 ±0.473 ±0.506

Jumper 7.48 7.56 6.28 5.6 8.57 7.41
±0.324 ±0.286 ±0.257 ±0.276 ±0.122 ±0.125

Ninja 8.54 8.67 8.45 8.32 8.93 8.53
±0.22 ±0.132 ±0.183 ±0.051 ±0.166 ±0.095

Avg 1.00 1.06 0.91 0.84 1.08 0.98
Table 23: Training performance benchmark on easy with cutout color.
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Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 1.82 9.85 3.54 3.97 3.4 4.29
±0.605 ±0.298 ±0.164 ±0.999 ±0.645 ±0.154

Coinrun 5.42 7.2 5.87 5.93 6.2 6.41
±0.744 ±0.195 ±.251 ±0.061 ±0.357 ±0.131

Fruitbot 11.78 29.69 18.18 19.24 17.69 17.7
±1.949 ±0.619 ±3.744 ±3.385 ±4.026 ±0.888

Heist 4.79 7.33 6.6 5.76 4.97 7.51
±0.323 ±0.308 ±.092 ±0.551 ±0.33 ±0.119

Jumper 3.3 8.67 4.99 5.48 5.43 6.02
±0.467 ±0.132 ±0.114 ±0.28 ±1.116 ±0.235

Maze 6.52 8.08 7.33 7.66 7.01 7.83
±0.304 ±0.101 ±0.223 ±.243 ±0.17 ±0.22

Ninja 3.56 7.56 4.29 3.96 3.75 3.76
±0.363 ±0.286 ±0.245 ±0.152 ±0.333 ±0.348

Bigfish 3.4 13.22 1.29 2.5 1.29 4.49
±0.487 ±1.488 ±0.08 ±2.331 ±0.152 ±0.776

Chaser 0.91 3.04 1.08 1.13 1.68 1.73
±0.061 ±0.183 ±0.038 ±0.157 ±0.305 ±0.698

Dodgeball 2.17 5.74 3.92 4.02 1.97 4.37
±0.53 ±1.118 ±0.53 ±0.345 ±1.098 ±0.527

Plunder 6.87 6.05 5.27 4.77 4.71 6.45
±0.933 ±0.58 ±0.208 ±0.612 ±0.622 ±1.232

Avg 1.00 2.51 1.27 1.33 1.19 1.53
Table 24: Test performance benchmark on unseen backgrounds (easybg, cutout color).

Easy PPO Oracle DrAC RAD InDA ExDA

Climber 6.92 9.85 6.54 5.24 7.61 7.25
±0.761 ±0.298 ±0.213 ±0.417 ±0.486 ±0.325

Jumper 6.39 7.56 5.06 4.9 6.71 5.78
±0.585 ±0.286 ±0.137 ±0.382 ±0.352 ±0.488

Ninja 6.89 8.67 6.88 6.79 6.81 6.92
±0.223 ±0.132 ±0.083 ±0.278 ±0.355 ±0.212

Avg 1.00 1.29 0.91 0.84 1.05 0.99
Table 25: Test performance benchmark on unseen backgrounds (easy, cutout color).
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Easybg PPO DrAC RAD InDA ExDA

Climber 11.14 10.77 7.26 9.45 10.75
±0.077 ±0.279 ±0.843 ±0.193 ±0.114

Coinrun 8.64 8.36 6.89 7.76 8.32
±0.05 ±0.348 ±0.503 ±0.096 ±0.224

Fruitbot 28.26 26.88 26.22 23.79 26.33
±0.461 ±1.276 ±1.258 ±0.971 ±0.894

Heist 4.07 3.92 2.27 2.15 3.93
±0.07 ±0.276 ±0.448 ±0.553 ±0.184

Jumper 7.38 7.32 6.98 6.68 7.25
±0.15 ±0.195 ±0.199 ±0.24 ±0.117

Maze 6.8 6.84 6.04 5.91 6.17
±0.2 ±0.137 ±0.258 ±0.03 ±0.162

Ninja 8.56 8.63 6.28 7.81 8.34
±0.061 ±0.132 ±1.866 ±0.21 ±0.119

Bigfish 7.16 0.91 2.29 0.95 6.04
±2.263 ±0.037 ±2.306 ±0.06 ±2.783

Chaser 4.54 2.61 1.8 2.47 4.22
±0.503 ±0.509 ±0.12 ±0.506 ±0.331

Dodgeball 3.78 2.71 2.53 1.26 2.82
±0.823 ±0.362 ±0.135 ±0.48 ±0.593

Plunder 5.99 5.08 4.07 4.55 5.83
±0.814 ±0.305 ±0.479 ±0.393 ±1.061

Avg 1.00 0.83 0.69 0.69 0.93
Table 26: Test performance benchmark on unseen levels (easybg, cutout color).

Easy PPO DrAC RAD InDA ExDA

Climber 5.45 5.9 5.3 4.26 5.71
±0.77 ±0.352 ±0.307 ±0.122 ±0.303

Jumper 5.81 6.01 4.93 4.56 5.43
±0.227 ±0.389 ±0.08 ±0.161 ±0.333

Ninja 5.77 5.67 5.8 5.65 5.87
±0.09 ±0.023 ±0.071 ±0.166 ±0.079

Avg 1.00 1.03 0.94 0.85 1
Table 27: Test performance benchmark on unseen levels (easy, cutout color).

L Primitive evaluation on DeepMind Control Suite with SAC

We experiment on DeepMind Control Suite (DMC) with a preliminary experiment which provides
justification for our proposed method ExDA due to the limited time and computation resources. We
first note that [26] has demonstrated that UCB-DrAC, which is similar to UCB-InDA, can accelerate
RL training in DMC. Hence, in order to justify our proposed method UCB-ExDA, which combines
UCB-InDA and ExDA, it would be sufficient to show the existence of the cases showing a benefit
of ExDA in DMC. Furthermore, we use SAC as the base RL algorithm instead of PPO to show the
versatility of our method ExDA. SAC is off-policy actor-critic RL algorithm which trains actor and
critic networks separately with a replay buffer. Thus, we can use stored data in the replay buffer after
RL training, and also we can only distill the output of the actor-network, because the actor-network
determines the policy π from observations, while the critic-network computes the value function V
from observations. We denote the actor-network parameters using θ same as the notation of PPO
in Section 4. We ablate the effect of ExDA to compare w/ and w/o inconsistency loss of policy on
original observations. Thus ExDA is trained with Eq 5 after SAC, but ablated ExDA is trained with
Eq 11.
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(a) (b) (c)

Figure 24: Ablation of ExDA on DMcontrol

Labl−ExDA(θ, ϕ; θold) := Ldis(θ, ϕ; θold) . (11)

Both methods are trained 10 epochs after 10K time-steps SAC training and detailed hyper-parameters
are described below the table. We compare the mean reward of each method SAC, ExDA, abl-ExDA
on three environments Walker-Walk, Finger-Spin, Cartpole-Swingup and 5 seeds. We evaluate each
reward from 50 evaluation episodes in train environments. As below Figure 24, ExDA almost
maintains the mean reward of SAC, abl-ExDA degrades the performance of SAC by distilling policy
only to augmented observations except the original.

Hyperparameter Value

# of action repeat 8
# of frame stack 3

Data augmentation Random Convolution
Learning rate of DA 10−2

Batch size 128
# of train steps 100000

# of distill epochs 10
Replay buffer capacity 100000

Init steps 1000
Learning rate of critic 10−3

β of critic 0.9
τ of critic 0.01

Target update frequency of critic 2
Learning rate of actor 10−3

β of actor 0.9
Log std min of actor -10
Log std max of actor 2

Update frequency of actor 2
Encoder type pixel

Feature dimension of encoder 50
Learning rate of encoder 10−3

τ of encoder 0.05
# of layers 4
# of filters 32

Latent dimension 128
Discount factor 0.99

Learning rate of α 10−4

β of α 0.5
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