
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Tight Subexponential-time Algorithm for Two-Page Book Embedding

ROBERT GANIAN, Algorithms and Complexity Group, TU Wien, Austria

HAIKO MÜLLER, School of Computing, University of Leeds, United Kingdom

SEBASTIAN ORDYNIAK, School of Computing, University of Leeds, United Kingdom

GIACOMO PAESANI, Dipartimento di Informatica, Sapienza University of Rome, Italy

MATEUSZ RYCHLICKI, School of Computing, University of Leeds, United Kingdom

A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into

“pages”, which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special

importance as they are both NP-hard to compute and have specific applications. We obtain a 2
O(

√
𝑛)

algorithm for computing a book

embedding of an 𝑛-vertex graph on two pages—a result which is asymptotically tight under the Exponential Time Hypothesis. As a

key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by

the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book

embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

CCS Concepts: • Theory of computation → Parameterized complexity and exact algorithms; • Human-centered computing
→ Graph drawings.

Additional Key Words and Phrases: (two-page) book embedding, subhamiltonian cycle, Hamiltonian cycle, treewidth, parameterized

complexity, subexponential-time algorithms, graph drawing, planar graph, SPQR-tree, sphere-cut decomposition

ACM Reference Format:
Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. 2025. A Tight Subexponential-time

Algorithm for Two-Page Book Embedding. 1, 1 (July 2025), 41 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Book embeddings of graphs are drawings centered around a line, called the spine, and half-planes bounded by the spine,

called pages. In particular, a 𝑘-page book embedding of a graph 𝐺 is a drawing which maps vertices to distinct points

on the spine and edges to simple curves on one of the 𝑘 pages such that no two edges on the same page cross [6]. These

embeddings have been the focus of extensive study to date [16, 20–22, 25, 42, 53], among others due to their classical

applications in VLSI, bio-informatics, and parallel computing [11, 20, 32].

Every 𝑛-vertex graph is known to admit an ⌈𝑛
2
⌉-page book embedding [6, 11, 31], but in many cases it is possible to

obtain book embeddings with much fewer pages. Particular attention has been paid to two-page embeddings, which

have specifically been used, e.g., to represent RNA pseudoknots [32, 47]. The class of graphs that can be embedded on

Authors’ Contact Information: Robert Ganian, rganian@gmail.com, Algorithms and Complexity Group, TU Wien, Vienna, Austria; Haiko Müller,

h.muller@leeds.ac.uk, School of Computing, University of Leeds, Leeds, United Kingdom; Sebastian Ordyniak, sordyniak@gmail.com, School of

Computing, University of Leeds, Leeds, United Kingdom; Giacomo Paesani, giacomopaesani@gmail.com, Dipartimento di Informatica, Sapienza University

of Rome, Rome, Italy; Mateusz Rychlicki, mkrychlicki@gmail.com, School of Computing, University of Leeds, Leeds, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-7762-8045
HTTPS://ORCID.ORG/0000-0002-1123-1774
HTTPS://ORCID.ORG/0000-0003-1935-651X
HTTPS://ORCID.ORG/0000-0002-2383-1339
HTTPS://ORCID.ORG/0000-0002-8318-2588
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-7762-8045
https://orcid.org/0000-0002-1123-1774
https://orcid.org/0000-0003-1935-651X
https://orcid.org/0000-0002-2383-1339
https://orcid.org/0000-0002-8318-2588

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

two pages was studied by Di Giacomo and Liotta [27], Heath [33] as well as by other authors [1], and was shown to be

a superclass of planar graphs with maximum degree at most 4 [5].

While two-page book embeddings are a special class of planar embeddings, they are not polynomial-time computable

unless P = NP. Indeed, a graph admits a two-page book embedding if and only if it is subhamiltonian (i.e., is a subgraph

of a planar Hamiltonian graph) [6] and testing subhamiltonicity is an NP-hard problem [11]. On the other hand, the

aforementioned problem of constructing a two-page book embedding (or determining that none exists)—which we

hereinafter call Two-Page Book Embedding—becomes linear-time solvable if one is provided with a specific ordering

of the 𝑛 vertices of the input graph along the spine [32]. While Two-Page Book Embedding can be seen to admit a

trivial brute-force 2
O(𝑛 ·log𝑛)

algorithm, it has also been shown to be solvable in 2
O(𝑛)

time—in particular, one can

branch to determine the allocation of edges into the two pages and then solve the problem via dynamic programming

on SPQR trees [2, 35, 36].

Contribution. As our main contribution, we break the single-exponential barrier for Two-Page Book Embedding

by providing an algorithm that solves the problem in 2
O(

√
𝑛)

time. Our algorithm is exact and deterministic, and

avoids the single-exponential overhead of branching over edge allocations to pages by instead attacking the equivalent

subhamiltonicity testing formulation of the problem. It is also asymptotically optimal under the Exponential Time

Hypothesis [38]: there is a well-known quadratic reduction that excludes any 2
𝑜 (

√
𝑛)

algorithm for Hamiltonian Cycle

on cubic planar graphs [26], and a linear reduction from that problem (under the same restrictions) to subhamiltonicity

testing [52] then excludes any 2
𝑜 (

√
𝑛)

algorithm for our problem of interest.

The central component of our result is a non-trivial dynamic programming procedure that solves Two-Page Book

Embedding in time 2
O(tw) · 𝑛, where tw is the treewidth of the input graph. The desired subexponential algorithm then

follows by the well-known fact that 𝑛-vertex planar graphs have treewidth at most O(
√
𝑛) [28, 43, 49]. But in addition

to that, we believe our single-exponential treewidth-based algorithm to be of independent interest also in the context of

parameterized algorithmics [13, 19].

Indeed, while Two-Page Book Embedding was already shown to be fixed-parameter tractable w.r.t. treewidth

(i.e., to admit an algorithm running in time 𝑓 (tw) · 𝑛) by Bannister and Eppstein [3], that result crucially relied on

Courcelle’s Theorem [12]. More specifically, they showed that the required property can be encoded via a constant-size

sentence in Monadic Second Order logic, which suffices for fixed-parameter tractability—but unfortunately not for a

single-exponential algorithm, and a direct dynamic programming algorithm based on the characterization employed

there seems to necessitate a parameter dependency that is more than single-exponential. Moreover, it is not at all

obvious how one could employ convolution-based tools—which have successfully led to 2
O(𝑡𝑤) · 𝑛 algorithms for, e.g.,

Hamiltonian Cycle [10, 14, 15]—for our problem of interest here.

Instead, we obtain our results by employing dynamic programming along a sphere-cut decomposition—a type of

branch decomposition specifically designed for planar graphs of small treewidth [18]. However, unlike in previous

applications of sphere-cut decompositions [39, 44], our algorithm requires the nooses delimiting the bags in the

sphere-cut decomposition to admit a fixed drawing since our arguments rely on constructing a hypothetical solution (a

subhamiltonian curve) that is “well-behaved” w.r.t. a fixed set of curves. While this would typically lead to extensive case

analysis to compute the records of a parent noose from the records of the children, we introduce a generic framework

that allows us to transfer records from child to parent nooses via XOR operations. We believe that this may be of broader

interest, especially when working with problems which require one to enhance the embedding or drawing of an input

graph.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 3

In the final part of the article, we turn our attention to the parameterized complexity of computing book embeddings.

While Two-Page Book Embedding is fixed-parameter tractable when parameterized by the treewidth of the input

graph, the only graph parameter which has been shown to yield fixed-parameter algorithms for computing ℓ-page book

embeddings for ℓ > 2 is the vertex cover number
1
[7]. Whether this tractability result also holds for other structural

graph parameters such as treewidth, treedepth [46] or the feedback edge number [51] has been stated as an open question

in the field
2
. We conclude by providing a novel fixed-parameter algorithm for computing ℓ-page book embeddings (or

determining that one does not exist) under the third parameterization mentioned above—the feedback edge number, i.e.,

the edge deletion distance to acyclicity. This result is complementary to the known vertex-cover based fixed-parameter

algorithm, and can be seen as a necessary stepping stone towards eventually settling the complexity of computing

ℓ-page book embeddings parameterized by treewidth. Moreover, since the obtained kernel is linear in the case of ℓ = 2,

the obtained kernel allows us to generalize our main algorithmic result to a run-time of 2
O(

√
𝑘) · 𝑛O(1)

where 𝑘 is the

feedback edge number of the input graph.

2 Preliminaries

Basic Notions. We use basic terminology for graphs and multi-graphs [17], and assume familiarity with the basic notions

of parameterized complexity and fixed-parameter tractability [13, 19]. The feedback edge number of 𝐺 , denoted by

fen(𝐺), is the minimum size of any feedback edge set of 𝐺 , i.e., a set 𝐹 ⊆ 𝐸 (𝐺) such that 𝐺 − 𝐹 = (𝑉 (𝐺), 𝐸 (𝐺) \ 𝐹) is
acyclic.

Fact 1. Let 𝐺 be a graph. Then, a minimum feedback edge set of 𝐺 can be computed in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |).

Proof. The theorem follows because any minimum feedback edge set is equal to 𝐸 (𝐺) −𝐸 (𝐹), where 𝐹 is a spanning

forest of 𝐺 , together with the fact that we can compute a spanning forest of 𝐺 in time O(|𝑉 (𝐺) | + |𝐸 (𝐺) |). □

A cut vertex of a multi-graph is a vertex whose removal increases the number of connected components. A connected

multi-graph that has no cut vertex is called biconnected.

We say that a multi-graph 𝐺 is planar if it admits a planar drawing, i.e., a drawing in the plane in such a way that its

edges are drawn as simple curves which pairwise intersect only at their endpoints. Let 𝐷 be a planar drawing of 𝐺 and

𝑓 a face of 𝐷 . We denote by 𝑉 (𝑓) (𝐸 (𝑓)) all vertices (edges) of 𝐺 incident with 𝑓 .

Every face of a connected planar graph equipped with a drawing induces a cyclic sequence 𝜎 (𝑓) of the vertices in
𝑉 (𝑓), i.e., the cyclic sequence is obtained by traversing the closed curve representing the border of 𝑓 in a clock-wise

manner. Note that while 𝜎 (𝑓) can repeat vertices, this is no longer the case if the graph is biconnected, in which case

𝜎 (𝑓) induces a cyclic order of the vertices in 𝑉 (𝑓). For convenience, we will represent cyclic orders by sequences;

note that each cyclic order on 𝑛 elements can be equivalently represented by one of 𝑛 sequences (one for each starting

element). For instance, the cyclic orders represented by the sequences (𝑎1, . . . , 𝑎ℓ) and (𝑎𝑖 , . . . , 𝑎ℓ , 𝑎1, . . . , 𝑎𝑖−1) are the
same for every 𝑖 with 1 ≤ 𝑖 ≤ ℓ .

The following basic observations about planar graphs will be useful later:

1
The vertex cover number is the minimum size of a vertex cover, and represents a much stronger restriction on the structure of the input graphs than,

e.g., treewidth.

2
E.g., at Advances in Parameterized Graph Algorithms (Spain, May 2–7 2022) and also at Dagstuhl seminar 21293 Parameterized Complexity in
Graph Drawing [24].

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Observation 2. Let𝐺 be a graph with planar drawing𝐷 and let 𝑓 be a face of𝐷 . Then, we can draw a simple curve inside 𝑓

between any two distinct points in 𝑓 or its border. Moreover, if𝐺 is connected and 𝜎 (𝑓) = (𝑣1, . . . , 𝑣ℓ), then drawing a curve

inside 𝑓 between 𝑣𝑖 and 𝑣 𝑗 with 𝑖 < 𝑗 splits 𝑓 into two faces 𝑓1 and 𝑓2 such that 𝜎 (𝑓1) = (𝑣𝑖 , . . . , 𝑣 𝑗), 𝜎 (𝑓2) = (𝑣 𝑗 , . . . , 𝑣𝑖).

Observation 3. Let 𝑓 be a face of a planar drawing 𝐷 of a connected graph 𝐺 and let (𝑣1, 𝑣2, 𝑣3, 𝑣4) be a subsequence of
𝜎 (𝑓) such that 𝑣𝑖 ≠ 𝑣 𝑗 for every distinct 𝑖 and 𝑗 . Then every 𝑣1-𝑣3 path must intersect every 𝑣2-𝑣4 path in 𝐺 in at least one

vertex.

Book Embeddings and Subhamiltonicity. An ℓ-page book embedding of a multi-graph 𝐺 = (𝑉 , 𝐸) will be denoted

by a pair ⟨≺, 𝜎⟩, where ≺ is a linear order of 𝑉 , and 𝜎 : 𝐸 → [ℓ] is a function that maps each edge of 𝐸 to one of ℓ

pages [ℓ] = {1, 2, . . . , ℓ}. In an ℓ-page book embedding ⟨≺, 𝜎⟩ it is required that for no pair of edges 𝑢𝑣,𝑤𝑥 ∈ 𝐸 with

𝜎 (𝑢𝑣) = 𝜎 (𝑤𝑥) the vertices are ordered as 𝑢 ≺ 𝑤 ≺ 𝑣 ≺ 𝑥 , i.e., each page must be crossing-free. The page number of a

graph 𝐺 is the minimum number ℓ such that 𝐺 admits an ℓ-page book embedding. The general problem of computing

the page number of an input graph is thus:

Book Thickness

Instance: A multi-graph 𝐺 with 𝑛 vertices and a positive integer ℓ .

Question: Does 𝐺 admit a ℓ-page book embedding?

It is known that a multi-graph admits a 2-page book embedding if and only if it is subhamiltonian, i.e., if it has a

planar Hamiltonian supergraph [6]; see Figure 1 for an illustration. It is also known (and also easy to observe) that if

𝐺 is subhamiltonian, then it has a planar Hamiltonian supergraph 𝐺 ′
with 𝑉 (𝐺 ′) = 𝑉 (𝐺) and 𝐸 (𝐺 ′) \ 𝐸 (𝐺) = 𝐸 (𝐻),

where 𝐻 is a Hamiltonian cycle in𝐺 ′
(see, e.g., [34]). Hence, the problem of deciding whether a graph has page number

2 can be equivalently stated as:

Subhamiltonicity (SUBHAM)

Instance: A multi-graph 𝐺 with 𝑛 vertices.

Question: Is 𝐺 subhamiltonian?

Since the transformation between 2-page book embeddings and Hamiltonian cycles of supergraphs is constructive

in both directions, a constructive algorithm for SUBHAM (such as the one presented here) allows us to also output a

2-page book embedding for the graph.

Let 𝐺 be subhamiltonian. For a Hamiltonian cycle 𝐻 on 𝑉 (𝐺) (where 𝐻 is not necessarily a subgraph of 𝐺), we

denote by 𝐺𝐻 the graph obtained from 𝐺 after adding the edges of 𝐻 and say that 𝐻 is a witness for 𝐺 if 𝐺𝐻 is planar.

A drawing 𝐷 of 𝐺 respects 𝐻 if 𝐷 can be completed to a planar drawing of 𝐺𝐻 by only adding the edges of 𝐻 . We

extend the notion of “witness” to include all the information defining the solution as follows: a tuple (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) is
a witness for 𝐺 if 𝐺𝐻 is a planar supergraph of 𝐺 containing the Hamiltonian cycle 𝐻 , 𝐷𝐻 is a planar drawing of 𝐺𝐻 ,

and 𝐷 is the restriction of 𝐷𝐻 to 𝐺 ; note that 𝐷𝐻 witnesses that 𝐷 respects 𝐻 .

The following basic observations will be useful when dealing with subhamiltonian graphs in Section 4.1.

Observation 4. Let 𝐺 be a subhamiltonian graph with witness (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻). Then:

(1) Every subgraph of 𝐺 is also subhamiltonian.

(2) If 𝑢𝑣 ∈ 𝐸 (𝐻), then the graph obtained from 𝐺 by adding a new vertex 𝑥 together with the edges 𝑥𝑢 and 𝑥𝑣 is

subhamiltonian.

(3) If 𝑢𝑣 ∈ 𝐸 (𝐻), then the graph obtained by contracting 𝑢𝑣 is also subhamiltonian.

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 5

𝐴

𝑆

𝑅 𝑃

𝑄

𝐸

𝐹

𝑂

𝐵

𝐷 𝐶

𝐺
𝐼

𝑀

𝐿

𝐾
𝐽

𝑁

𝐻

𝐴

𝑆

𝑅

𝑃

𝑄

𝐸

𝐹

𝑂

𝐵

𝐷

𝐶

𝐺

𝐼

𝑀

𝐿

𝐾

𝐽

𝑁

𝐻

Fig. 1. A drawing of a subhamiltonian graph 𝐺 , made of the full-edges, which is completed by the dashed edges to one of its

Hamiltonian supergraphs 𝐺𝐻 (left) and the same graph drawn as a two-page book embedding (right). In both drawings the

Hamiltonian cycle 𝐻 is colored in blue and the edges belonging to page 1 and 2 are colored with green and red, respectively.Note that

the partition of the edges into the pages can be obtained from a planar drawing of𝐺𝐻 by partitioning the edges according to the two

regions given by 𝐻 .

SPQR-Trees. We give a brief introduction to the SPQR-tree data structure for biconnected multi-graphs, following the

formalism used by Gutwenger et al. [30]. Let 𝐺 = (𝑉 , 𝐸) be a biconnected multi-graph and 𝑎, 𝑏 ∈ 𝑉 . We can partition

𝐸 into equivalence classes 𝐸1, . . . , 𝐸𝑘 in the following way: for any two edges 𝑒, 𝑒′ ∈ 𝐸, 𝑒 and 𝑒′ belong to the same

equivalence class if and only if there exists a path 𝑃 in𝐺 which contains both 𝑒 and 𝑒′ as edges and no internal vertex of

𝑃 is in {𝑎, 𝑏}. The classes 𝐸𝑖 are called the separation classes of 𝐺 with respect to {𝑎, 𝑏} and if 𝑘 ≥ 2 then {𝑎, 𝑏} is called
a separation pair unless (𝑖) 𝑘 = 2 and one of the separation classes only contains a single edge, or (𝑖𝑖) 𝑘 = 3 and each

separation class is made of a single edge. A biconnected multi-graph without a separation pair is called triconnected. A

split pair is a pair of vertices which are either adjacent to each other, or form a separation pair.

SPQR-trees were introduced by Di Battista and Tamassia [4], based on the ideas of Bienstock and Monma [8, 9], and

since then have been used in various graph drawing applications, for a survey we refer to the work of Mutzel [45].

SPQR-trees represent the decomposition of a biconnected multi-graph 𝐺 based on split pairs and their “split

components”. A split component of a split pair {𝑢, 𝑣} is either the edge (𝑢, 𝑣) or a maximal subgraph 𝐶 of 𝐺 such that

{𝑢, 𝑣} is not a split pair of 𝐶 . Let {𝑠, 𝑡} be a split pair of 𝐺 . A maximal split pair {𝑢, 𝑣} of 𝐺 with respect to {𝑠, 𝑡} is such
that, for any other split pair {𝑢′, 𝑣 ′}, vertices 𝑢, 𝑣 , 𝑠 and 𝑡 are in the same split component.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Let 𝑒 = (𝑠, 𝑡) be an edge of 𝐺 , called the reference edge. The SPQR-tree B of 𝐺 with respect to 𝑒 is a rooted ordered

tree whose nodes are of four types: 𝑆 , 𝑃 , 𝑄 , and 𝑅. Each node 𝑏 of B has an associated biconnected multi-graph Sk(𝑏),
called the skeleton of 𝑏. The tree B is recursively defined as follows:

• Trivial Case. If 𝐺 consists of exactly two parallel edges between 𝑠 and 𝑡 , then B consists of a single 𝑄-node

whose skeleton is 𝐺 itself.

• Parallel Case. If the split pair {𝑠, 𝑡} has 𝑘 split components 𝐺1, . . . ,𝐺𝑘 with 𝑘 ≥ 3, the root of B is a 𝑃-node 𝑏,

whose skeleton consists of 𝑘 parallel edges 𝑒 = 𝑒1, . . . , 𝑒𝑘 between 𝑠 and 𝑡 .

• Series Case: Otherwise, the split pair {𝑠, 𝑡} has exactly two split components, one of them is 𝑒 , and the other one

is denoted with 𝐺 ′
. If 𝐺 ′

has cutvertices 𝑐1, . . . , 𝑐𝑘−1 (𝑘 ≥ 2) that partition 𝐺 into its blocks 𝐺1, . . . ,𝐺𝑘 , in this

order from 𝑠 to 𝑡 , the root of B is an S-node 𝑏, whose skeleton is the cycle 𝑒0, 𝑒1, . . . , 𝑒𝑘 , where 𝑒0 = 𝑒 , 𝑐0 = 𝑠 ,

𝑐𝑘 = 𝑡 , and 𝑒𝑖 = (𝑐𝑖−1, 𝑐1) (𝑖 = 1, . . . , 𝑘).

• Rigid Case: If none of the above cases applies, let {𝑠1, 𝑡1}, . . . , {𝑠𝑘 , 𝑡𝑘 } be the maximal split pairs of𝐺 with respect

to {𝑠, 𝑡} (𝑘 ≥ 1), and, for 𝑖 = 1, . . . , 𝑘 , let 𝐺𝑖 be the union of all the split components of {𝑠𝑖 , 𝑡𝑖 } but the one
containing 𝑒 . The root of B is an R-node, whose skeleton is obtained from 𝐺 by replacing each subgraph 𝐺𝑖

with the edge 𝑒𝑖 = (𝑠𝑖 , 𝑡𝑖).

Except for the trivial case, 𝑏 has children 𝑏1, . . . , 𝑏𝑘 , such that 𝑏𝑖 is the root of the SPQR-tree of 𝐺𝑖 ∪ 𝑒𝑖 with respect

to 𝑒𝑖 (𝑖 = 1, . . . , 𝑘). The endpoints of the edge 𝑒𝑖 are called the poles of node 𝑏𝑖 . Edge 𝑒𝑖 is said to be the virtual edge of

node 𝑏𝑖 in the skeleton of 𝑏 and of node 𝑏 in the skeleton of 𝑏𝑖 . We call node 𝑏 the pertinent node of 𝑒𝑖 in the skeleton of

𝑏𝑖 , and 𝑏𝑖 the pertinent node of 𝑒𝑖 in the skeleton of 𝑏. The virtual edge of 𝑏 in the skeleton of 𝑏𝑖 is called the reference

edge of 𝑏𝑖 .

Let 𝑏𝑟 be the root of B in the decomposition given above. We add a 𝑄-node representing the reference edge 𝑒 and

make it the parent of 𝑏𝑟 so that it becomes the new root.

Let 𝑒 be an edge in Sk(𝑏) and let 𝑏′ be the pertinent node of 𝑒 . Deleting edge {𝑏, 𝑏′} in B splits B into two connected

components. Let B𝑏′ be the connected component containing 𝑏′. The expansion graph of 𝑒 (denoted with exp(𝑒)) is the
graph induced by the edges of 𝐺 contained in the skeletons of the 𝑄-nodes in B𝑏′ . We further introduce the notation

exp
+ (𝑒) for the graph exp(𝑒) ∪ 𝑒 . The pertinent graph Pe(𝑏) of a tree node 𝑏 is obtained from Sk(𝑏) minus the reference

edge by replacing each skeleton edge with its expansion graph. An illustration of an SPQR-tree is provided in Figure 2.

SPQR-trees can be computed efficiently, and this also implicitly bounds the their size.

Lemma 5 ([29]). Let 𝐺 be biconnected multi-graph with 𝑛 vertices and𝑚 edges. An SPQR-tree of 𝐺 with O(𝑚) nodes and
edges inside skeletons can be constructed in O(𝑛 +𝑚) time.

Choosing a different reference edge 𝑒′ is equivalent to rooting the tree B at the 𝑄-node whose skeleton contains 𝑒′.

In particular, the unrooted version of the SPQR-tree of a biconnected multi-graph (including the skeleton graphs) is

unique.

We will later also need the following well-known fact about SPQR-trees, which will need to define the types of nodes

in an SPQR-tree.

Fact 6. Let𝐺 be a biconnected planar multi-graph with planar drawing 𝐷 and let B be the SPQR-tree of𝐺 . Then, for every

node 𝑏 of B with reference edge (𝑠𝑏 , 𝑡𝑏), there is a noose 𝑁𝑏 such that:

• 𝑁𝑏 intersects with 𝐷 only at 𝑠𝑏 and 𝑡𝑏 .

• 𝑁𝑏 separates Pe(𝑏) from 𝐺 \ Pe(𝑏) in 𝐷 .
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 7

(𝑎)

𝑄

𝑄 𝑄 𝑄 𝑄 𝑄 𝑄

𝑃

𝑄 𝑆 𝑅

𝑏

𝑏′

(𝑏)

𝑒

(𝑐) (𝑑)

Fig. 2. (𝑎) shows a biconnected multi-graph𝐺 . (𝑏) shows the SPQR-tree B of𝐺 . (𝑐) shows the skeleton of 𝑏, Sk(𝑏) , where the
edge 𝑒 that corresponds to the child (with pertinent node) 𝑏′ is in bold and the dashed edge represents the reference edge. Finally,

(𝑑) shows Pe(𝑏′) .

Moreover, if 𝑁𝑏 and 𝑁𝑏′ for two nodes 𝑏 and 𝑏′ of B have the same reference edge (𝑠, 𝑡) and contain a subcurve between 𝑠

and 𝑡 in the same face of 𝐷 , then we can and will assume that the two subcurves are identical.

Sphere-Cut Decompositions. A branch decomposition ⟨𝑇, 𝜆⟩ of a graph 𝐺 consists of an unrooted ternary tree 𝑇

(meaning that each node of 𝑇 has degree one or three) and of a bijection 𝜆 : L(𝑇) ↔ 𝐸 (𝐺) from the leaf set L(𝑇)
of 𝑇 to the edge set 𝐸 (𝐺) of 𝐺 ; to distinguish 𝐸 (𝑇) from 𝐸 (𝐺), we call the elements of the former arcs (as was also

done in previous work [18]). For each arc 𝑎 of 𝑇 , let 𝑇1 and 𝑇2 be the two connected components of 𝑇 − 𝑎, and, for
𝑖 = 1, 2, let 𝐺𝑖 be the subgraph of 𝐺 that consists of the edges corresponding to the leaves of 𝑇𝑖 , i.e., the edge set

{𝜆(𝜇) : 𝜇 ∈ L(𝑇) ∩ 𝑉 (𝑇𝑖)}. The middle set𝑚𝑖𝑑 (𝑎) ⊆ 𝑉 (𝐺) is the intersection of the vertex sets of 𝐺1 and 𝐺2, i.e.,

𝑚𝑖𝑑 (𝑎) := 𝑉 (𝐺1) ∩ 𝑉 (𝐺2). The width 𝛽 (⟨𝑇, 𝜆⟩) of ⟨𝑇, 𝜆⟩ is the maximum size of the middle sets over all arcs of 𝑇 ,

i.e., 𝛽 (⟨𝑇, 𝜆⟩) := 𝑚𝑎𝑥{|𝑚𝑖𝑑 (𝑎) | : 𝑎 ∈ 𝐸 (𝑇)}. An optimal branch decomposition of 𝐺 is a branch decomposition with

minimum width; this width is called the branchwidth 𝛽 (𝐺) of 𝐺 . We will need the following well-known relation

between treewidth and branchwidth.

Lemma 7 ([48, Theorem 5.1]). Let𝐺 be a graph. Then, bw(𝐺)−1 ≤ tw(𝐺) ≤ 3

2
bw(𝐺)−1, where bw(𝐺) is the branchwidth

and tw(𝐺) is the treewidth of 𝐺 .

Let 𝐷 be a plane drawing of a connected planar graph 𝐺 . A noose of 𝐷 is a closed simple curve that (i) intersects

𝐷 only at vertices and (ii) traverses each face at most once, i.e., its intersection with the region of each face forms a

connected curve. The length of a noose is the number of vertices it intersects, and every noose𝑂 separates the plane into

two regions 𝛿1 and 𝛿2. A sphere-cut decomposition ⟨𝑇, 𝜆,Π = { 𝜋𝑎 | 𝑎 ∈ 𝐸 (𝑇) }⟩ of (𝐺, 𝐷) is a branch decomposition⟨𝑇, 𝜆⟩
of 𝐺 together with a set Π of circular orders 𝜋𝑎 of𝑚𝑖𝑑 (𝑎)—one for each arc 𝑎 of 𝑇—such that there exists a noose 𝑂𝑎

whose closed discs 𝛿1 and 𝛿2 enclose the drawing of 𝐺1 and of 𝐺2, respectively. Observe that 𝑂𝑎 intersect 𝐺 exactly

at𝑚𝑖𝑑 (𝑎) and its length is |𝑚𝑖𝑑 (𝑎) |. Note that the fact that 𝐺 is connected together with Conditions (i) and (ii) of the

definition of a noose implies that the graphs𝐺1 and𝐺2 are both connected and that the set of nooses forms a laminar set

family, that is, any two nooses are either disjoint or nested. A clockwise traversal of 𝑂𝑎 in the drawing of 𝐺 defines the

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

cyclic ordering 𝜋𝑎 of𝑚𝑖𝑑 (𝑎). We always assume that the vertices of every middle set𝑚𝑖𝑑 (𝑎) are enumerated according

to 𝜋𝑎 . A sphere-cut decomposition of a given planar graph with 𝑛 vertices can be constructed in O(𝑛3) time [18].

Lemma 8 ([18, Theorem 1]). Let 𝐺 be a biconnected planar multi-graph on 𝑛 vertices and branchwidth 𝜔 . Then, a

sphere-cut decomposition of 𝐺 of width 𝜔 can be computed in time O(𝑛3).

Note that [18, Theorem 1] requires that𝐺 has not vertices of degree at most one, which is the case for biconnected

multi-graphs.

We will only consider sphere-cut decompositions of Sk(𝑏) for some R-node or S-node 𝑏 in an SPQR-tree, which

implies that the underlying graph will admit a unique planar embedding. Due to this fact, we sometimes abuse the

notation by referring to sphere-cut decompositions as purely combinatorial objects (i.e., without an explicit drawing of

the individual nooses). Suppose that 𝑏 is an 𝑅-node in some SPQR-tree and let ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ be a sphere-cut decomposition

for graph Sk(𝑏) with the reference edge {(𝑠𝑏 , 𝑡𝑏)}. Let 𝜆𝑏 (−1) ((𝑠𝑏 , 𝑡𝑏)) be the root of 𝑇𝑏 . Each arc 𝑎 of 𝑇𝑏 is associated

with the subgraph Sk(𝑏, 𝑎) of Sk(𝑏) ∪ {(𝑠𝑏 , 𝑡𝑏)} in the inside region, i.e., the region not containing the reference edge,

of the noose 𝑂𝑎 of 𝑎. The pertinent graph Pe(𝑏, 𝑎) of an R-node 𝑏 is obtained from Sk(𝑏, 𝑎) by replacing each skeleton

edge with its expansion graph.

Every noose 𝑂𝑎 can be divided into subcurves by splitting the noose at the vertices in𝑚𝑖𝑑 (𝑎). Each such subcurve

can be characterized by a pair ({𝑢, 𝑣}, 𝑓), where 𝑢, 𝑣 ∈ 𝑚𝑖𝑑 (𝑎) are two consecutive nodes in 𝜋𝑎 and 𝑓 is a face of

Sk(𝑏) ∪ {(𝑠𝑏 , 𝑡𝑏)}. Due to the properties of sphere-cut decompositions, we can assume that whenever two nooses

contain two subcurves that are characterized by the same pair, then the subcurves are identical. For convenience, we

can identify any noose of the sphere-cut decomposition with the set of subcurves that it contains, e.g., we often view

the noose 𝑂𝑎 as the set of pairs ({𝑢, 𝑣}, 𝑓) that correspond to the subcurves contained in 𝑂𝑎 .

Below, we note that the notion of nooses defined above can also be assumed to be well-behaved when dealing with

sphere-cut decompositions of an R-node or an S-node in an SPQR-tree of 𝐺 .

Observation 9. Let 𝐺 be a biconnected planar multi-graph with planar drawing 𝐷 , let B be the SPQR-tree of 𝐺 and let 𝑏

be an R-node or an S-node of B with sphere-cut decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩. Then, 𝐷 can be extended to a planar drawing

of 𝐺 together with the nooses {𝑂𝑎 | 𝑎 ∈ 𝐸 (𝑇𝑏)} where each of the nooses lies inside 𝑁𝑏 .

We say that a biconnected planar multi-graph 𝐺 equipped with an SPQR-tree B is associated with a set T of

sphere-cut decompositions if T contains a sphere-cut decomposition of Sk(𝑏) for every R-node and every S-node 𝑏 of

B. The following lemma now follows immediately from Fact 6 and Observation 9.

Lemma 10. Let 𝐺 be biconnected planar multi-graph with planar drawing 𝐷 and SPQR-tree B of 𝐺 together with the

associated set T of sphere-cut decompositions. Then, 𝐷 can be extended to a planar drawing 𝐷′
of 𝐺 together with all

nooses in {𝑂𝑎 | 𝑎 ∈ 𝐸 (𝑇𝑏) ∧ ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ ∈ T } as well as a noose 𝑁𝑏 for every node 𝑏 of B satisfying:

• 𝑁𝑏 intersects with 𝐷 only at 𝑠𝑏 and 𝑡𝑏 .

• 𝑁𝑏 separates Pe(𝑏) from 𝐺 \ Pe(𝑏) in 𝐷 .

Moreover, if any of the subcurves of the nooses 𝑂𝑎 and the nooses 𝑁𝑏 connect the same two vertices in the same face of 𝐷 ,

then the two subcurves are identical in 𝐷′
.

Non-Crossing Matchings. We will use non-crossing matchings and the closely related Dyck words for the definition and

analysis of our types. Let 𝐾𝑛 be the complete graph on vertices {1, . . . , 𝑛} and let < be a cyclic ordering of the elements

in {1, . . . , 𝑛}. A non-crossing matching is a matching𝑀 in the graph 𝐾𝑛 such that for every two edges {𝑎, 𝑏}, {𝑐, 𝑑} ∈ 𝑀
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 9

it is not the case that 𝑎 < 𝑐 < 𝑏 < 𝑑 . A non-crossing matching can be visualized by placing 𝑛 vertices on a cycle, and

connecting matching vertices with pairwise non-crossing curves all on one fixed side of the cycle. The number of

non-crossing matchings over 𝑛 vertices is given by [41, 50]:

𝑀 (𝑛) = 𝐶𝑁 (𝑛
2

) ≈ 2
𝑛

√
𝜋 (𝑛

2
)
3

2

≈ 2
𝑛

Here, 𝐶𝑁 (𝑛) is the 𝑛-th Catalan number, i.e.:

𝐶𝑁 (𝑛) = 1

𝑛 + 1

(
2𝑛

𝑛

)
≈ 4

𝑛

√
𝜋𝑛

3

2

≈ 4
𝑛

A Dyck word is a sequence composed of {”[”, ”]”} symbols, such that each prefix has an equal or greater number of

”[”s than ”]”s, and the total number of ”[”s and ”]”s are equal.

Observation 11. There is a one-to-one correspondence between non-crossing matchings with 2𝑛 vertices and Dyck words

of length 2𝑛. Moreover, one can be translated into the other after fixing a starting vertex and an orientation of the cycle.

3 Solution Normal Form

Our first order of business is to show that we can assume that the solution (Hamiltonian cycle) to the SUBHAM problem

interacts with the drawing in a restricted manner. In particular, we aim to show that every subhamiltonian graph𝐺 has

a witness (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) in normal form, i.e., with the following property: it is possible to draw a curve in 𝐷𝐻 between

any two vertices occurring in a common face of 𝐷 such that this curve only crosses the Hamiltonian cycle at most

twice. Note that this property will allow us to bound the number of possible interactions of the Hamiltonian cycle with

any subgraph corresponding to either a node in the SQPR-tree or an arc in a sphere-cut decomposition and is crucial to

bound the number of types in our dynamic programming algorithm.

We will need the following auxiliary lemmas.

Lemma 12. Let𝐺 be a subhamiltonian graph with witness (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) and let 𝑓 be a face of 𝐷𝐻 . Then the restriction

of the cyclic order given by 𝐻 to the vertices in 𝑉 (𝑓) is either equal to 𝜎 (𝑓) or it is equal to the reverse of 𝜎 (𝑓).

Proof. Suppose for a contradiction that the cyclic order of 𝜎 (𝑓) differs from the (reverse) cyclic order given by

𝐻 . Then, there are three vertices 𝑎, 𝑏, and 𝑐 such that 𝑏 is between 𝑎 and 𝑐 in the cyclic order given by 𝜎 (𝑓), but 𝑏 is
between 𝑑 and 𝑒 in the cyclic order given by 𝐻 , where {𝑑, 𝑒} ≠ {𝑎, 𝑐}. W.l.o.g. assume that 𝑑 ≠ 𝑎. Then, 𝐻 contains a

path 𝑃𝑑𝑏 between 𝑑 and 𝑏 that does not contain any vertex from𝑉 (𝑓) \ {𝑑,𝑏} and moreover 𝑑 is neither between 𝑎 and

𝑏 nor between 𝑏 and 𝑐 in the cyclic order given by 𝜎 (𝑓). Let 𝐴 be the set of all vertices between 𝑑 and 𝑏 in the cyclic

order defined by 𝜎 (𝑓). Then, because 𝐻 is a Hamiltonian cycle and𝑉 (𝑓) \𝐴 ≠ ∅, we obtain that there is a vertex 𝑥 ∈ 𝐴
and a vertex 𝑦 ∈ 𝑉 (𝑓) \𝐴 such that 𝐻 contains a path 𝑃𝑥𝑦 that does not contain any vertex in 𝑉 (𝑓) \ {𝑥,𝑦}. Since 𝑃𝑑𝑏
and 𝑃𝑥𝑦 are disjoint, the statement of the lemma now follows from Observation 3. □

Lemma 13. Let 𝐺 be a subhamiltonian graph with witness (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) and let 𝑓 be a face of 𝐷 . For any two vertices

𝑢, 𝑣 ∈ 𝑉 (𝑓), a 𝑢𝑣-curve 𝑐 can be added to 𝐷𝐻 inside 𝑓 such that every edge from 𝐸 (𝐻) crosses at most once with 𝑐 .

Proof. Let 𝐷′
𝐻
be obtained from the restriction of 𝐷𝐻 to vertices and edges inside 𝑓 and let 𝑓𝑢 and 𝑓𝑣 be the two

faces of 𝐷′
𝐻
inside 𝑓 having 𝑢 or 𝑣 on their border, respectively. If 𝑓𝑢 = 𝑓𝑣 , then the claim follows immediately from

Observation 2. Otherwise, consider the dual graph𝐻 of 𝐷′
𝐻
together with its drawing 𝐷𝐷

𝐻
inside 𝐷′

𝐻
. Then,𝐻 contains a

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

path from 𝑓𝑢 to 𝑓𝑣 that uses only faces inside 𝑓 and that corresponds to a curve 𝑃 between 𝑓𝑢 and 𝑓𝑣 in 𝐷
𝐷
𝐻
that intersects

every edge of 𝐻 at most once. Because of Observation 2, we can draw a curve 𝑐𝑢 from 𝑢 to 𝑓𝑢 and a curve 𝑐𝑣 from 𝑓𝑣 to

𝑣 inside 𝑓𝑢 and 𝑓𝑣 , respectively, without adding any crossings. Then, the curve obtained from the concatination of 𝑐𝑢 , 𝑃 ,

and 𝑐𝑣 is the required 𝑢𝑣-curve. □

Lemma 14. Let𝐺 be a subhamiltonian graph with witness (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻), let 𝑓 be a face of 𝐷 , and let 𝑐 be a curve drawn
inside 𝑓 between two vertices 𝑢, 𝑣 ∈ 𝑉 (𝑓). Then, we can redraw the curves corresponding to the edges of 𝐻 inside 𝑓 such

that every such curve crosses 𝑐 at most once, i.e., we can adapt 𝐷𝐻 inside 𝑓 into a drawing 𝐷′
𝐻

such that (𝐷,𝐷′
𝐻
,𝐺𝐻 , 𝐻) is

a witness for 𝐺 and every curve corresponding to an edge of 𝐻 inside 𝑓 crosses 𝑐 at most once in 𝐷′
𝐻
.

Proof. Because of Lemma 13 there is a 𝑢𝑣-curve 𝑐′ that can be added to 𝐷𝐻 inside 𝑓 such that every curve

corresponding to a Hamiltonian cycle of 𝐻 crosses 𝑐′ at most once. Let (𝑝1, . . . , 𝑝ℓ) be the sequence of all crossing
points between 𝑐′ and curves corresponding to edges of 𝐻 given in the order of appearance when going along 𝑐′ from

𝑢 to 𝑣 and suppose that 𝑝𝑖 is the crossing point of the edge 𝑒𝑖 on 𝐻 with 𝑐′.

Now consider the drawing 𝐷−
𝐻
obtained from 𝐷𝐻 after adding 𝑐 and removing all curves corresponding to edges of 𝐻

inside 𝑓 . Moreover, let 𝑝𝑐
1
, . . . , 𝑝𝑐

ℓ
be an arbitrary set of pairwise distinct points on 𝑐 that occur in the order (𝑝𝑐

1
, . . . , 𝑝𝑐

ℓ
)

when going along 𝑐 from 𝑢 to 𝑣 and let 𝑐1 and 𝑐2 be the two subcurves in 𝐷−
𝐻
of the border of 𝑓 between 𝑢 and 𝑣 . Note

that every edge 𝑒𝑖 has one endpoint 𝑣
1

𝑖
on 𝑐1 and one endpoint 𝑣2

𝑖
on 𝑐2; otherwise both endpoints of 𝑒𝑖 are either on

𝑐1 or on 𝑐2 and 𝑐′ could have been drawn in 𝐷𝐻 without crossing the curve corresponding to 𝑒𝑖 . Note furthermore

that because of Observation 3, the vertices 𝑣
𝑗

1
, . . . , 𝑣

𝑗
ℓ
must appear in the order (𝑣 𝑗

1
, . . . , 𝑣

𝑗
ℓ
), when going along 𝑐 𝑗 from 𝑢

to 𝑣 for every 𝑗 ∈ {1, 2}. Since 𝑣1
𝑖
(𝑣2
𝑖
) and 𝑝𝑖 are initially in the same face of 𝐷−

𝐻
, we can use Observation 2 to draw a

curve between 𝑣1
𝑖
(𝑣2
𝑖
) and 𝑝𝑖 in this face for every 𝑖 ∈ [1, ℓ]. Moreover, using the same observation, we obtain that after

drawing this curve, it still holds that 𝑣1
𝑖
(𝑣2
𝑖
) are in the same face as 𝑝𝑖 for every 𝑖 ∈ [1, ℓ]. Therefore, we can repeatedly

apply Observation 2 to draw curves in 𝐷−
𝐻
between 𝑣

𝑗
𝑖
and 𝑝′

𝑖
for every 𝑖 ∈ [1, ℓ] and 𝑗 ∈ {1, 2} to obtain the required

drawing 𝐷′
𝐻
. □

The following lemma is crucial to obtain our normal form. An illustration of the main ideas behind the proof is

provided in Figure 3.

Lemma 15. Let𝐺 be a subhamiltonian graph with witness (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻), let 𝑓 be a face of 𝐷 and let 𝑐 be a curve drawn

inside 𝑓 between two vertices 𝑢, 𝑣 ∈ 𝑉 (𝑓). Then, there is a witness (𝐷, 𝐷𝐻 ′ ,𝐺𝐻 ′ , 𝐻 ′) for 𝐺 such that:

(1) 𝐷𝐻 ′ and 𝐷𝐻 differ only inside 𝑓 .

(2) 𝑐 crosses at most two curves corresponding to the edges of 𝐻 ′
.

(3) 𝑐 crosses each curve corresponding to an edge of 𝐻 ′
at most once.

Proof. By Lemma 14, we can assume that the every curve corresponding to an edge of 𝐻 inside 𝑓 crosses 𝑐 at most

once in 𝐷𝐻 , which shows (3). If 𝑐 crosses at most two edges of 𝐻 , then the statement of the lemma holds. So suppose

that this is not the case and let 𝑢1𝑣1, 𝑢2𝑣2, and 𝑢3𝑣3 be three distinct edges in 𝐸 (𝐻) \𝐸 (𝐺) that cross 𝑐 at three successive
points 𝑝1, 𝑝2, and 𝑝3 such that no other edge of 𝐸 (𝐻) \ 𝐸 (𝐺) crosses 𝑐 between 𝑝1 and 𝑝3. Assume furthermore that 𝑢1,

𝑢2, and 𝑢3 are on the same face in 𝐷 + 𝑐 , where here and in the following 𝐷 + 𝑐 denotes the drawing obtained from 𝐷

after adding 𝑐 , and the same for 𝑣1, 𝑣2, and 𝑣3. Then, there are faces 𝑓
1

𝐻
and 𝑓 3

𝐻
of 𝐷𝐻 such that 𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝑉 (𝑓 1

𝐻
)

and 𝑢2, 𝑣2, 𝑢3, 𝑣3 ∈ 𝑉 (𝑓 3
𝐻
).

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 11

𝑢1

𝑢2

𝑢3

𝑝1 𝑝2 𝑝3

𝑣1

𝑣2

𝑣3

𝑢 𝑣

𝑃1

𝑃2

𝑃3

Fig. 3. The cycle 𝐻 = (𝑢2, 𝑃1,𝑢1, 𝑣1, 𝑃2,𝑢3, 𝑣3, 𝑃3, 𝑣2,𝑢2) represents a Hamiltonian cycle that crosses the 𝑢𝑣-curve at least three times

(in 𝑝1, 𝑝2 and 𝑝3). Thanks to Lemma 15, we obtain a Hamiltonian cycle 𝐻 ′ = (𝑢2, 𝑃1,𝑢1, 𝑣3, 𝑃3, 𝑣2, 𝑣1, 𝑃2,𝑢3,𝑢2) that differs from
𝐻 only inside the face 𝑓 = (𝑢,𝑢1,𝑢2,𝑢3, 𝑣, 𝑣3, 𝑣2, 𝑣1) and crosses the 𝑢𝑣-curve two fewer times than 𝐻 does. Finally, note that the

vertices 𝑢 and 𝑣 are part of either 𝑃1, 𝑃2, or 𝑃3.

Now we will analyze the Hamiltonian cycle 𝐻 . For every 𝑖 in {1, 2, 3}, the edge 𝑢𝑖𝑣𝑖 is in 𝐸 (𝐻). Let 𝑃𝐻 be the path

from𝑢2 to 𝑣2 obtained by deleting the edge𝑢2𝑣2 from𝐻 . From Observation 12 applied to 𝑓 𝑖
𝐻
we obtain that𝑢𝑖 is between

𝑢2 and 𝑣𝑖 in 𝑃𝐻 , for 𝑖 in {1, 3}. Let 𝑃1, 𝑃2, 𝑃3 be paths created after deleting 𝑢1𝑣1 , 𝑢2𝑣2, 𝑢3𝑣3 from 𝐻 . Then, either:

• 𝑃𝐻 = (𝑢2, 𝑃1, 𝑢1, 𝑣1, 𝑃2, 𝑢3, 𝑣3, 𝑃3, 𝑣2) or
• 𝑃𝐻 = (𝑢2, 𝑃1, 𝑢3, 𝑣3, 𝑃2, 𝑢1, 𝑣1, 𝑃3, 𝑣2).

The proof for both cases is entirely analogous, so we will only make the first case explicit. An illustration of the current

setting is provided in Figure 3.

𝐻 ′ = (𝑉 (𝐻), (𝐸 (𝐻) \ {𝑢1𝑣1, 𝑢2𝑣2, 𝑢3𝑣3}) ∪ {𝑢1𝑣3, 𝑣2𝑣1, 𝑢3𝑢2} is a Hamiltonian cycle, because it corresponds to the

sequence (𝑢2, 𝑃1, 𝑢1, 𝑣3, 𝑃3, 𝑣2, 𝑣1, 𝑃2, 𝑢3). At this point, we have to prove that there exists a planar drawing 𝐷𝐻 ′ of 𝐺𝐻 ′

that satisfies (1)–(3). To do so we will change 𝐷𝐻 .

Let𝐺★
𝐻
be the graph obtained from𝐺𝐻 after subdividing the edges 𝑢𝑖𝑣𝑖 with the new vertex 𝑝𝑖 for every 𝑖 in {1, 2, 3}

and adding the edges 𝑝1𝑝2 and 𝑝2𝑝3. Note that𝐺
★
𝐻
is planar, as witnessed by the drawing 𝐷★ = 𝐷𝐻 + 𝑐′, where 𝑐′ is the

restriction of 𝑐 to the segment between 𝑝1 and 𝑝3.

Because 𝑢2 and 𝑢3 lie on the same face as 𝑝2 and 𝑝3 in 𝐷
★
, we obtain from Observation 2 that we can add the curve

between 𝑢2 and 𝑢3 inside this face without adding any crossings. Analogously, we will add the curves 𝑣1𝑣2, 𝑢1𝑝2 and

𝑝2𝑣3. We can now obtain a new drawing 𝐷′
from 𝐷★

by removing the curves 𝑢𝑖𝑣𝑖 and adding the curves 𝑢2𝑢3, 𝑣1𝑣2,

and the curve 𝑢1𝑣3 obtained as the concatenation of the curves 𝑢1𝑝2 and 𝑝2𝑣3.

Observe that in this new drawing we reduced the number of crossings by 2, i.e., instead of the crossings at 𝑝1, 𝑝2,

and 𝑝3, only the crossing at 𝑝2 remains (𝑢1𝑣3-curve). Moreover, all changes happened inside 𝑓 .

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Finally, let 𝐷𝐻 ′ be the drawing obtained from 𝐷′
after removing the curve between 𝑢 and 𝑣 . Then, 𝐷𝐻 ′ shows (1).

Moreover, by repeating the process as long as we have at least 3 crossings with the 𝑢𝑣-curve, we obtain a drawing that

also satisfies (2). □

We are now ready to define our normal form for the Hamiltonian cycle. Essentially, we show that if there is a

Hamiltonian cycle, then there is one which crosses each subcurve that is either part of the border of a node in the

SPQR-tree or that is a subcurve of some noose in a sphere-cut decomposition of an R-node or an S-node at most twice.

Let 𝐺 be a biconnected subhamiltonian multi-graph with SPQR-tree B and the associated set T of sphere-cut

decompositions ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ of Sk(𝑏) for every R-node and S-node 𝑏 of B. We say that a witness𝑊 = (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) for
𝐺 respects the sphere-cut decompositions in T , if there is a planar drawing of all nooses in the sphere-cut decompositions

of T into 𝐷 such that every subcurve 𝑐 in
⋃
𝑎∈𝐸 (𝑇𝑏) 𝑂𝑎 crosses the curves corresponding to the edges of 𝐻 at most

twice in 𝐷𝐻 . We say that the witness𝑊 for𝐺 respects B if it respects the sphere-cut decompositions in T and for every

node 𝑏 of B with reference edge (𝑠𝑏 , 𝑡𝑏), it holds that there is a noose 𝑁𝑏 that can be drawn into 𝐷𝐻 such that:

• 𝑁𝑏 touches 𝐷 only at 𝑠𝑏 and 𝑡𝑏 .

• 𝑁𝑏 separates Pe(𝑏) from 𝐺 \ Pe(𝑏) in 𝐷 .
• Each of the two subcurves 𝐿𝑏 and 𝑅𝑏 obtained from 𝑁𝑏 by splitting 𝑁𝑏 at 𝑠𝑏 and 𝑡𝑏 crosses the curves corre-

sponding to the edges of 𝐻 at most twice.

• Moreover, if any of the subcurves of the nooses 𝑂𝑎 and the nooses 𝑁𝑏 connect the same two vertices in the

same face of 𝐷 , then the two subcurves are identical.

The following lemma allows us to assume our normal form and follows easily from Lemma 10 together with a repeated

application of Lemma 15.

Lemma 16. Let 𝐺 be a biconnected subhamiltonian multi-graph with SPQR-tree B and the associated set T of sphere-cut

decompositions. Then, there is a witness𝑊 = (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) for 𝐺 that respects B.

Proof. Let𝑊 = (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) be any witness for 𝐺 , which exists because 𝐺 is subhamiltonian. Let 𝐷′
be the

planar drawing obtained from 𝐷 using Corollary 10. That is, 𝐷′
is a planar drawing of 𝐺 together with all nooses in

{𝑂𝑎 | 𝑎 ∈ 𝐸 (𝑇𝑏) ∧ ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ ∈ T } as well as a noose 𝑁𝑏 for every node 𝑏 of B satisfying:

• 𝑁𝑏 intersects with 𝐷 only at 𝑠𝑏 and 𝑡𝑏 .

• 𝑁𝑏 separates Pe(𝑏) from 𝐺 \ Pe(𝑏) in 𝐷 .

Moreover, if any of the subcurves of the nooses𝑂𝑎 and the nooses 𝑁𝑏 connect the same two vertices in the same face of

𝐷 , then the two subcurves are identical in 𝐷′
. Note that this implies that every face of 𝐷 contains at most one subcurve

from the nooses 𝑂𝑎 and 𝑁𝑏 .

Similarly, let 𝐷′
𝐻
be obtained in the same manner from 𝐷𝐻 . If𝑊 already respects B, then there is nothing to show.

Otherwise, it holds that either:

• there is a noose 𝑁𝑏 such that 𝐿𝑏 or 𝑅𝑏 are crossed by the curves corresponding to the edges of 𝐻 more than

twice or

• there is a subcurve 𝑐 ∈ 𝑂𝑎 for some 𝑎 ∈ 𝐸 (𝑇𝑏) and ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ ∈ T that is crossed by the curves corresponding

to the edges of 𝐻 more than twice

Since every face of 𝐷 contains at most one subcurve from the nooses 𝑂𝑎 and 𝑁𝑏 , it follows that in both cases, we

can apply Lemma 15 to obtain a witness𝑊 ′
for 𝐺 that crosses 𝐿𝑏 , 𝑅𝑏 , or 𝑐 , respectively, at most twice and does not

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 13

introduce any additional crossings. This implies that a repeated application of Lemma 15 allows us to obtain the desired

witness that crosses each of the subcurves added to 𝐷𝐻 in 𝐷′
𝐻
at most twice. □

4 Setting Up the Framework

In this section we provide the foundations for our algorithm. That is, in Subsection 4.1, we show that it suffices to

consider biconnected graphs allowing us to employ SPQR-trees. We then define the types for nodes in the SPQR-tree,

which we compute in our dynamic programming algorithm on SPQR-trees, in Subsection 4.2. Finally, in Subsection 4.3

we introduce our general framework for simplifying dynamic programming algorithms on sphere-cut decompositions

and introduce the types for nodes of a sphere-cut decompositionthat we compute as part of our dynamic programming

algorithm on sphere-cut decompositions.

4.1 Reducing to the Biconnected Case

We begin by showing that any instance of SUBHAM can be easily reduced to solving the same problem on the

biconnected components of the same instance. It is well-known that SUBHAM can be solved independently on each

connected component of the input graph, the following theorem now also shows that the same holds for the biconnected

components of the graph and allows us to employ SPQR-trees for our algorithm.

Theorem 17. Let𝐺 be a graph and let𝐶 ⊆ 𝑉 (𝐺) such that 𝑁 (𝐶) = {𝑛}, where 𝑁 (𝐶) = { 𝑣 ∈ 𝑉 (𝐺) \𝐶 | ∃𝑐 ∈ 𝐶 {𝑣, 𝑐} ∈
𝐸 (𝐺) } is the set of neighbors of any vertex of𝐶 in𝑉 (𝐺) \𝐶 . Then𝐺 is subhamiltonian if and only if both𝐺− = 𝐺 −𝐶 and

𝐺𝐶 = 𝐺 [𝐶 ∪ {𝑛}] are subhamiltonian.

Proof. If 𝐺 is subhamiltonian, then because 𝐺−
and 𝐺𝐶 are both subgraphs of𝐺 we obtain from Observation 4 (1)

that 𝐺−
and 𝐺𝐶 are also subhamiltonian.

Towards showing the reverse direction, suppose that 𝐺−
and 𝐺𝐶 are subhamiltonian. Therefore, 𝐺−

and 𝐺𝐶 have

witnesses (𝐷−, 𝐷𝐻 − ,𝐺𝐻 − , 𝐻−) and (𝐷𝐶 , 𝐷𝐻𝐶 ,𝐺𝐻𝐶 , 𝐻𝐶), respectively. Let 𝑒− = 𝑛−𝑣− and 𝑒𝐶 = 𝑛𝐶𝑣𝐶 be one of the two

edges incident to 𝑛 in 𝐻−
and 𝐻𝐶 , respectively. Because any face can be drawn as the outer face of a planar graph, we

can assume w.l.o.g. that the edges 𝑒− and 𝑒𝐶 are incident to the outer faces of the drawings 𝐷𝐻 − and 𝐷𝐻𝐶 , respectively.

Let 𝐺 ′
be the graph obtained via the disjoint union of 𝐺−

and 𝐺𝐶 . Then, 𝐺 ′
is subhamiltonian because the cycle

𝐻 ′ = (𝑉 (𝐺 ′), (𝐸 (𝐻−) ∪ 𝐸 (𝐻𝐶) ∪ {𝑛−𝑛𝐶 , 𝑣−𝑣𝐶 }) \ {𝑒−, 𝑒𝐶 }) is a Hamiltonian cycle of 𝐺 ′
that has a planar drawing

𝐷𝐻 ′ which is obtained from the disjoint union of the drawing 𝐷𝐻 − and 𝐷𝐻𝐶 after adding the edges 𝑛−𝑛𝐶 and 𝑣−𝑣𝐶

using Observation 2. Then from Observation 4 (3) applied to 𝐺 ′
for the edge 𝑛−𝑛𝐶 ∈ 𝐸 (𝐻 ′), we conclude that 𝐺 is also

subhamiltonian, as desired. □

4.2 Defining the Types for Nodes in the SPQR-tree

Here, we define the types for nodes in the SPQR-tree that we will later compute using dynamic programming. In the

following, we assume that 𝐺 is a biconnected multi-graph with SPQR-tree B and the associated set T of sphere-cut

decompositions. Let 𝑏 be a node of B with pertinent graph Pe(𝑏) and reference edge 𝑒 = (𝑠, 𝑡). A type of 𝑏 is a triple

(𝜓,𝑀, 𝑆) such that (please refer also to Figure 4 for an illustration of some types):

• 𝜓 is a function from {𝐿, 𝑅} to subsets of {𝑙, 𝑙 ′, 𝑟 , 𝑟 ′} such that𝜓 (𝐿) ∈ {∅, {𝑙}, {𝑙, 𝑙 ′}} and𝜓 (𝑅) ∈ {∅, {𝑟 }, {𝑟, 𝑟 ′}}.
We denote by 𝑉 (𝜓) the set𝜓 (𝐿) ∪𝜓 (𝑅). Informally,𝜓 captures how many times the Hamiltonian cycle enters

and exits the graph Pe(𝑏) from the left (𝐿) and from the right (𝑅).

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

𝑠

𝑡

𝑙

𝑟

𝑟 ′

𝑠

𝑡

𝑙

𝑙 ′

𝑟

𝑟 ′

𝑠

𝑡

𝑙 𝑟

Fig. 4. The figure shows three different types of a node in an SPQR-tree with reference edge (𝑠, 𝑡) , i.e., the types shown are (from

left to right): ({ {𝐿 → {𝑙 }}, {𝑅 → {𝑟, 𝑟 ′ }}, {{𝑙, 𝑠 }, {𝑟, 𝑟 ′ }}, {𝑡 }) , ({ {𝐿 → {𝑙, 𝑙 ′ }}, {𝑅 → {𝑟, 𝑟 ′ }}, {{𝑙, 𝑠 }, {𝑙 ′, 𝑟 }, {𝑡, 𝑟 ′ }}, ∅) , and
({ {𝐿 → {𝑙 }}, {𝑅 → {𝑟 }}, {{𝑙, 𝑟 }}, {𝑡 }) . The subset of {𝑙, 𝑙 ′ } and {𝑟, 𝑟 ′ } that appears corresponds to𝜓 (𝐿) and𝜓 (𝑅) respectively.
The blue edges correspond to the matching𝑀 and the blue vertices corresponds to 𝑆 .

• 𝑀 ⊆ { {𝑢, 𝑣} | 𝑢, 𝑣 ∈ {𝑠, 𝑡} ∪ 𝑉 (𝜓) ∧ 𝑢 ≠ 𝑣 } and 𝑀 is a non-crossing matching w.r.t. the circular ordering

(𝑠, 𝑟, 𝑟 ′, 𝑡, 𝑙 ′, 𝑙) that matches all vertices in 𝑉 (𝜓) (i.e. 𝑉 (𝜓) ⊆ 𝑉 (𝑀)), where 𝑉 (𝑀) =
⋃
𝑒∈𝑀 𝑒 . Informally, 𝑀

captures the maximal path segments of the Hamiltonian cycle inside Pe(𝑏)∪𝑉 (𝜓) with endpoints in {𝑠, 𝑡}∪𝑉 (𝜓).
• 𝑆 ⊆ {𝑠, 𝑡} \ 𝑉 (𝑀). Informally, 𝑆 captures whether 𝑠 or 𝑡 are contained as inner vertices on path segments

corresponding to𝑀 .

We now provide the formal semantics of types; see Figure 4 for an illustration. Let X be the set of all types and

Pe
∗ (𝑏) be the graph obtained from Pe(𝑏) after adding the dummy vertices 𝑙 , 𝑙 ′, 𝑟 , and 𝑟 ′ together with the edges 𝑠𝑙 , 𝑙𝑙 ′,

𝑙 ′𝑡 , 𝑠𝑟 , 𝑟𝑟 ′, and 𝑟 ′𝑡 . We say that 𝑏 has type 𝑋 = (𝜓,𝑀, 𝑆) if there is a set P of vertex-disjoint paths or a single cycle in

the complete graph with vertex set 𝑉 (Pe∗ (𝑏)) such that:

• P consists of exactly one path 𝑃𝑒 between 𝑢 and 𝑣 for every 𝑒 = {𝑢, 𝑣} ∈ 𝑀 or P is a cycle and𝑀 = ∅.
• { IN(𝑃) | 𝑃 ∈ P } is a partition of (𝑉 (Pe(𝑏)) \ {𝑠, 𝑡}) ∪ 𝑆 , where IN(𝑃) denotes the set of inner vertices of 𝑃 .
• there is a planar drawing 𝐷 (𝑏,𝑋) of Pe∗ (𝑏) ∪⋃

𝑃∈P 𝑃 with outer-face 𝑓 such that 𝜎 (𝑓) = {𝑠, 𝑟, 𝑟 ′, 𝑡, 𝑙 ′, 𝑙}.

The way we define the types 𝑋 = (𝜓,𝑀, 𝑆) of a node 𝑏 allows us to associate each witness with a type based on the

restriction of the witness to the respective pertinent graph.

Formally, let𝑊 = (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) be a witness for 𝐺 that respects B. Then, the type of a node 𝑏 in the SPQR-tree of

𝐺 w.r.t.𝑊 , denoted by Γ𝑊 (𝑏), is obtained as follows. Let 𝐷𝑏
𝐻
be the drawing 𝐷𝐻 restricted to the region with border 𝑁𝑏

containing Pe(𝑏). Let C be the set of all curves in 𝐷𝑏
𝐻
corresponding to path segments of 𝐻 . Let 𝑃𝐿 (𝑃𝑅) be the set of all

endpoints of curves in C in 𝐿𝑏 (𝑅𝑏). Note that |𝑃𝐿 | ≤ 2 and |𝑃𝑅 | ≤ 2, the endpoints of every curve in C are from the set

{𝑠, 𝑡} ∪ 𝑃𝐿 ∪ 𝑃𝑅 , and the inner vertices of the curves represent a partition of 𝑉 (Pe(𝑏)) \ {𝑠, 𝑡}. W.l.o.g., we assume that

𝑃𝐿 ⊆ {𝑙, 𝑙 ′} and 𝑃𝑅 ⊆ {𝑟, 𝑟 ′}. We are now ready to define the type 𝑋 = (𝜓,𝑀, 𝑆) for 𝑏. Let𝑀 be the set containing the

set of endpoints for every curve in C, let𝜓 (𝐿) = 𝑃𝐿 and𝜓 (𝑅) = 𝑃𝑅 , and let 𝑆 ⊆ {𝑠, 𝑡} be the set that contains 𝑠 (or 𝑡) if 𝑠
(𝑡) occurs as an inner vertex of some curve in C. Then, the type of 𝑏 w.r.t.𝑊 is equal to (𝜓,𝑀, 𝑆). Note also that the

drawing 𝐷𝑏
𝐻
witnesses that 𝑏 has type (𝜓,𝑀, 𝑆).

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 15

4.3 Framework for Sphere-cut Decomposition

Here, we introduce our framework to simplify the computation of records via bottom-up dynamic programming along

a sphere-cut decomposition. Since the framework is independent of the type of records one aims to compute, we

believe that the framework is widely applicable and therefore interesting in its own right. In particular, we introduce a

simplified framework for computing the types of arcs (or, equivalently, nooses) in sphere-cut decompositions.

Indeed, the central ingredient of any dynamic programming algorithm on sphere-cut decompositions is a procedure

that given an inner node with parent arc 𝑎𝑃 and child arcs 𝑎𝐿 and 𝑎𝑅 computes the set of types for the noose 𝑂𝑎𝑃 from

the set of types for the nooses 𝑂𝑎𝐿 and 𝑂𝑎𝑅 . Unfortunately, there is no simple way to obtain 𝑂𝑎𝑃 from 𝑂𝑎𝐿 and 𝑂𝑎𝑅

and this is why computing the set of types for 𝑂𝑎𝑃 from the set of types for 𝑂𝑎𝐿 and 𝑂𝑎𝑅 usually involves a technical

and cumbersome case distinction [18]. To circumvent this issue, we introduce a simple operation, i.e., the ⊕ (XOR)
operation defined below, and show that the noose 𝑂𝑎𝑝 can be obtained from the nooses 𝑂𝑎𝐿 and 𝑂𝑎𝑅 using merely a

short sequence—one of length at most four—of ⊕ operations.

Central to our framework is the notion ofweak nooses, which are defined below and can be seen as intermediate results

in the above-mentioned sequence of simple operations from the child nooses to the parent noose; in particular, weak

nooses are made up of subcurves of the nooses in the sphere-cut decomposition. Let 𝐺 be a biconnected multi-graph

and let B be an SPQR-tree of 𝐺 . Let 𝑏 be an R-node or S-node of B with pertinent graph Pe(𝑏). Let ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ be
a sphere-cut decomposition of Sk(𝑏) and 𝑎 be an arc of 𝑇𝑏 with pertinent graph Pe(𝑏, 𝑎). Let 𝐶 (𝑇𝑏) be the set of all
subcurves of all nooses occurring in 𝑇𝑏 , i.e.,𝐶 (𝑇𝑏) =

⋃
𝑎∈𝐸 (𝑇𝑏) 𝑂𝑎 where𝑂𝑎 is seen as a set of subcurves. We say𝑂 is a

weak noose if 𝑂 is a noose consisting only of subcurves from 𝐶 (𝑇𝑏).
We now create the equivalent definition of𝑚𝑖𝑑 (𝑎), which is defined on subsets of subcurves in 𝐶 (𝑇𝑏) (and therefore

also weak nooses) instead of on arcs in the sphere-cut decomposition, as follows. For 𝑂 ⊆ 𝐶 (𝑇𝑏), the set 𝑉 (𝑂) is equal
to

⋃
({𝑢,𝑣},𝑓) ∈𝑂 {𝑢, 𝑣}; note that this definition is equivalent to the definition given for arcs, i.e.,𝑚𝑖𝑑 (𝑎) = 𝑉 (𝑂𝑎) holds

for every arc 𝑎 of 𝑇𝑏 . We also define Pe(𝑏,𝑂) and Sk(𝑏,𝑂) as the subgraph of Pe(𝑏) and Sk(𝑏), respectively, that is
contained inside the weak noose 𝑂 ; note that in particular Pe(𝑏,𝑂𝑎) = Pe(𝑏, 𝑎) and Sk(𝑏,𝑂𝑎) = Sk(𝑏, 𝑎) for any arc 𝑎

of 𝑇𝑏 .

While the above definitions are general, in our setting it will be sufficient to restrict our attention to “local” weak

nooses consisting of 𝑂𝑎𝑃 ∪𝑂𝑎𝐿 ∪𝑂𝑎𝑅 , where 𝑎𝑃 is a parent arc for arcs 𝑎𝐿 and 𝑎𝑅 . Moreover, every weak noose 𝑂

in our setting will either separate an edge-less graph with three nodes from 𝑉 (Sk(𝑏)), or separate the graph Sk(𝑏, 𝑎)
(where 𝑎 ∈ 𝐸 (𝑇𝑏)) with at most one extra node from the rest of the graph.

Having defined weak nooses, we will now define our simplified operation. Let 𝐴 ⊕ 𝐵 be an exclusive or for two

sets 𝐴 and 𝐵, i.e. 𝐴 ⊕ 𝐵 = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵). We will apply the ⊕-operation to weak nooses, whose ⊕ is again a weak

noose. The following lemma, whose setting is illustrated in Figure 5, is central to our framework as it shows that we

can always obtain the noose for the parent arc 𝑎𝑃 from the nooses of the child arcs 𝑎𝐿 and 𝑎𝑅 using a short sequence of

⊕-operations such that every intermediate result is a weak noose. Therefore, using our framework it is now sufficient

to show how to compute the set of types for a weak noose𝑂 from the set of types of two weak nooses𝑂1 and𝑂2 given

that 𝑂 can be obtained as 𝑂1 ⊕ 𝑂2. This greatly simplifies the computation of types and can potentially be also applied

to simplify dynamic programming algorithms on sphere-cut decompositions for other problems in the future.

Lemma 18. Let 𝑎𝑃 be a parent arc with two child arcs 𝑎𝐿 and 𝑎𝑅 in a sphere-cut decomposition ⟨𝑇, 𝜆,Π⟩ of a biconnected
multi-graph 𝐺 with the drawing 𝐷 . There exists a sequence 𝑄 of at most 3 ⊕-operations such that:

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

• each step generates a weak noose 𝑂 with |𝑂 | ≤ 1 +max{|𝑚𝑖𝑑 (𝑎𝑃) |, |𝑚𝑖𝑑 (𝑎𝐿) |, |𝑚𝑖𝑑 (𝑎𝑅) |} as the ⊕-operation of

two weak nooses 𝑂1 and 𝑂2, whose inside region contains all subcurves in (𝑂1 ∩𝑂2),
• the last step generates the noose 𝑂𝑎𝑃 ,

• 𝑄 contains 𝑂𝑎𝐿 and 𝑂𝑎𝑅 and at most two new weak nooses, each of them bounds the edge-less graph of size 3.

Proof. Using Condition (ii) in the definition of sphere-cut decompositions together with certain planar properties,

it is straightforward to show that, the intersection of any two of the nooses𝑂𝑎𝑃 ,𝑂𝑎𝐿 , and𝑂𝑎𝑅 , interpreted as curves, is

a single segment and that the intersection of all three contains at most two points. Therefore, we obtain the following

fact:

(*) The difference between the curve 𝑂𝑎𝑃 and the curve 𝑂𝑎𝐿 ∪𝑂𝑎𝑅 corresponds to at most two segments 𝑠1 and 𝑠2.

Let 𝑂 ′
be the set of subcurves 𝑂𝑎𝑃 ⊕ 𝑂𝑎𝐿 ⊕ 𝑂𝑎𝑅 . Note that 𝑂 ′

is a union of simple closed curves (weak nooses) that

do not share any subcurve, since it is obtained from ⊕-operations of simple closed curves and because𝑂𝑎𝐿 and𝑂𝑎𝑅 are

inside 𝑂𝑎𝑃 and the insides of 𝑂𝑎𝐿 and 𝑂𝑎𝑅 are disjoint; please also refer to Figure 5 for an illustration of the current

setting. Since Sk(𝑏, 𝑎𝑃) = Sk(𝑏, 𝑎𝐿) ∪ Sk(𝑏, 𝑎𝑅) and 𝑂 ′
is outside of 𝑂𝑎𝐿 and 𝑂𝑎𝑅 but inside 𝑂𝑎𝑃 , all weak nooses 𝑂

from 𝑂 ′
bound an edge-less graph. Therefore, all of the subcurves from 𝑂 are inside the same face of 𝐷 . This together

with Condition (ii), implies that every weak noose 𝑂 in 𝑂 ′
contains exactly one subcurve from each 𝑂𝑎𝑃 , 𝑂𝑎𝐿 and 𝑂𝑎𝑅 .

Therefore, using the fact that the weak nooses in 𝑂 ′
do not share any subcurve together with (*), we obtain that 𝑂 ′

contains at most two weak nooses (one for each of the at most two segments 𝑠1 and 𝑠2). In summary, 𝑂 ′
is a union of at

most two weak nooses and each of them bounds an edge-less graph of size 3.

Now we are going to define a sequence of operations 𝑄 that satisfies the conditions set out in the Lemma. In order to

achieve this goal, we will make use of the following observation:

(**) If |𝑉 (𝑂𝑎) ∩𝑉 (𝑂) | = 2, then 𝑂𝑎 ⊕ 𝑂 is a weak noose, where 𝑂 is a weak noose from 𝑂 ′
, and 𝑎 ∈ {𝑎𝐿, 𝑎𝑅}.

Below we distinguish between three cases, depending on the number of weak nooses 𝑂 ′
is made of.

• If 𝑂 ′ = ∅ then 𝑄 = 𝑂𝑎𝐿 ⊕ 𝑂𝑎𝑅 .
• If 𝑂 ′

consists of only one weak noose 𝑂1, then we do the following. If |𝑉 (𝑂𝑎𝐿) ∩ 𝑉 (𝑂1) | = 2, then we can

use the sequence 𝑄 = (𝑂𝑎𝐿 ⊕ 𝑂1) ⊕ 𝑂𝑎𝑅 . Similarly, if |𝑉 (𝑂𝑎𝑅) ∩𝑉 (𝑂1) | = 2, then we can use the sequence

𝑄 = (𝑂𝑎𝑅 ⊕ 𝑂1) ⊕ 𝑂𝑎𝐿 .
Otherwise, |𝑉 (𝑂𝑎𝐿) ∩𝑉 (𝑂1) | = |𝑉 (𝑂𝑎𝑅) ∩𝑉 (𝑂1) | = 3. Let 𝑐 = ({𝑢, 𝑣}, 𝑓) be the common subcurve of𝑂𝑎𝑃 ∩𝑂1.

Then, 𝑐 ∉ 𝑂𝑎𝐿 ∪𝑂𝑎𝑅 and 𝑢, 𝑣 ∈ 𝑉 (𝑂𝑎𝐿) ∩𝑉 (𝑂𝑎𝑅).
If |𝑂𝑎𝑃 | = 1, then 𝐺 is not biconnected which is against our assumption, otherwise |𝑂𝑎𝑃 | > 1, but then

𝑂𝑎𝑃 ∩𝑂𝑎𝐿 ∩𝑂𝑎𝑅 is not empty, which contradicts our previous observation that the intersection of all three

nooses 𝑂𝑎𝑃 , 𝑂𝑎𝐿 , and 𝑂𝑎𝑅 (seen as curves) is at most two points.

• If 𝑂 ′
consists of two weak nooses 𝑂1 and 𝑂2, then for every 𝑎 ∈ {𝑎𝐿, 𝑎𝑅} and 𝑖 ∈ {1, 2}, it holds that 𝑂𝑎 ⊕𝑂𝑖 is

a weak noose, which can be seen as follows. Because of (*), we obtain that |𝑉 (𝑂𝑎) ∩𝑉 (𝑂𝑖) | = 2 which together

with (**) implies that𝑂𝑎 ⊕𝑂𝑖 is a weak noose. Therefore, we can use the sequence𝑄 = (𝑂𝑎𝐿 ⊕𝑂1) ⊕ (𝑂𝑎𝑅 ⊕𝑂2).

Note that, for each ⊕-operation between𝑂1 and𝑂2 in the solution𝑄 , the region𝑂1 ⊕𝑂2 contains subcurves𝑂1 ∩𝑂2,

because intersection between any two regions made from nooses from 𝑄 is only part of their boundaries. Moreover, to

show that |𝑂 | ≤ 1 +max{|𝑚𝑖𝑑 (𝑎𝑃) |, |𝑚𝑖𝑑 (𝑎𝐿) |, |𝑚𝑖𝑑 (𝑎𝑅) |} for every weak noose 𝑂 obtained as an intermediate step, it

suffices to consider case that 𝑂 is obtained from one of the at most parts 𝑂 ′′
of 𝑂 ′

and 𝑂𝑎 for 𝑎 ∈ {𝑎𝐿, 𝑎𝑅}. But this
follows because 𝑉 (𝑂 ′′) contains only one vertex that is not in 𝑉 (𝑂). □

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 17

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑢7

𝑢8

𝑂𝑎𝐿

𝑂𝑎𝑅

𝑂1 𝑂2

𝑂𝑎𝑃

Fig. 5. An illustration of the relationship of the parent noose𝑂𝑎𝑃 and the child nooses𝑂𝑎𝐿 and𝑂𝑎𝑅 . The illustration represents

the case of Lemma 18 where 𝑂 ′ = 𝑂𝑎𝑃 ⊕ 𝑂𝑎𝐿 ⊕ 𝑂𝑎𝑅 consists of two disjoint weak nooses (triangles) 𝑂1 and 𝑂2. Let 𝑐𝑖,𝑗 be a

curve between 𝑢𝑖 , 𝑢 𝑗 then all nooses are defined as follows: 𝑂𝑎𝑃 = {𝑐2,3, 𝑐3,4, 𝑐4,6, 𝑐6,7, 𝑐7,8, 𝑐2,8}, 𝑂𝑎𝐿 = {𝑐1,2, 𝑐2,3, 𝑐3,4, 𝑐4,5, 𝑐1,5},
𝑂𝑎𝑅 = {𝑐1,5, 𝑐5,6, 𝑐6,7, 𝑐7,8, 𝑐1,8},𝑂1 = {𝑐1,2, 𝑐2,8, 𝑐1,8},𝑂2 = {𝑐4,5, 𝑐5,6, 𝑐4,6},𝑂 ′ = 𝑂1 ∪𝑂2.

We are now ready to define the types of weak nooses, which informally can be seen as a generalization of the types

of nodes in an SPQR-tree introduced in Subsection 4.2. An illustration of the types is also provided in Figure 7. In the

following we fix an arbitrary order 𝜋𝐺 of the vertices in 𝐺 . A type of a weak noose 𝑂 is a triple (𝜓,𝑀, 𝑆) such that:

• 𝜓 is a function that for each subcurve 𝑐 = ({𝑢, 𝑣}, 𝑓) in 𝑂 returns a sequence of at most two new nodes.

Informally, these two nodes are on the subcurve 𝑐 (in the order given by𝜓 (𝑐)) and if 𝜋𝐺 (𝑢) < 𝜋𝐺 (𝑣) we assume

that [𝑢,𝜓 (𝑐), 𝑣] is the sequence of nodes on the subcurve 𝑐 .

• 𝑆 is a subset of 𝑉 (𝑂).
• 𝑀 ⊆ { {𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 (𝜓) ∪ (𝑉 (𝑂) \ 𝑆) ∧ 𝑢 ≠ 𝑣 }, 𝑉 (𝜓) ⊆ 𝑉 (𝑀), and 𝑀 is a non-crossing matching w.r.t. the

circular order 𝜋◦ (𝜓) defined as follows. 𝜋◦ (𝜓) is the circular order obtained from the circular order 𝜋◦ (𝑂) of
𝑉 (𝑂) after adding𝜓 (𝑐) between 𝑢 and 𝑣 , for every 𝑐 = ({𝑢, 𝑣}, 𝑓) ∈ 𝑂 assuming that 𝜋𝐺 (𝑢) < 𝜋𝐺 (𝑣).

Let 𝑂 be a weak noose and 𝑋 = (𝜓,𝑀, 𝑆) be a type. We define the graph Pe𝑋 (𝑏,𝑂) as the graph obtained from

Pe(𝑏,𝑂) after adding the vertices in 𝑉 (𝜓) and all edges on the cycle 𝜋◦ (𝜓). We say that𝑂 has type 𝑋 if there is a set P
of vertex-disjoint paths or a cycle in the complete graph with vertex set 𝑉 (Pe𝑋 (𝑏,𝑂)) such that:

• P consists of exactly one path 𝑃𝑒 between 𝑢 and 𝑣 for every 𝑒 = {𝑢, 𝑣} ∈ 𝑀 or P is a cycle and𝑀 = ∅.
• { IN(𝑃) | 𝑃 ∈ P } is a partition of

(
𝑉 (Pe(𝑏,𝑂)) \𝑉 (𝑂)

)
∪ 𝑆 , where IN(𝑃) denotes the set of inner vertices of 𝑃 .

• there is a planar drawing 𝐷𝑋 of Pe𝑋 (𝑏,𝑂) ∪⋃P with outer-face 𝑓 such that 𝜎 (𝑓) = 𝜋◦ (𝜓).

We also say that the fact that 𝑂 has type 𝑋 is witnessed by the pair (P, 𝐷𝑋). We say that type 𝑋 = (𝜓,𝑀, 𝑆) of 𝑂 is the

full type, if𝑀 = ∅ and 𝑆 = 𝑉 (𝑂), which informally means that P is a Hamiltonian cycle. Moreover we say that type 𝑋

is the empty type, if𝑀 = 𝑆 = ∅, which may only occur when Pe(𝑏,𝑂) is merely an edge.

Lemma 19. Let 𝑂 be weak noose. Then, the number of types defined on 𝑂 is at most 28
|𝑂 |

and all possible types for 𝑂 can

be enumerated in time O(28 |𝑂 | |𝑂 |).

Proof. Let 𝑋 = (𝜓,𝑀, 𝑆) be a type that can be defined on a weak noose𝑂 . Let 𝐷𝑊 be the Dyck word corresponding

to the matching𝑀 from Observation 11. For each 𝑣 ∈ 𝑉 (𝑂) there are 4 possibilities of the role of 𝑣 in type 𝑋 , i.e., 𝑣 ∈ 𝑆 ,
𝑣 ∉ 𝑆 ∪𝑉 (𝑀) or 𝑣 ∈ 𝑉 (𝑀) and 𝑣 corresponds to either ”[” or ”]” in 𝐷𝑊 . Note that due to the type definition we get

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

that 𝑉 (𝜓) ⊆ 𝑉 (𝑀). Therefore for each 𝑣 ∈ 𝑉 (𝜓) there are 2 possibilities of the role of 𝑣 in 𝑋 , i.e., 𝑣 corresponds to ”[”
or ”]” in 𝐷𝑊 . For each subcurve 𝑐 ∈ 𝑂 , there are 3 possible values {∅, [𝑥], [𝑥, 𝑥 ′]} for 𝜓 (𝑐), and therefore there are

1 + 2 + 4 = 7 possibilities, i.e., 1, 2, and 4 possibilities in case that𝜓 (𝑐) = ∅,𝜓 (𝑐) = [𝑥], and𝜓 (𝑐) = [𝑥, 𝑥 ′], respectively,
of the role of 𝑐 in type 𝑋 . Furthermore, since |𝑂 | = |𝑉 (𝑂) |, there are at most 4

|𝑂 |
7
|𝑂 | = 28

|𝑂 |
types that can be defined

on 𝑂 .

We can generate all types, by choosing a starting vertex on 𝑉 (𝑂) together with a direction. We can then assign a

role to each vertex in 𝑉 (𝑂) and every subcurve of 𝑂 and verify that the corresponding word is a Dyck word in time

O(|𝑂 |) and if so translate it into a type description using Observation 11. Since there are at most 28
|𝑂 |

possibilities to

check and each can be checked in time O(|𝑂 |), we obtain O(28 |𝑂 | |𝑂 |) as the total run-time to enumerate all possible

types for 𝑂 . □

Finally, we now defined the type of weak nooses for a given witness. Let𝑊 = (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) be a witness for 𝐺
that respects T and let 𝑏 be an R-node or an S-node with sphere-cut decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ ∈ T . Then, the type of

a weak noose 𝑂 ⊆ 𝐶 (𝑇𝑏) w.r.t.𝑊 , denoted by Γ𝑊 (𝑏,𝑂), is obtained as follows. Let 𝐷′
𝐻
be the drawing obtained from

𝐷𝐻 after adding the noose 𝑂 . Then, because𝑊 respects T , it holds that every subcurve 𝑐 ∈ 𝑂 is crossed at most twice

in 𝐷′
𝐻
. In the following we will assume that we replaced every such crossing with a new vertex in 𝐷′

𝐻
and that these

vertices are also introduced into 𝐺𝐻 and 𝐻 . Moreover, we let𝜓 (𝑐) be the sequence of (the at most two) new vertices

introduced in this way for the subcurve 𝑐 = ({𝑢, 𝑣}, 𝑓) ∈ 𝑂 such that [𝑢,𝜓 (𝑐), 𝑣] is the ordering of the vertices on 𝑐

assuming that 𝜋𝐺 (𝑢) < 𝜋𝐺 (𝑣). Let 𝐷𝑂𝐻 be the drawing 𝐷′
𝐻
restricted to Pe(𝑏,𝑂) ∪𝑉 (𝜓) and let𝐺𝑂

𝐻
and 𝐻𝑂 be obtained

in the same way from𝐺𝐻 and 𝐻 , respectively. Let 𝑓𝑂 be the face in 𝐷𝑂
𝐻
such that 𝑉 (𝑓𝑂) = 𝑉 (𝑂) ∪𝑉 (𝜓). Let P be a set

of all maximal paths in 𝐻𝑂 each of size at least 2. Then, 𝑆 is the set of all vertices in 𝑉 (𝑂) that have degree two in P
and the matching𝑀 contains edge between the endpoints of every path in P. Then, the type Γ𝑊 (𝑏,𝑂) is equal to the

triple 𝑋 = (𝜓,𝑀, 𝑆). Note that 𝑋 satisfies all properties of a type because of the following. First every node 𝑣 in 𝑉 (𝜓)
has degree 1 in P and therefore 𝑉 (𝜓) ⊆ 𝑉 (𝑀). Moreover,𝑀 is a non-crossing matching w.r.t. 𝜋◦ (𝜓) = 𝜎 (𝑓𝑂) because
𝐷𝑂
𝐻
is a planar drawing of P with face 𝑓𝑂 . Therefore, the weak noose 𝑂 has type 𝑋 and this is witnessed by the pair

(P, 𝐷𝑂
𝐻
).

5 An FPT-algorithm for SUBHAM using Treewidth

In this sectionwe show that SUBHAM admits a constructive single-exponential fixed-parameter algorithm parameterized

by treewidth.

Theorem 20. SUBHAM can be solved in time 2
O(tw) · 𝑛O(1)

, where tw is the treewidth of the input graph.

Since the treewidth of an 𝑛-vertex planar graph is upper-bounded by O(
√
𝑛) [28, 43, 49] and there are single-

exponential constant-factor approximation algorithms for treewidth [40], Theorem 20 immediately implies the following

corollary.

Corollary 21. SUBHAM can be solved in time 2
O(

√
𝑛)
.

The main component used towards proving Theorem 20 is the following lemma.

Lemma 22. Let 𝐺 be a biconnected multi-graph with 𝑛 vertices and𝑚 edges and SPQR-tree B. Then, we can decide in

time O(315𝜔𝑛 + 𝑛3) whether 𝐺 is subhamiltonian, where 𝜔 is the maximum branchwidth of Sk(𝑏) over all R-nodes and
S-nodes 𝑏 of B.

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 19

With the help of Lemma 22, Theorem 20 can now be easily shown as follows.

Proof of Theorem 20. Let𝐺 be the graph given as input to SUBHAM having 𝑛 vertices and𝑚 edges. Because of

Theorem 17, we can assume that 𝐺 is biconnected since we can otherwise solve every biconnected component of 𝐺

independently. We first test whether𝐺 is planar, which is well-known do be achievable in linear-time [37]. If this is not

the case, the algorithm correctly outputs no. Otherwise, the algorithm uses Lemma 5 to compute an SPQR-tree B of 𝐺

with at most O(𝑚) nodes and edges inside skeletons in time at most O(𝑛 +𝑚); note that O(𝑚) = O(𝑛) because 𝐺 is

planar. We then employ Lemma 22 to solve SUBHAM in time O(315𝜔𝑛 + 𝑛3), where 𝜔 is the maximum branchwidth of

Sk(𝑏) over all R-nodes and S-nodes 𝑏 of B. Since𝜔 is an upper bound on the branchwidth of𝐺 , we obtain from Lemma 7

that the branchwidth of 𝐺 is at most the treewidth tw(𝐺) of 𝐺 plus 1, which implies that SUBHAM can be solved in

time O(315tw(𝐺)𝑛 + 𝑛3), as required. □

The remainder of this section is therefore devoted to a proof of Lemma 22, which we show by providing a bottom-up

dynamic programming algorithm along the SPQR-tree of the graph. That is, let 𝐺 be a biconnected multi-graph, B
be an SPQR-tree of 𝐺 with associated set T of sphere-cut decompositions for every R-node and S-node of B. Using a

dynamic programming algorithm starting at the leaves of B, we will compute a set R(𝑏) of all types 𝑋 satisfying the

following two conditions:

(R1) If 𝑋 ∈ R(𝑏), then 𝑏 has type 𝑋 .

(R2) If there is a witness𝑊 = (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) for 𝐺 that respects B such that 𝑏 has type 𝑋 = Γ𝑊 (𝑏), then 𝑋 ∈ R(𝑏).

Interestingly, we do not know whether it is possible to compute the set of all types 𝑋 such that 𝑏 has type 𝑋 as one

would usually expect to be able to do when looking at similar algorithms based on dynamic programming. That is,

we do not know whether one can compute the set of types that also satisfies the reverse direction of (R1). While we

do not know, we suspect that this is not the case because 𝑏 might have a type that can only be achieved by crossing

some sub-curves of nooses inside of Pe(𝑏) more than twice. Indeed Lemma 15, which allows us to avoid more than two

crossings per sub-curve, requires the property that the type of 𝑏 can be extended to a Hamiltonian cycle of the whole

graph, which is clearly not necessarily the case for every possible type of 𝑏.

This section is organized as follows. First in Subsection 5.1, we show how to compute R(𝑏) for every P-node 𝑏

of B. This is probably the most challenging part of the algorithm and we show that instead of having to enumerate

all possible orderings among the children of 𝑏 in B, we merely have to consider a constant number children and

their orderings. This allows us to compute R(𝑏) very efficiently in time O(ℓ), where ℓ is the number of children of

𝑏 in B. Then, in Subsection 5.2, we show how to compute R(𝑏) for any R-node and S-node 𝑏 of B using a dynamic

programming algorithm on a sphere-cut decomposition of Sk(𝑏). We then put everything together and show Lemma 22

in Subsection 5.3.

5.1 Handling P-nodes

In this part, we show how to compute the set of types for any 𝑃-node in the given SPQR-tree by establishing the

following lemma.

Lemma 23. Let 𝑏 be a P-node of B such that R(𝑐) has already been computed for every child 𝑐 of 𝑏 in B. Then, we can

compute R(𝑏) in time O(ℓ), where ℓ is the number of children of 𝑏 in B.

In the following, let 𝑏 be a P-node of B with reference edge (𝑠, 𝑡) and let 𝐶 with |𝐶 | = ℓ be the set of all children of

𝑏 in B. Informally, R(𝑏) is the set of types 𝑋 such that there is an ordering 𝜌 = (𝑐1, . . . , 𝑐ℓ) of the children in 𝐶 and

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

s

t

Fig. 6. An illustration of how a Hamiltonian Cycle in normal form can interact with a drawing of Pe(𝑏) for a P-node 𝑏 of B. Here,

the pertinent graphs Pe(𝑐) for all children 𝑐 of 𝑏 (without the nodes 𝑠 and 𝑡 of the common reference edge (𝑠, 𝑡)) are represented by

gray ellipses. The Hamiltonian cycle is given in blue with dashed segments representing path segments outside of Pe(𝑏) . The red
curves represent the subcurves of 𝑁𝑐 for every child 𝑐 of 𝑏. Note again that the subcurves 𝑅𝑐 and 𝐿𝑐′ are identical for every two

children 𝑐 and 𝑐′ such that Pe(𝑐) is drawn immediately to the left of Pe(𝑐′) . The drawing is in normal form, i.e., is a drawing that
respects the nooses 𝑁𝑐 for every child 𝑐 of 𝑏, because every red curve is intersected by 𝐻 at most twice. In this figure all but the types

of the second and fourth pertinent graph are clean. Moreover, the type of the third and fifth pertinent graphs are 1-good and 2-good,

respectively, and the types of all other pertinent graphs are bad.

an assignment 𝜏 : 𝐶 → X of children to types with 𝜏 (𝑐) ∈ R(𝑐) for every child 𝑐 ∈ 𝐶 that “realizes” the type 𝑋 for

𝑏. The main challenge is to compute R(𝑏) efficiently, i.e., without having to enumerate all possible orderings 𝜌 and

assignments 𝜏 . Below, we make this intuition more precise before proceeding.

For a type 𝑋 = (𝜓,𝑀, 𝑆) of 𝑏 and 𝐴 ∈ {𝐿, 𝑅}, we let #𝐴 (𝑋) = |𝜓 (𝐴) |. Moreover, for every 𝐴 ∈ {𝑠, 𝑡}, we set #𝐴 (𝑋)
to be equal to 2 if 𝐴 ∈ 𝑆 , equal to 1 if 𝐴 ∈ 𝑉 (𝑀) and equal to 0 otherwise. Next, let 𝜌 = (𝑋1, . . . , 𝑋ℓ) be a sequence of
types, where 𝑋𝑖 = (𝜓𝑖 , 𝑀𝑖 , 𝑆𝑖) for every 𝑖 with 1 ≤ 𝑖 ≤ ℓ . We say that 𝜌 is weakly compatible if the following holds:

(C1) for every 𝑖 with 1 ≤ 𝑖 < ℓ , #𝑅 (𝑋𝑖) = #𝐿 (𝑋𝑖+1), and
(C2)

∑ℓ
𝑖=1 #𝑠 (𝑋𝑖) ≤ 2 and

∑ℓ
𝑖=1 #𝑡 (𝑋𝑖) ≤ 2.

Note that (C1) corresponds to our assumption made in Lemma 10 that we can add the nooses 𝑁𝑏 to any planar drawing

𝐷 of 𝐺 such that every face of 𝐷 contains at most one subcurve of any 𝑁𝑏 . This in particular means that if Pe(𝑐) is
drawn immediately to the left of Pe(𝑐′) for two children 𝑐 and 𝑐′ of 𝑏, then the subcurves 𝑅𝑐 and 𝐿𝑐′ are identical. Please

also refer to Figure 6 for an illustration of these subcurves.

Let 𝜌 be weakly compatible. We define the following auxiliary graph 𝐻 (𝜌). 𝐻 (𝜌) has two vertices 𝑠 and 𝑡 and

additionally for every 𝑖 with 1 ≤ 𝑖 ≤ ℓ and every vertex 𝑣 ∈ 𝑉 (𝜓), 𝐻 (𝜌) has a vertex 𝑣𝑖 . For convenience, we also use 𝑠𝑖

and 𝑡𝑖 to refer to 𝑠 and 𝑡 , respectively. Moreover, 𝐻 (𝜌) has the following edges:

• for every 1 ≤ 𝑖 ≤ ℓ if𝑀𝑖 = ∅ and 𝑆𝑖 = {𝑠𝑖 , 𝑡𝑖 }, 𝐻 (𝜌) has a cycle on 𝑠𝑖 and 𝑡𝑖 ,
• for every 1 ≤ 𝑖 ≤ ℓ if𝑀𝑖 ≠ ∅ then for every 𝑒 = {𝑢, 𝑣} ∈ 𝑀𝑖 , 𝐻 (𝜌) has the edge {𝑢𝑖𝑣𝑖 },

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 21

• for every 1 ≤ 𝑖 < ℓ , 𝐻 (𝜌) contains the edge {𝑟𝑖 , 𝑙𝑖+1} if 𝑟 ∈ 𝜓𝑖 (𝑅) and 𝑙 ∈ 𝜓𝑖+1 (𝐿),
• for every 1 ≤ 𝑖 < ℓ , 𝐻 (𝜌) contains the edge {𝑟 ′

𝑖
, 𝑙 ′
𝑖+1} if 𝑟

′ ∈ 𝜓𝑖 (𝑅) and 𝑙 ′ ∈ 𝜓𝑖+1 (𝐿).

Lemma 24. Let 𝜌 be weakly compatible. Then, 𝐻 (𝜌) is planar.

Proof. Because𝑀𝑖 is a non-crossing matching w.r.t. the cyclic ordering (𝑠, 𝑟, 𝑟 ′, 𝑡, 𝑙 ′, 𝑙) for every 𝑖 ∈ [1, ℓ], it holds
that the graph 𝐻 (𝜌) induced by the vertices in {𝑠𝑖 , 𝑡𝑖 } ∪𝑉 (𝜓𝑖) has a planar drawing 𝐷𝑖 , where𝜓𝑖 (𝐿) are placed to the

east, 𝑠 is placed in the north,𝜓𝑖 (𝑅) is placed in the west, and 𝑡 is placed on the south. Taking the disjoint union of the

drawings 𝐷𝑖 ordered 𝐷1, . . . , 𝐷ℓ from east to west and identifying all 𝑠′
𝑖
𝑠 with 𝑠 and all 𝑡𝑖 ’s with 𝑡 , then gives a planar

drawing of 𝐻 (𝜌). □

We say that 𝜌 is compatible if it is weakly compatible and furthermore either 𝐻 (𝜌) is acyclic, or 𝐻 (𝜌) − (⋃ℓ
𝑖=1 𝑆𝑖) is

a single (Hamiltonian) cycle.

Lemma 25. Let 𝜌 be compatible such that 𝐻 (𝜌) is acyclic. Then, 𝐻 (𝜌) is the disjoint union of paths whose endpoints are

in {𝑠, 𝑡, 𝑙1, 𝑙 ′
1
, 𝑟ℓ , 𝑟

′
ℓ
}. Moreover, no vertex in {𝑙1, 𝑙 ′

1
, 𝑟ℓ , 𝑟

′
ℓ
} can be an inner vertex of those paths.

Proof. We first show that the degree of every vertex in 𝐻 (𝜌) is at most two. Because of (C2) this clearly holds

for the vertices 𝑠 and 𝑡 . Moreover, every vertex in 𝑣 ∈ {𝑙𝑖 , 𝑙 ′𝑖 , 𝑟𝑖 , 𝑟
′
𝑖
} for any 𝑖 with 1 ≤ 𝑖 ≤ ℓ has exactly one neighbor

among {𝑙𝑖 , 𝑙 ′𝑖 , 𝑟𝑖 , 𝑟
′
𝑖
, 𝑠, 𝑡} and at most one neighbor in 𝑉 (𝐻 (𝜌)) \ {𝑙𝑖 , 𝑙 ′𝑖 , 𝑟𝑖 , 𝑟

′
𝑖
, 𝑠, 𝑡}. Therefore, 𝐻 (𝜌) has maximum degree

at most two and since 𝐻 (𝜌) is acyclic, 𝐻 (𝜌) is a disjoint union of paths. Moreover, the vertices {𝑙1, 𝑙 ′
1
, 𝑟ℓ , 𝑟

′
ℓ
} have degree

exactly one and hence cannot be inner vertices of the paths. Finally, since every vertex of 𝐻 (𝜌) apart from the vertices

{𝑠, 𝑡, 𝑙1, 𝑙 ′
1
, 𝑟ℓ , 𝑟

′
ℓ
} must have degree exactly two, only these vertices can act as endpoints of the paths. □

In the following let 𝜌 = (𝑋1, . . . , 𝑋ℓ) be compatible. We now define the type 𝑋 associated with 𝜌 , which we denote by

𝑋 (𝜌), as follows. If 𝐻 (𝜌) is a single cycle and {𝑠, 𝑡} ⊆ ⋃ℓ
𝑖=1 𝑆𝑖 , then we set 𝑋 (𝜌) = (𝜓, ∅, {𝑠, 𝑡}), where𝜓 (𝐿) = 𝜓 (𝑅) = ∅.

Otherwise, let P(𝜌) be the set of paths in 𝐻 (𝜌), which due to Lemma 25 have their endpoints in {𝑠, 𝑡, 𝑙1, 𝑙 ′
1
, 𝑟ℓ , 𝑟

′
ℓ
}. Then,

we set 𝑋 (𝜌) = (𝜓,𝑀, 𝑆), where 𝜓 , 𝑀 , and 𝑆 are defined as follows. 𝑀 contains the set {𝑢, 𝑣} for every path in P(𝜌)
with endpoints 𝑢 and 𝑣 ; for brevity, we denote 𝑙1, 𝑙

′
1
, 𝑟ℓ , 𝑟

′
ℓ
as 𝑙 , 𝑙 ′, 𝑟 , 𝑟 ′, respectively. Moreover,𝜓 (𝐿) = 𝑉 (𝑀) ∩ {𝑙, 𝑙 ′},

𝜓 (𝑅) = 𝑉 (𝑀) ∩ {𝑟, 𝑟 ′}, and 𝑆 contains 𝑠 (𝑡) if
∑ℓ
𝑖=1 #𝑠 (𝑋𝑖) = 2 (

∑ℓ
𝑖=1 #𝑡 (𝑋𝑖) = 2). This completes the definition of 𝑋 (𝜌),

which can be easily seen to be a type for 𝑏 because 𝐺 (𝜌) is planar due to Lemma 24.

We say that 𝜌 is realizable if there is an ordering 𝜋 = (𝑐1, . . . , 𝑐ℓ) of the children in 𝐶 and an assignment 𝜏 : 𝐶 → X
from children to types with 𝜏 (𝑐) ∈ R(𝑐) for every 𝑐 ∈ 𝐶 such that 𝜌 = 𝜏 (𝜋) = (𝜏 (𝑐1), . . . , 𝜏 (𝑐ℓ)). Below, we prove that if
𝜌 is a compatible and realizable, then 𝑏 has type 𝑋 (𝜌).

Lemma 26. Let 𝜌 be compatible and realizable. Then, 𝑏 has type 𝑋 (𝜌).

Proof. Let (𝜋, 𝜏) with 𝜋 = (𝑐1, . . . , 𝑐ℓ) be the ordering and assignment that witnesses that 𝜌 is realizable. Since

𝜏 (𝑐) = (𝜓𝑐 , 𝑀𝑐 , 𝑆𝑐) ∈ R(𝑐) and R(𝑐) ⊆ X(𝑐) (using (R1) in the definition of R(𝑐)) for every child 𝑐 of 𝑏, we obtain that

there is a set P𝑐 of vertex-disjoint paths in the complete graph with vertex set 𝑉 (Pe∗ (𝑐)) such that:

• P𝑐 consists of exactly one path 𝑃𝑒 between 𝑢 and 𝑣 for every 𝑒 = {𝑢, 𝑣} ∈ 𝑀𝑐 .
• { IN(𝑃) | 𝑃 ∈ P𝑐 } is a partition of (𝑉 (Pe(𝑏)) \ {𝑠, 𝑡}) ∪ 𝑆𝑐 , where IN(𝑃) denotes the set of inner vertices of the

path 𝑃 .

• there is a planar drawing 𝐷 (𝑏, 𝜏 (𝑐)) of Pe∗ (𝑏) ∪⋃
𝑃∈P𝑐

𝑃 with outer-face 𝑓 such that 𝜎 (𝑓) = {𝑠, 𝑟, 𝑟 ′, 𝑡, 𝑙 ′, 𝑙}.
Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Moreover, since 𝜎 (𝑓) = {𝑠, 𝑟, 𝑟 ′, 𝑡, 𝑙 ′, 𝑙}, we can (and will) in the following assume that the drawing 𝐷 (𝑐, 𝜏 (𝑐)) has: 𝑠 at
its north, 𝑡 at its south, 𝑙 and 𝑙 ′ at its west with 𝑙 being north of 𝑙 ′ and 𝑟 and 𝑟 ′ at its east with 𝑟 to the north of 𝑟 ′.

Let𝐷 be the planar drawing obtained from the disjoint union of the drawings𝐷 (𝑐1, 𝜏 (𝑐1)), . . . , 𝐷 (𝑐ℓ , 𝜏 (𝑐ℓ) by drawing
them in the order given by 𝜌 from west to east without overlap. To avoid name clashes between vertices, we refer to

the vertex 𝑣 ∈ {𝑠, 𝑡, 𝑙, 𝑙 ′, 𝑟 , 𝑟 ′} belonging to the drawing 𝐷 (𝑐𝑖 , 𝜏 (𝑐𝑖)) inside 𝐷 as 𝑣𝑖 .

Because of the above mentioned properties of the drawings 𝐷 (𝑐, 𝜏 (𝑐)), we can now add (and draw) the following

edges to 𝐷 without crossings to obtain the planar drawing 𝐷′
.

• The edges of the paths (𝑠1, . . . , 𝑠ℓ) and (𝑡1, . . . , 𝑡ℓ),
• For every 𝑖 with 1 ≤ 𝑖 < ℓ , the edges {𝑟𝑖 , 𝑙𝑖+1} and {𝑟 ′

𝑖
, 𝑙 ′
𝑖+1}.

Let 𝐷′′
be the planar drawing obtained from 𝐷′

after:

• contracting the path (𝑠1, . . . , 𝑠ℓ) into the fresh vertex 𝑠 ,

• contracting the path (𝑡1, . . . , 𝑡ℓ) into the fresh vertex 𝑡 ,

• For every 𝑖 with 1 ≤ 𝑖 ≤ ℓ :

– if 𝑖 ≠ ℓ and |𝜓𝑖 (𝑅) | = 1 contract the edge {𝑟𝑖 , 𝑟 ′𝑖 } into the vertex 𝑟𝑖 ,

– if 𝑖 ≠ ℓ and |𝜓𝑖 (𝑅) | = 0 remove the vertices 𝑟𝑖 and 𝑟
′
𝑖
,

– if 𝑖 ≠ 1 and |𝜓𝑖 (𝐿) | = 1 contract the edge {𝑙𝑖 , 𝑙 ′𝑖 } into the vertex 𝑙𝑖 ,

– if 𝑖 ≠ 1 and |𝜓𝑖 (𝐿) | = 0 remove the vertices 𝑙𝑖 and 𝑙
′
𝑖
.

• removing all edges of the form 𝑠𝑙𝑖 , 𝑙𝑖𝑙
′
𝑖
, 𝑙 ′
𝑖
𝑡 , 𝑠𝑟𝑖 , 𝑟𝑖𝑟

′
𝑖
, and 𝑟 ′

𝑖
𝑡 for every 𝑖 ∉ {1, ℓ}.

Let 𝐷𝑏 be the planar drawing obtained from 𝐷′′
after:

• contracting all edges incident to any vertex in {𝑙𝑖 , 𝑙 ′𝑖 | 1 < 𝑖 ≤ ℓ} ∪ {𝑟𝑖 , 𝑟 ′𝑖 | 1 ≤ 𝑖 < ℓ},
• renaming the vertices 𝑙1, 𝑙

′
1
, 𝑟ℓ , and 𝑟

′
ℓ
to 𝑙 , 𝑙 ′, 𝑟 , and 𝑟 ′.

Let 𝐻𝑏 be the planar graph corresponding to 𝐷𝑏 .

Let 𝐷𝜌 be the planar drawing obtained from 𝐷′′
after:

• contracting every path 𝑃 ∈ P𝑐 for every 𝑐 ∈ 𝐶 into a single edge,

• if |𝜓1 (𝐿) | = 1 contract the edge {𝑙1, 𝑙 ′
1
} into the vertex 𝑙1,

• if |𝜓1 (𝐿) | = 0 remove the vertices 𝑙1 and 𝑙
′
1
,

• if |𝜓ℓ (𝑅) | = 1 contract the edge {𝑟ℓ , 𝑟 ′ℓ } into the vertex 𝑟ℓ ,

• if |𝜓ℓ (𝑅) | = 0 remove the vertices 𝑟ℓ and 𝑟
′
ℓ
,

Let 𝐻𝜌 be the planar graph corresponding to 𝐷𝜌 .

Then, 𝐻𝜌 is isomorphic to 𝐺 (𝜌) and 𝐷𝑏 is a planar drawing of Pe
∗ (𝑏) ∪⋃

𝑃∈⋃𝑐∈𝐶 P𝑐
that witnesses that 𝑏 has type

𝑋 (𝜌). □

Lemma 27. Let𝑊 = (𝐷,𝐷𝐻 ,𝐺𝐻 , 𝐻) be a witness for𝐺 that respects B and T . Then, there is a realizable and compatible

𝜌 such that 𝑋 (𝜌) = Γ𝑊 (𝑏).

Proof. Let 𝜋 = (𝑐1, . . . , 𝑐ℓ) be the ordering of the children in𝐶 according to the drawing𝐷𝐻 . Moreover, let 𝜏 : 𝐶 → X
be the assignment defined by setting 𝜏 (𝑐) = Γ𝑊 (𝑐) for every 𝑐 ∈ 𝐶 . Note that because of (R2) in the definition of R(𝑐) it
holds that 𝜏 (𝑐) ∈ R(𝑐) for every 𝑐 ∈ 𝐶 . Finally, let 𝜌 be the sequence (𝜏 (𝑐1), . . . , 𝜏 (𝑐ℓ)). Then, 𝜌 is clearly realizable.

Moreover, 𝜌 is compatible since𝑊 respects B and since 𝐻 is a Hamiltonian cycle. □

From Lemmas 26 and 27, we now obtain the following corollary.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 23

Corollary 28. The set 𝑅 containing every type 𝑋 ∈ X such that there is a compatible and realizable 𝜌 with 𝑋 = 𝑋 (𝜌)
satisfies the properties (R1) and (R2).

Therefore, from now onward we can focus on finding the set of all types 𝑋 for which there is a compatible and

realizable 𝜌 such that 𝑋 = 𝑋 (𝜌).We will now show that this can be achieved very efficiently because only a constant

number, i.e., at most 8 types (and their ordering) need to be specified in order to infer the type of a sequence 𝜌 . Let

𝑋 = (𝜓,𝑀, 𝑆) ∈ X be a type. We say that 𝑋 is dirty if #𝑠 (𝑋) + #𝑡 (𝑋) > 0 and otherwise we say that 𝑋 is clean. We

say that 𝑋 is 0-good, 1-good, and 2-good, if 𝑋 is clean and additionally 𝑀 = ∅, 𝑀 = {{𝑙, 𝑟 }}, and 𝑀 = {{𝑙, 𝑟 }, {𝑙 ′, 𝑟 ′}},
respectively. We say that 𝑋 is good if it is 𝑥-good for some 𝑥 ∈ {0, 1, 2} and otherwise we say that 𝑋 is bad. We denote

by X𝐺 and X𝐵 the subset of X consisting only of the good respectively bad types. An illustration of these notions is

provided in Figure 6.

Lemma 29. Let 𝜌 = (𝑋1, . . . , 𝑋ℓ) be compatible. Then, 𝜌 contains at most 4 dirty types and at most 4 types that are clean

and bad.

Proof. Let 𝜌 = (𝑋1, . . . , 𝑋ℓ) with 𝑋𝑖 = (𝜓𝑖 , 𝑀𝑖 , 𝑆𝑖) be compatible. The statement that 𝜌 contains at most 4 dirty types

follows directly from (C2) in the definition of weak compatibility. It remains to show that 𝜌 contains at most 4 types

that are clean and bad. First note that if type 𝑋 = (𝜓,𝑀, 𝑆) is clean and bad, then either 𝑀 = {{𝐿, 𝐿}}, 𝑀 = {{𝑅, 𝑅}},
or𝑀 = {{𝐿, 𝐿}, {𝑅, 𝑅}}. Now suppose for a contradiction that 𝜌 contains at least 5 types that are clean and bad. Then,

there are indices 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ ℓ such that𝑀𝑖 ,𝑀𝑗 , and𝑀𝑘 either all contain the pair {𝐿, 𝐿} or all of them contain the

pair {𝑅, 𝑅}. Let us assume the former case since the argument for the latter case is analogous. Because 𝜌 is compatible

the path/cycle 𝑃 in 𝐻 (𝜌) that contains the edge {𝑙 𝑗 , 𝑙 ′𝑗 } must also contain 𝑠 and 𝑡 . This is because if 𝑃 does not contain

𝑠 and 𝑡 it can only go to the left until it is blocked by the path containing the edge {𝑙𝑖 , 𝑙 ′𝑖 }. The same holds for the

path/cycle in 𝐻 (𝜌) that contains the edge {𝑙𝑘 , 𝑙 ′𝑘 }. Therefore, {𝑙 𝑗 , 𝑙
′
𝑗
} and {𝑙𝑘 , 𝑙 ′𝑘 } are contained together with 𝑠 and 𝑡 on

a cycle 𝐶 in 𝐻 (𝜌). Finally, because of (C2) in the definition of weakly compatible, we obtain that 𝐶 does not contain the

edge {𝑙𝑖 , 𝑙 ′𝑖 }, which contradicts our assumption that 𝐻 (𝜌) is either a single cycle or acyclic. □

The following corollary follows immediately from Lemma 29 since every bad type is either clean or dirty.

Corollary 30. Let 𝜌 = (𝑋1, . . . , 𝑋ℓ) be compatible, then 𝜌 contains at most 8 bad types.

Moreover, since deciding whether 𝜌 is compatible merely requires us to check that 𝜌 satisfies (C1) and (C2) and that

either 𝐻 (𝜌) is acyclic or 𝐻 (𝜌) − (⋃ℓ
𝑖=1 𝑆𝑖) is a single (Hamiltonian) cycle, we observe:

Observation 31. It is possible to decide whether a given 𝜌 = (𝑋1, . . . , 𝑋ℓ) is compatible in time O(ℓ).

Next, we will show that any compatible sequence contains at most 8 bad types and that the type 𝑋 (𝜌) is already
determined by looking only at the sequence of bad types that occur in 𝜌 . This will then allow us to simulate the

enumeration of all possible sequences, by enumerating merely all sequences of at most 8 bad types.

We say that a sequence 𝜌′ is an extension of 𝜌 if 𝜌 is a (not necessarily consecutive) sub-sequence of 𝜌′. We call a

compatible sequence 𝜌 (𝑋, 𝑖)-extendable for some𝑋 ∈ X and integer 𝑖 , if there is a compatible extension 𝜌′ of 𝜌 such that

𝜌′ is obtained by adding 𝑖 elements of type 𝑋 to 𝜌 and 𝑋 (𝜌) = 𝑋 (𝜌′). We call 𝜌 𝑋 -extendable if 𝜌 is (𝑋, 𝑖)-extendable for
any integer 𝑖 . We say that 𝜌′ is an (𝑋, 𝑖)-extension of 𝜌 if 𝜌′ is a compatible sequence obtained after adding 𝑖 elements

of type 𝑋 to 𝜌 and 𝑋 (𝜌) = 𝑋 (𝜌′).
Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Lemma 32. Let 𝜌 = (𝑋1, . . . , 𝑋ℓ) with 𝑋𝑖 = (𝜓𝑖 , 𝑀𝑖 , 𝑆𝑖) and 𝑋 ∈ X𝐺 . Then, 𝜌 is (𝑋, 1)-extendable if and only if 𝜌 is

𝑋 -extendable. Moreover, deciding whether 𝜌 is (𝑋, 1)-extendable and if so computing an (𝑋, 𝑖)-extension 𝜌′ of 𝜌 can be

achieved in time O(ℓ + 𝑖) for every integer 𝑖 .

Proof. The first statement of the lemma follows because if 𝜌′ is a compatible extension of 𝜌 containing at least one

𝑥-good type 𝑋𝑖 , then we can add another 𝑥-good type immediately after or before 𝑋𝑖 without violating the compatibility.

Moreover, we can also delete 𝑋𝑖 from 𝜌′ without violating its compatibility.

Moreover, it is straightforward to verify that 𝜌 can be extended by 1 𝑥-good type if and only if either: (1) |𝜓1 (𝐿) | = 𝑥 ,
(2) |𝜓ℓ (𝑅) | = 𝑥 , or there is an index 𝑖 with 1 ≤ 𝑖 < ℓ such that |𝜓𝑖 (𝐿) | = |𝜓𝑖+1 (𝑅) | = 𝑥 . This can clearly be tested in time

O(ℓ) and if the test succeeds, it is also easy to compute an (𝑋, 𝑖)-extension by adding all 𝑖 elements of type 𝑋 in one of

the possible positions. □

Lemma 33. Let 𝜌 be a compatible sequence and let 𝜌′ be the sub-sequence of 𝜌 consisting only of the bad types in 𝜌 . Then,

𝜌′ is compatible and 𝑋 (𝜌) = 𝑋 (𝜌′).

Proof. The lemma holds because removing any good type 𝑋 preserves compatibility and does not change the type

of the sequence; this is because neither 𝑠 nor 𝑡 are used by 𝑋 and moreover #𝐿 (𝑋) = #𝑅 (𝑋). □

At this point, we are ready to describe the algorithm we will use to compute R(𝑏) (and argue its correctness). The

algorithm first enumerates all possible compatible sequences 𝜌 of at most 8 bad types, i.e., 𝜌 = (𝑌1, . . . , 𝑌𝑟) with 𝑟 ≤ 8

and 𝑌𝑖 ∈ X𝐵 for every 𝑖 . Note that there are at most (|X𝐵 | + 1)8 (and therefore constantly many) such sequences and

those can be enumerated in constant time. Given one such sequence 𝜌 = (𝑌1, . . . , 𝑌𝑟), the algorithm then tests whether

the sequence can be realized given the types available for the children in 𝐶 as follows. It first uses Lemma 32 to test

whether 𝜌 allows for adding a 0-good, 1-good or 2-good type in constant time. Let 𝐴𝜌 ⊆ X𝐺 be the set of all good types

that can be added to 𝜌 and let 𝐶𝜌 be the subset of 𝐶 containing all children 𝑐 such that 𝐴𝜌 ∩ R(𝑐) ≠ ∅.
Consider the following bipartite graph 𝑄𝜌 having one vertex 𝑦𝑖 for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑟 representing the type 𝑌𝑖

on one side and one vertex 𝑣𝑐 for every 𝑐 ∈ 𝐶 representing the child 𝑐 on the other side of the bipartition. Moreover, 𝑄𝜌

has an edge between 𝑦𝑖 and 𝑣𝑐 if 𝑌𝑖 ∈ R(𝑐). We claim that 𝜌 can be extended to a compatible and realizable sequence

if and only if 𝑄𝜌 has a matching that saturates {𝑦1, . . . , 𝑦𝑟 } ∪ { 𝑣𝑐 | 𝑐 ∈ 𝐶 \𝐶𝜌 }. This problem can be solved using a

simple reduction to the well-known maximum flow problemas shown by the following lemma.

Lemma 34. Let𝑄 be a bipartite graph with partition {𝐴, 𝐵} and let𝑉 ⊆ 𝐵. There is an algorithm that in time O(|𝐸 (𝑄) | |𝐴|)
decides whether 𝑄 has a matching that saturates 𝐴 ∪𝑉 .

Proof. We solve the problem using a reduction to the maximum flow problem, which can be solved in time O(𝑚𝑈)
for a flow network with𝑚 edges with every edge having integer capacity at most𝑈 [23]. Let 𝑁 be the network obtained

as follows. The vertices of 𝑁 are new vertices 𝑠 , 𝑡 , 𝑡 ′ plus the vertices of 𝑄 . Moreover, 𝑁 contains the following arcs:

• an arc from 𝑠 to 𝑎 with capacity 1 for every 𝑎 ∈ 𝐴,
• an arc from 𝑎 to 𝑏 with capacity 1 for every edge {𝑎, 𝑏} ∈ 𝐸 (𝑄),
• an arc from 𝑣 to 𝑡 with capacity 1 for every 𝑣 ∈ 𝑉 ,
• an arc from 𝑡 ′ to 𝑡 with capacity |𝐴| − |𝑉 |,
• an arc from 𝑏 to 𝑡 ′ with capacity 1 for every 𝑏 ∈ 𝐵 \𝑉 .

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 25

It is now straightforward to show that 𝑄 has a matching that saturates 𝐴 ∪𝑉 if and only if 𝑁 has an integer flow from

𝑠 to 𝑡 with value |𝐴|. Since 𝑈 ≤ |𝐴| and𝑚 = O(|𝑉 (𝑄) | + |𝐸 (𝑄) |), we obtain that our problem can be decided in time

O(|𝐸 (𝑄) | |𝐴|), which shows the stated run-time. □

The following lemma now establishes the correctness (i.e., the soundness and completeness) of the algorithm.

Lemma 35. Let 𝑋 ∈ X. Then, there is a compatible and realizable sequence 𝜌 with 𝑋 = 𝑋 (𝜌) if and only if there is

a compatible sequence 𝜌 = (𝑌1, . . . , 𝑌𝑟) of bad types with 𝑟 ≤ 8 with 𝑋 = 𝑋 (𝜌) such that the bipartite graph 𝐻𝜌 has a

matching that saturates {𝑦1, . . . , 𝑦𝑟 } ∪ { 𝑣𝑐 | 𝑐 ∈ 𝐶 \𝐶𝜌 }.

Proof. Towards showing the forward direction, let 𝜌 be a compatible and realizable sequence and let 𝜌′ = (𝑌1, . . . , 𝑌𝑟)
be the sub-sequence of 𝜌 containing only the bad types in 𝜌 . Because of Corollary 30, it holds that 𝑟 ≤ 8 and

because of Lemma 33, we have that 𝜌′ is compatible. It remains to show that 𝐻𝜌 has a matching that saturates

{𝑦1, . . . , 𝑦𝑟 } ∪ (𝐶 \𝐶𝜌). Let (𝜋, 𝜏) be the ordering and assignment that witnesses that 𝜌 is realizable. Let 𝜋 ′ = (𝑐1, . . . , 𝑐𝑟)
be the subsequence of 𝜋 containing only the children 𝑐 such that 𝜏 (𝑐) is bad; note that 𝜌′ = 𝜏 (𝜋) = (𝜏 (𝑐1), . . . , 𝜏 (𝑐𝑟)).
Then,𝑀 = {{𝑦𝑖 , 𝑣𝑐𝑖 } | 1 ≤ 𝑖 ≤ 𝑟 } is a matching in 𝐻𝜌 that saturates {𝑦1, . . . , 𝑦𝑟 } ∪ (𝐶 \𝐶𝜌).

Towards showing the reverse direction, let 𝜌′ = (𝑌1, . . . , 𝑌𝑟) be a compatible sequence of bad types with 𝑟 ≤ 8 and

let𝑀 be the matching in 𝐻𝜌 that saturates {𝑦1, . . . , 𝑦𝑟 } ∪ (𝐶 \𝐶𝜌). For convenience, we represent𝑀 as the bijective

function 𝜏 ′ : 𝐶′ → {𝑌1, . . . , 𝑌𝑟 }, where 𝐶′ = 𝑉 (𝑀) ∩𝐶 and such that 𝑀 = {{𝑐, 𝜏 ′ (𝑐)} | 𝑐 ∈ 𝐶′}. Let 𝜏 : 𝐶 → X be the

assignment of children to types given by 𝜏 (𝑐) = 𝜏 ′ (𝑐) for every 𝑐 ∈ 𝐶′
and 𝜏 (𝑐) ∈ (𝐴𝜌 ∩ R(𝑐)) for every 𝑐 ∈ 𝐶 \𝐶′

.

Because𝐶 \𝐶′ ⊆ 𝐶𝜌 , it holds that 𝐴𝜌 ∩ R(𝑐) ≠ ∅ for every 𝑐 ∈ 𝐶 \𝐶′
and therefore it is possible to assign 𝜏 (𝑐). We can

now use Lemma 32 to obtain a compatible extension 𝜌 of 𝜌′ with 𝑋 (𝜌′) = 𝑋 (𝜌) such that 𝜌 is obtained from 𝜌′ after

adding |𝜏−1 (𝑋) | elements of type 𝑋 for every 𝑋 ∈ 𝐴𝜌 ′ . Due to the choice of 𝜌 and 𝜏 , there now exists an ordering 𝜋 of

𝐶 such that 𝜌 = 𝜏 (𝜋), which together with 𝜏 shows that 𝜌 is also realizable. □

We are now ready to prove the central lemma of this section.

Proof of Lemma 23. We need to show that given R(𝑐) for every child 𝑐 ∈ 𝐶 , we can compute R(𝑏) in time O(ℓ).
Because of Corollary 28 we can compute R(𝑏) by computing all types 𝑋 ∈ X such that there is a compatible and

realizable sequence 𝜌 of types with 𝑋 = 𝑋 (𝜌). Moreover, because of Lemma 35, a type 𝑋 ∈ X has such a compatible

and realizable sequence 𝜌 if and only if there is a compatible sequence 𝜌 = (𝑌1, . . . , 𝑌𝑟) of bad types with 𝑟 ≤ 8 and

𝑋 = 𝑋 (𝜌) such that the bipartite graph 𝐻𝜌 has a matching that saturates {𝑦1, . . . , 𝑦𝑟 } ∪ { 𝑣𝑐 | 𝑐 ∈ 𝐶 \𝐶𝜌 } and this can

be achieved by the following algorithm.

The algorithm first enumerates all possible compatible sequences 𝜌 of at most 8 bad types, i.e., 𝜌 = (𝑌1, . . . , 𝑌𝑟) with
𝑟 ≤ 8 and 𝑌𝑖 ∈ X𝐵 for every 𝑖 . Note that there are at most (|X𝐵 | + 1)8 (and therefore constantly many) sequences of at

most 8 bad types and because of Observation 31 checking whether such a sequence is compatible can be achieved in

constant time. Therefore, all such compatible sequences can be enumerated in constant time. Given one such sequence

𝜌 = (𝑌1, . . . , 𝑌𝑟), the algorithm first uses Lemma 32 to compute the set𝐴𝜌 ⊆ X𝐺 (i.e., the set of all good types that can be

added to 𝜌) in constant time. It then computes𝐶𝜌 (i.e., the subset of𝐶 containing all children 𝑐 such that𝐴𝜌 ∩R(𝑐) ≠ ∅)
and constructs the bipartite graph 𝐻ℓ in time O(ℓ). Finally, it uses Lemma 34 to decide whether 𝐻𝜌 has a matching that

saturates {𝑦1, . . . , 𝑦𝑟 } ∪ { 𝑣𝑐 | 𝑐 ∈ 𝐶 \𝐶𝜌 }. If so, the algorithm correctly adds the type 𝑋 (𝜌) to R(𝑏) and otherwise the

algorithm continues with the next sequence 𝜌 = (𝑌1, . . . , 𝑌𝑟) with 𝑟 ≤ 8 and 𝑌𝑖 ∈ X𝐵 .
As pointed out above, the correctness of the algorithm follows from Corollary 28 and lemmas 32 and 35. The

total run-time of the algorithm is dominated by the time required to decide whether 𝐻𝜌 has a matching saturating

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

𝑂1

𝑂2

𝑢1
𝑥7

𝑢9

𝑥8 𝑥9

𝑢10

𝑢11 𝑥10
𝑢5

𝑢2

𝑥1
𝑢3

𝑥2

𝑢4

𝑥3

𝑢8

𝑢7
𝑥6

𝑥5

𝑢6

𝑥4

𝑂𝑢1 𝑢5

𝑢2

𝑥1
𝑢3

𝑥2

𝑢4

𝑥3

𝑢8

𝑢7
𝑥6

𝑥5

𝑢6

𝑥4

Fig. 7. (Left)An illustration of combining two compatible types 𝑋1 = (𝜓1, 𝑀1, 𝑆1) and 𝑋2 = (𝜓2, 𝑀2, 𝑆2) for two weak nooses 𝑂1

and 𝑂2 into the combined type 𝑋 = (𝜓,𝑀, 𝑆) = 𝑋1 ◦ 𝑋2 for 𝑂 = 𝑂1 ⊕ 𝑂2. Vertices of the graph are represented as circles and

vertices subdividing the nooses, i.e., vertices in𝑉 (𝜓1) ∪𝑉 (𝜓2) , are represented as crosses. Black vertices are the vertices that are

within a matching, i.e., the vertices in𝑉 (𝑀1) ∪𝑉 (𝑀2) , green (red) vertices are the vertices in 𝑆1 (𝑆2) and all other vertices of the

graph are white. The following holds for the type 𝑋1 and 𝑋2:𝑉 (𝜓1) = {𝑥1, 𝑥2, 𝑥3, 𝑥7, 𝑥8, 𝑥9, 𝑥10},𝑉 (𝜓2) = {𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10},
𝑀1 = {{𝑥1, 𝑥9}, {𝑥2,𝑢5}, {𝑢4, 𝑥3}, {𝑥10,𝑢11}, {𝑥8, 𝑥7}}, 𝑀2 = {{𝑥7,𝑢8}, {𝑥8, 𝑥10}, {𝑥9,𝑢11}, {𝑢5, 𝑥4}, {𝑥5, 𝑥6}}, 𝑆1 = {𝑢2,𝑢10},
and 𝑆2 = {𝑢9,𝑢6}. (Right) The resulting type 𝑋 of 𝑂 for which the following holds: 𝑉 (𝜓) = {𝑥1, . . . , 𝑥6}, 𝑀 =

{{𝑥1,𝑢8}, {𝑥2, 𝑥4}, {𝑢4, 𝑥3}, {𝑥5, 𝑥6}}, and 𝑆 = {𝑢2,𝑢5,𝑢6}.

{𝑦1, . . . , 𝑦𝑟 } ∪ { 𝑣𝑐 | 𝑐 ∈ 𝐶 \𝐶𝜌 }, which because of Lemma 34 can be achieved in time O(|𝐸 (𝐻𝜌) |𝑟). Since |𝐸 (𝐻𝜌) | ≤ 8ℓ

and 𝑟 ≤ 8 this term is equal to O(ℓ), as claimed. □

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 27

5.2 Handling R-nodes and S-nodes

Here, we will show how to compute the set of types satisfying (R1) and (R2) for every R-node and S-node of B. To

achieve this we will again use a dynamic programming algorithm albeit on a sphere-cut decomposition of Sk(𝑏) instead
of on the SPQR-tree. The aim of this subsection is therefore to show the following lemma.

Lemma 36. Let 𝑏 be an R-node or S-node of B such that R(𝑐) have already been computed for every child 𝑐 of 𝑏 in B.

Then, we can compute R(𝑏) in time O(315𝜔 ℓ + ℓ3), where 𝜔 is the branchwidth of the graph Sk(𝑏) and ℓ is the number of

children of 𝑏 in B.

In the following, let 𝑏 be an R-node or S-node of B with reference edge (𝑠𝑏 , 𝑡𝑏) and let ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ be a sphere-cut
decomposition of Sk(𝑏) that is rooted in 𝑟 = 𝜆−1 ((𝑠𝑏 , 𝑡𝑏)). For a weak noose𝑂 ⊆ 𝐶 (𝑇𝑏), let A(𝑂) be the set of all types
of 𝑂 satisfying the following two natural analogs of (R1) and (R2), i.e.:

(RO1) If 𝑋 ∈ A(𝑂), then 𝑂 has type 𝑋 .

(RO2) If there is a witness (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) for 𝐺 that respects B such that Γ𝑊 (𝑏,𝑂) = 𝑋 , then 𝑋 ∈ A(𝑂).

Our aim is to compute A(𝑂𝑎𝑟) for the arc 𝑎𝑟 incident to the root 𝑟 of 𝑇𝑏 . We will achieve this by computing A(𝑂𝑎)
for every arc 𝑎 of 𝑇𝑏 via a bottom-up dynamic programming algorithm along 𝑇𝑏 . Note that there is a one-to-one

correspondence between the arcs of 𝑇𝑏 that are connected to a leaf and the children of 𝑏 in B, i.e., the arc of 𝑇𝑏 incident

to leaf 𝑙 corresponds to the child 𝑐 of 𝑏 representing the edge 𝜆(𝑙). We start with two simple lemmas showing that: (1)

We can compute A(𝑂𝑎) for every arc of 𝑇𝑏 incident to a leaf 𝑙 of 𝑇𝑏 in linear-time from R(𝑐), where 𝑐 is the child of 𝑏

in B corresponding the edge 𝜆(𝑙) and (2). We can compute R(𝑏) from A(𝑂𝑎𝑟) in linear-time.

Lemma 37. Let 𝑎 be an arc of 𝑇𝑏 connected to a leaf and let 𝑐 be the corresponding child of 𝑏 in B. Then, A(𝑂𝑎) can be

computed in linear-time from R(𝑐).

Proof. First note that𝑚𝑖𝑑 (𝑎) = {𝑠𝑐 , 𝑡𝑐 }, where (𝑠𝑐 , 𝑡𝑐) is the reference edge of 𝑐 inB. Moreover, because of Lemma 10,

we can assume that 𝑂𝑎 = 𝑁𝑐 since their subcurves connect the same two vertices in the same face. Therefore,

there is a one-to-one correspondence between the types in R(𝑐) and the types in A(𝑂𝑎). Moreover, given a type

𝑋 = (𝜓,𝑀, 𝑆) ∈ R(𝑐), then the corresponding type 𝑋 ′ = (𝜓 ′, 𝑀′, 𝑆′) in A(𝑂𝑎) can be obtained as follows. Let

𝛼 : {𝐿, 𝑅} → 𝑂𝑎} the bijection such that 𝛼 (𝐿) = 𝑐 if 𝑐 is equal to 𝐿𝑐 and 𝛼 (𝑐) = 𝑅 otherwise.

• We define 𝜓 ′
by setting 𝜓 ′ (𝛼 (𝐴)) = ∅ if 𝜓 (𝐴) = ∅, 𝜓 ′ (𝛼 (𝐴)) = [𝑥] if |𝜓 (𝐴) | = 1, and 𝜓 ′ (𝛼 (𝐴)) = [𝑥, 𝑥 ′] if

|𝜓 (𝐴) | = 2 for every 𝐴 ∈ {𝐿, 𝑅},
• 𝑀′

is obtained from 𝑀 after replacing the vertices in 𝜓 (𝐴) with their counterparts in 𝜓 ′ (𝛼 (𝐴)) for every
𝐴 ∈ {𝐿, 𝑅},

• 𝑆 ′ = 𝑆 .

Therefore, we obtain A(𝑂𝑎) as the set {𝑋 ′ | 𝑋 ∈ R(𝑐) }, which also shows that it can be computed in linear-time from

R(𝑐). □

Lemma 38. R(𝑏) can be computed in linear-time from A(𝑂𝑎𝑟).

Proof. First note that 𝑚𝑖𝑑 (𝑎𝑟) = {𝑠𝑏 , 𝑡𝑏 } and therefore that 𝑂𝑎𝑟 consists of two subcurves 𝑐 = ({𝑠, 𝑡}, 𝑓) and
𝑐′ = ({𝑠, 𝑡}, 𝑓 ′), where both 𝑓 and 𝑓 ′ have the reference edge (𝑠𝑏 , 𝑡𝑏) on their border. Therefore, every type 𝑋 =

(𝜓,𝑀, 𝑆) ∈ A(𝑂𝑎𝑟) can be easily translated into two types of 𝑏 after specifying a bijection 𝛼 between {𝐿, 𝑅} and {𝑐, 𝑐′}.
That is given such a bijection 𝛼 : {𝐿, 𝑅} → {𝑐, 𝑐′}, we obtain the type 𝑋𝛼 = (𝜓𝛼 , 𝑀𝛼 , 𝑆𝛼) of 𝑏 corresponding to 𝑋 by

setting:

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

• 𝜓𝛼 (𝐿) = ∅ if𝜓 (𝛼 (𝐿)) = ∅,𝜓𝛼 (𝐿) = {𝑙} if |𝜓 (𝛼 (𝐿)) | = 1, and𝜓𝛼 (𝐿) = {𝑙, 𝑙 ′} if |𝜓 (𝛼 (𝑐)) | = 2,

• 𝑀𝛼 is obtained from𝑀 by replacing the first vertex in𝜓 (𝛼 (𝐿)) (𝜓 (𝛼 (𝑅))) with 𝑙 (𝑟) and the second vertex in

𝜓 (𝛼 (𝐿)) (𝜓 (𝛼 (𝑅))) with 𝑙 ′ (𝑟 ′),
• 𝑆𝛼 = 𝑆𝛼 .

It is now straightforward to verify that 𝑂𝑎𝑟 has type 𝑋 if and only if 𝑏 has type 𝑋𝛼1 and 𝑋𝛼2 for the two possible

bijections 𝛼1 and 𝛼2 between {𝐿, 𝑅} and {𝑐, 𝑐′}. Therefore, it holds that R(𝑏) = {𝑋𝛼1 , 𝑋𝛼2 | 𝑋 ∈ A(𝑂𝑎𝑟) }, which shows

that R(𝑏) can be computed in linear-time from A(𝑂𝑎𝑟). □

Given the above Lemmas, it now merely remains to show how to compute A(𝑂𝑎𝑃) from A(𝑂𝑎𝐿) and A(𝑂𝑎𝑅) for
any inner node of𝑇𝑏 with parent arc 𝑎𝑃 and child arcs 𝑎𝐿 and 𝑎𝑅 . Employing our framework introduced in Subsection 4.3

allows us to solve a simpler problem instead, i.e., we only have to show how to compute A(𝑂1 ⊕ 𝑂2) from A(𝑂1) and
A(𝑂2) for any weak nooses 𝑂1 and 𝑂2.

Let 𝑂1 and 𝑂2 be two weak nooses having type 𝑋1 = (𝜓1, 𝑀1, 𝑆1) and type 𝑋2 = (𝜓2, 𝑀2, 𝑆2), respectively. We say

that 𝑋1 and 𝑋2 are compatible if

(1) 𝑂 = 𝑂1 ⊕ 𝑂2 is a weak noose,

(2) the inside region of the noose 𝑂 contains all subcurves in (𝑂1 ∩𝑂2),
(3) ∀𝑐 ∈ 𝑂1 ∩𝑂2, it holds𝜓1 (𝑐) = 𝜓2 (𝑐),
(4) for every 𝑢 ∈ 𝑉 (𝑂1 ∩𝑂2) \𝑉 (𝑂1 ⊕ 𝑂2), it holds that 𝑢 is only in one of following sets: 𝑆1, 𝑆2 or 𝑉 (𝑀1) ∩𝑉 (𝑀2),

and

(5) the multi-graph obtained from the union of𝑀1 and𝑀2 is acyclic, or is one cycle and 𝑉 (𝑂) ⊆ 𝑆1 ∪ 𝑆2 ∪ (𝑉 (𝑀1) ∩
𝑉 (𝑀2)),

(6) if 𝑋1 is the full type, then 𝑋2 is the empty type and 𝑉 (𝑂2) ⊆ 𝑉 (𝑂1), and vice versa.

Please also refer to Figure 7 for an illustration of two compatible types. Let 𝑋1 = (𝜓1, 𝑀1, 𝑆1) and 𝑋2 = (𝜓2, 𝑀2, 𝑆2) be
two compatible types defined on weak nooses 𝑂1 and 𝑂2, respectively.

We denote by 𝑋1 ◦𝑋2 the combined type 𝑋 = (𝜓,𝑀, 𝑆) of 𝑋1 = (𝜓1, 𝑀1, 𝑆1) and 𝑋2 = (𝜓2, 𝑀2, 𝑆2) for the weak noose

𝑂 = 𝑂1 ⊕ 𝑂2 that is defined as follows. For each 𝑐 ∈ 𝑂 , if 𝑐 ∈ 𝑂1 then𝜓 (𝑐) is equal to𝜓1 (𝑐), otherwise𝜓 (𝑐) is equal to
𝜓2 (𝑐) and the set 𝑆 is equal to (𝑆1 ∪ 𝑆2 ∪ (𝑉 (𝑀1) ∩𝑉 (𝑀2))) ∩𝑉 (𝑂), i.e., any vertex with degree two w.r.t. 𝑋 must be in

𝑉 (𝑂) and have degree two already w.r.t. 𝑋1 or 𝑋2, or it must be in both matchings𝑀1 and𝑀2. If either 𝑋1 or 𝑋2 is a

full type, then by (6) we get that𝑀1 = 𝑀2 = 𝑀 = ∅ and 𝑋1 ◦𝑋2 is the full type. If the multi-graph𝑀1 ∪𝑀2 is one cycle,

then by (5) we get that 𝑀 = ∅ and 𝑋1 ◦ 𝑋2 is the full type. Otherwise, due to (5), the multi-graph 𝑀1 ∪𝑀2 is acyclic

and corresponds to a set of paths. Therefore, the matching𝑀 is the set containing the two endpoints for every path in

𝑀1 ∪𝑀2.

Observation 39. Let 𝑋1 and 𝑋2 be two types defined on the weak nooses 𝑂1 and 𝑂2, respectively. Then, we can check

whether 𝑋1 and 𝑋2 are compatible and if so compute the type 𝑋1 ◦ 𝑋2 in time O(|𝑂1 | + |𝑂2 |).

The following two lemmas are crucial for showing the correctness of our approach. The former shows that if there is

a witness𝑊 for 𝐺 that respects B, then for every two weak nooses 𝑂1 and 𝑂2 it holds that Γ𝑊 (𝑏,𝑂1) and Γ𝑊 (𝑏,𝑂2)
are compatible types and Γ𝑊 (𝑏,𝑂) = Γ𝑊 (𝑏,𝑂1) ◦ Γ𝑊 (𝑏,𝑂2). The latter shows in some sense the reverse direction, i.e.,

if 𝑂1 and 𝑂2 have compatible types 𝑋1 and 𝑋2, then 𝑂 = 𝑂1 ⊕ 𝑂1 has type 𝑋1 ◦ 𝑋2.

Lemma 40. Let𝑊 = (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) be a witness for𝐺 that respects B. Let 𝑏 be an R-node or an S-node with sphere-cut

decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ ∈ T . Let 𝑂1 and 𝑂2 be two weak nooses that are subsets of 𝐶 (𝑇𝑏) and satisfy properties (1)

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 29

and (2), i.e., 𝑂 = 𝑂1 ⊕ 𝑂2 is also a weak noose and the inside region of 𝑂 contains all subcurves in (𝑂1 ∩ 𝑂2). Then,
𝑋1 = Γ𝑊 (𝑏,𝑂1) and 𝑋2 = Γ𝑊 (𝑏,𝑂2) are compatible types and Γ𝑊 (𝑏,𝑂) = 𝑋1 ◦ 𝑋2.

Proof. Let 𝑖 ∈ {1, 2} and let𝑋𝑖 = (𝜓𝑖 , 𝑀𝑖 , 𝑆𝑖) be the type Γ𝑊 (𝑏,𝑂𝑖). The properties (1) and (2) given in the description
of compatible types are a direct consequence of the assumptions of this lemma. Recall that𝐻𝑂𝑖

is defined in Subsection 4.3

and essentially corresponds to the subgraph of 𝐻 including crossings at the subcurves of𝑂𝑖 inside𝑂𝑖 . If 𝐻
𝑂𝑖

contains a

cycle then 𝑋𝑖 and 𝑋 are the full types. Also, for 𝑗 ∈ {1, 2} \ {𝑖}, 𝑋 𝑗 must be the empty type and𝑉 (𝑂 𝑗) ⊆ 𝑉 (𝐻𝑂𝑖), which
satisfy property (6). In this case the properties (3), (4) and (5) are satisfied, because 𝑉 (𝜓𝑖) = 𝑉 (𝜓 𝑗) = 𝑀1 = 𝑀2 = ∅ and

𝑆𝑖 = 𝑉 (𝑂𝑖).
Otherwise, let P𝑖 be a set of all maximal paths in 𝐻𝑂𝑖

each of size at least 2. Then, (P𝑖 , 𝐷𝑂𝑖

𝐻
) witnesses that 𝑂𝑖

has type 𝑋𝑖 . Note that
⋃(P1 ∪ P2) is almost equal to 𝐻𝑂 . In fact, 𝐻𝑂 only misses the vertices in 𝑉 (𝜓1) ∩𝑉 (𝜓2). We

therefore define 𝐻𝑂∗ as the graph obtained from 𝐻𝑂 after subdividing the edges that cross the subcurves in 𝑂1 ∩𝑂2.

Then, we can assume that

⋃(P1 ∪ P2) is equal to 𝐻𝑂∗ .

The property (3) is simply obtained from the fact that 𝑋1 and 𝑋2 are obtained from the same Hamiltonian cycle and

therefore agree on all subcurves shared between 𝑂1 and 𝑂2.

For each 𝑣 in𝑉 (𝑂1 ∩𝑂2) \𝑉 (𝑂), 𝑣 has degree 2 in 𝐻𝑂 , because 𝑣 is not in𝑉 (𝑂). Since⋃(P1 ∪ P2) = 𝐻𝑂∗ , it follows

that 𝑣 is in one of the following sets: IN(P1) ∩ 𝑉 (𝑂1), IN(P2) ∩ 𝑉 (𝑂2) and
(
𝑉 (P1) \ IN(P1)

)
∩
(
𝑉 (P2) \ IN(P2)

)
,

which correspond to sets 𝑆1, 𝑆2 and 𝑉 (𝑀1) ∩𝑉 (𝑀2), respectively. This demonstrates property (4) .

Property (5) now follows because the matchings𝑀1 and𝑀2 have an edge between the endpoints of every path in P1

and P2, so if 𝐻𝑂∗ is acyclic then the multi-graph𝑀1 ∪𝑀2 is also acyclic, otherwise 𝐻𝑂∗ is a cycle and the multi-graph

𝑀1 ∪𝑀2 is a cycle, and 𝑉 (𝑂) ⊆ 𝑉 (𝐻𝑂∗). □

Lemma 41. If 𝑂1 and 𝑂2 have compatible types 𝑋1 and 𝑋2, respectively, then 𝑂 = 𝑂1 ⊕ 𝑂2 has type 𝑋 = 𝑋1 ◦ 𝑋2.

Proof. Let 𝑋1 = (𝜓1, 𝑀1, 𝑆1), 𝑋2 = (𝜓2, 𝑀2, 𝑆2), and 𝑋 = (𝜓,𝑀, 𝑆). For each 𝑖 ∈ {1, 2}, let (P𝑖 , 𝐷𝑖) be the witness
that𝑂𝑖 has type𝑋𝑖 . Since𝑋1 and𝑋2 are compatible and in particular because of properties (2) and (3) from the definition

of compatible types, the drawing 𝐷 = 𝐷1 ∪ 𝐷2 is planar. Note that 𝑂 is a weak noose because of property (1). Consider

the graph 𝐻 =
⋃(P1 ∪ P2). Because of property (4) all endpoints of the paths in 𝐻 are in 𝑉 (𝑂) ∪𝑉 (𝜓).

If 𝐻 is a single cycle then from the property (5) and (6), we get that 𝑋1 ◦ 𝑋2 is a full type and the witness is (𝐻,𝐷).
Otherwise, the multi-graph𝑀1 ∪𝑀2 is a disjoint union of paths, due to the property (5). Note that each path in P𝑖

corresponds to an edge in 𝑀𝑖 , for 𝑖 ∈ {1, 2}. So 𝐻 is also a disjoint union of paths and let P be the set of paths of 𝐻 .

Then (P, 𝐷) is the witness of that 𝑂 has the type 𝑋 . □

The following lemma is required to compute the types for a weak noose𝑂 = 𝑂1 ⊕𝑂2 and provides a detailed analysis

of the run-time required.

Lemma 42. Let𝑂 ,𝑂1 and𝑂2 be weak nooses such that𝑂 = 𝑂1 ⊕𝑂2. There are at most 6(84
√
14)𝑘 triples (𝑋,𝑋1, 𝑋2) such

that 𝑋 , 𝑋1 and 𝑋2 are types defined on 𝑂 , 𝑂1 and 𝑂2, respectively, 𝑋1 is compatible with 𝑋2, and 𝑋 = 𝑋1 ◦ 𝑋2. Moreover,

all such triples can be enumerated in O((84
√
14)𝑘𝑘), where 𝑘 =𝑚𝑎𝑥{|𝑂 |, |𝑂1 |, |𝑂2 |}.

Proof. We define the role of a vertex or subcurve in a type as the information stored in the type about that vertex

or subcurve. First, we will show that for fixed 𝑋 the role of each vertex 𝑉 (𝑂) \𝑉 (𝑂1 ∩𝑂2) and each subcurve from 𝑂

in types 𝑋1 and 𝑋2 remains the same. Let 𝑋 = (𝜓,𝑀, 𝑆) be a type that can be defined on a weak noose 𝑂 and 𝑢 be an

arbitrary vertex from 𝑉 (𝑂) ∩𝑉 (𝑂1) ∩𝑉 (𝑂2). For each 𝑖 ∈ {1, 2}, let 𝑣𝑖 be first vertex after 𝑢 in clockwise orientation

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

such that 𝑣𝑖 ∈ 𝑉 (𝑀) \𝑉 (𝑂1 ∩𝑂2) and 𝑣𝑖 is a vertex from the subcurves from the segment𝑂 ∩𝑂𝑖 . Let 𝐷𝑊 𝑖
be the Dyck

word corresponding to the matching𝑀 from Observation 11 with starting vertex 𝑣𝑖 and clockwise orientation and let

𝐷𝑊 𝑖
★ be a prefix of 𝐷𝑊 𝑖

corresponding to vertices on the subcurves from the segment 𝑂 ∩𝑂𝑖 . Let 𝑋1 = (𝜓1, 𝑀1, 𝑆1)
and 𝑋2 = (𝜓2, 𝑀2, 𝑆2) be the types that can be defined on𝑂1 and𝑂2 respectively, such that 𝑋 = 𝑋1 ◦𝑋2. Let 𝐷𝑊𝑖 be the
Dyck word corresponding to the matching𝑀𝑖 from Observation 11 with starting vertex 𝑣𝑖 and clockwise orientation.

Note that for different pairs 𝑋1 and 𝑋2, the type 𝑋 remains the same and therefore also 𝐷𝑊 1

★, 𝐷𝑊
2

★ and 𝑆 . Moreover,

𝐷𝑊 𝑖
★ is a prefix of 𝐷𝑊𝑖 and 𝑆𝑖 ∩ (𝑉 (𝑂 ∩𝑂𝑖) \𝑉 (𝑂1 ∩𝑂2)) = 𝑆 ∩ (𝑉 (𝑂 ∩𝑂𝑖) \𝑉 (𝑂1 ∩𝑂2)). This means that, the role

of each vertex𝑉 (𝑂 ∩𝑂𝑖) \𝑉 (𝑂1 ∩𝑂2) and each subcurve𝑂 ∩𝑂𝑖 in type 𝑋𝑖 remains the same, so the only places where

the different pairs of compatible types may differ is in the segment 𝑂1 ∩𝑂2.

Secondly, we will bound number of different pairs 𝑋1 and 𝑋2 for fixed 𝑋 . By condition (1) from the definition of

compatible types, for each 𝑣 ∈ 𝑉 (𝑂1 ∩𝑂2) \𝑉 (𝑂), there are 2 + 2 · 2 = 6 different combinations of roles of 𝑣 in types

𝑋1, 𝑋2, i.e., 𝑣 ∈ 𝑆1 ∧ 𝑣 ∉ 𝑆2 ∪𝑉 (𝑀2), 𝑣 ∈ 𝑆2 ∧ 𝑣 ∉ 𝑆1 ∪𝑉 (𝑀1) or 𝑣 ∈ 𝑉 (𝑀1) ∩𝑉 (𝑀2) and 𝑣 corresponds to either ”[”
or ”]” in 𝐷𝑊1 and either ”[” or ”]” in 𝐷𝑊2. Moreover, for each 𝑣 ∈ 𝑉 (𝑂1 ∩𝑂2) ∩𝑉 (𝑂) there are at most 6 different

combination of roles of 𝑣 in types 𝑋1 and 𝑋2, because the role of 𝑣 in type 𝑋 is known and this can only decrease

number of combinations. Due to the type definition and condition (3) from the definition of compatible types, we obtain

that

⋃
𝑐∈𝑂1∩𝑂2

𝜓1 (𝑐) =
⋃
𝑐∈𝑂1∩𝑂2

𝜓2 (𝑐) = 𝑉 (𝜓1) ∩𝑉 (𝜓2) ⊆ 𝑉 (𝑀1) ∩𝑉 (𝑀2). Therefore, for each 𝑣 ∈ 𝑉 (𝜓1) ∩𝑉 (𝜓2),
there are 2 · 2 = 4 different combinations of roles of 𝑣 in types 𝑋1 and 𝑋2, i.e., 𝑣 corresponds to either ”[” or ”]” in 𝐷𝑊1

and either ”[” or ”]” in 𝐷𝑊2. For each subcurve 𝑐 ∈ 𝑂1 ∩𝑂2, there are 3 possible values {∅, [𝑥], [𝑥, 𝑥 ′]} for𝜓1 (𝑐), and
therefore there are 1 + 4 + 16 = 21 possibilities, i.e., 1, 4, and 16 possibilities in case that 𝜓1 (𝑐) = ∅, 𝜓1 (𝑐) = [𝑥], and
𝜓1 (𝑐) = [𝑥, 𝑥 ′], respectively, of the role of 𝑐 in types 𝑋1 and 𝑋2. Furthermore, since |𝑉 (𝑂1 ∩𝑂2) | = |𝑂1 ∩𝑂2 | + 1, there

are at most 6
|𝑂1∩𝑂2 |+1

21
|𝑂1∩𝑂2 | = 6 · 126 |𝑂1∩𝑂2 |

different pairs of types 𝑋1 and 𝑋2 for fixed 𝑋 .

There are at most 28
|𝑂 |

different types 𝑋 that can be defined on𝑂 , due to the Lemma 19, and there are 6 · 126 |𝑂1∩𝑂2 |

different pairs of types 𝑋1 and 𝑋2 that can be defined on 𝑂1 and 𝑂2 respectively, such that 𝑋 = 𝑋1 ◦ 𝑋2, so there are

at most 28
|𝑂 | · 6 · 126 |𝑂1∩𝑂2 |

different triples (𝑋,𝑋1, 𝑋2). Note that |𝑂1 | + |𝑂2 | − 2|𝑂1 ∩𝑂2 | = |𝑂 | therefore there are
O(28𝑘126

𝑘
2) = O(84

√
14

𝑘) different triples (𝑋,𝑋1, 𝑋2).
In order to generate all valid triples, first we enumerate all possible types 𝑋 , of which there are O(28 |𝑂 |), in time

O(28 |𝑂 | |𝑂 |) using Lemma 19. Then based on type 𝑋 we fix the role of all vertices in 𝑉 (𝑂) \ 𝑉 (𝑂1 ∩ 𝑂2) and all

subcurves in 𝑂 in types 𝑋1 and 𝑋2. We can then assign a role to each vertex in 𝑉 (𝑂1 ∩ 𝑂2) and every subcurve of

𝑂1 ∩𝑂2 for types 𝑋1 and 𝑋2 and verify that the corresponding words are Dyck words in time O(|𝑂1 | + |𝑂2 |) and if

so translate it into a type description using Observation 11. Lastly we check if 𝑋1 and 𝑋2 are compatible and if so

check if 𝑋 = 𝑋1 ◦ 𝑋2, in O(|𝑂1 | + |𝑂2 |) time using Observation 39. Therefore the time complexity of this operation is

O(28 |𝑂 | (|𝑂 | + 126
|𝑂1∩𝑂2 | · (|𝑂1 | + |𝑂2 |))) = O(84

√
14

𝑘
𝑘), due to equation |𝑂1 | + |𝑂2 | − 2|𝑂1 ∩𝑂2 | = |𝑂 |. □

Lemma 43. Let 𝑏 be an R-node or S-node and let 𝑎𝑃 be a parent arc with two child arcs 𝑎𝐿 and 𝑎𝑅 in the sphere-

cut decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ of Sk(𝑏). We can compute A(𝑂𝑎𝑃) from A(𝑂𝑎𝐿) and A(𝑂𝑎𝑅) in O(315𝑘) time, where

𝑘 =𝑚𝑎𝑥 (|𝑚𝑖𝑑 (𝑎𝑃) |, |𝑚𝑖𝑑 (𝑎𝐿) |, |𝑚𝑖𝑑 (𝑎𝑅) |).

Proof. Note first that Sk(𝑏) is biconnected because 𝑏 is either an R-node or an S-node. Therefore, we can ap-

ply Lemma 18, to obtain a sequence 𝑄 of at most 3 ⊕-operations such that:

• 𝑄 contains only the weak nooses𝑂𝑎𝐿 ,𝑂𝑎𝑅 and at most two weak nooses𝑂1
and𝑂2

each bounding an edge-less

graph with three vertices.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 31

• Every step of 𝑄 produces a weak noose𝑂 such that |𝑂 | ≤ 1 + 𝑘 and𝑂𝑎𝑃 is the weak noose produced by 𝑄 after

the final step.

Before we can employ 𝑄 to compute A(𝑂𝑎𝑃), we first need to compute A(𝑂𝑖) for the at most two weak nooses 𝑂1

and 𝑂2
. To do so we employ Lemma 19 to enumerate all possible types 𝑋 of 𝑂𝑖 , which because |𝑉 (𝑂𝑖) | ≤ 3 can be

achieved in constant time. We then add each of those types to A(𝑂𝑖); this is correct because the noose does not

contain any edges and therefore allows for every possible type. We then computeA(𝑂𝑎𝑃) using𝑄 as follows. For every

step of 𝑄 , which given two weak nooses 𝑂1 and 𝑂2 for which the set of types A(𝑂1) and A(𝑂2) have already been

computed, computes the weak noose𝑂 = 𝑂1 ⊕𝑂2, we do the following to computeA(𝑂). Let 𝑘′ = max{|𝑂 |, |𝑂1 |, |𝑂2 |}.
Using Lemma 42we enumerate all of the at most 6(84

√
14)𝑘 ′ triples (𝑋,𝑋1, 𝑋2) of types defined on𝑂 ,𝑂1,𝑂2, respectively,

in time O((84
√
14)𝑘 ′𝑘′). Then, for each such triple (𝑋,𝑋1, 𝑋2), we check (in constant time) whether 𝑋1 ∈ A(𝑂1) and

𝑋2 ∈ A(𝑂2) and if so we add 𝑋 to A(𝑂). Because 𝑘′ ≤ 𝑘 + 1 and since 𝑄 consists of at most 3 steps, we obtain that

computing all steps of𝑄 and therefore computing the set A(𝑂𝑎𝑃) takes time at most O((84
√
14)𝑘+1 (𝑘 + 1)) = O(315𝑘).

Finally, the correctness of the procedure follows immediately from Lemmas 40 and 41. □

Proof of Lemma 36. We first use Lemma 8 to compute a sphere-cut decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ of Sk(𝑏), whose
width 𝜔 is equal to the branchwidth of 𝐺 , having at most O(|𝑉 (Sk(𝑏) |) = O(ℓ) nodes in time O(ℓ3). Note that to
compute ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ we can use any of the (at most) two planar drawings of Sk(𝑏) that contain the reference edge

(𝑠𝑏 , 𝑡𝑏) in the outer-face, since we will take the resulting symmetries into account when we compute the set of types;

more specifically in Lemma 38 and Lemma 37.

We then computeA(𝑂𝑎𝑟) using a bottom-up dynamic programming algorithm on𝑇𝑏 . In particular, we use Lemma 37

to compute A(𝑂𝑎) for all arcs in 𝑇𝑏 incident to a leaf node of 𝑇𝑏 and then we use Lemma 43 to compute A(𝑂𝑎) for
any other arc 𝑎 of 𝑇𝑏 in a bottom-up manner. Having computed A(𝑂𝑎𝑟), we then use Lemma 38 to obtain R(𝑏) from
A(𝑂𝑎𝑟). The correctness of the algorithm follows from the employed lemmas. To analyze the run-time of the algorithm,

we first note that we require time at most O(ℓ3) to compute the sphere-cut decomposition ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩. Moreover, the

run-time of the dynamic programming algorithm on ⟨𝑇𝑏 , 𝜆𝑏 ,Π𝑏⟩ is at most equal to the number of inner nodes of 𝑇𝑏 ,

i.e., at most |𝐸 (Sk(𝑏)) | = ℓ + 1, times the time required for one application of Lemma 43, i.e., at most O(315𝜔), where
𝜔 is the width of 𝑇𝑏 ; note that here we use that 𝑘 =𝑚𝑎𝑥{|𝑚𝑖𝑑 (𝑎𝑃) |, |𝑚𝑖𝑑 (𝑎𝐿) |, |𝑚𝑖𝑑 (𝑎𝑅) |} ≤ 𝜔 . Therefore, we obtain
O(315𝜔 ℓ + ℓ3) as the total run-time required to compute R(𝑏). □

5.3 Putting Everything Together

Here, we put everything together and prove Lemma 22. Before doing so, we first need the following simple lemma that

allows us to compute the set of types for every leaf node of B in constant time.

Lemma 44. Let 𝑙 be a leaf-node (and Q-node) of B. We can compute R(𝑙) in time O(1).

Proof. Let 𝑙 be a leaf-node with reference edge (𝑠, 𝑡) of B. Then, 𝑙 is also a Q-node with edge {𝑠, 𝑡} due to the

properties of SPQR-trees. Let 𝜓𝑥,𝑦 for 𝑥,𝑦 ∈ [0, 2] be defined by setting 𝜓0,𝑦 (𝐿) = ∅, 𝜓1,𝑦 (𝐿) = {𝑙}, 𝜓2,𝑦 (𝐿) = {𝑙, 𝑙 ′},
𝜓𝑥,0 (𝑅) = ∅,𝜓𝑥,1 (𝑅) = {𝑟 }, and𝜓𝑥,2 (𝑅) = {𝑟, 𝑟 ′}.

R(𝑙) contains the following types:

• Types for𝜓0,0:

– the type (𝜓0,0, ∅, {𝑠, 𝑡}) indicating a Hamiltonian cycle on Pe(𝑙),
– the type (𝜓0,0, ∅, ∅),

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

– the type (𝜓0,0, {{𝑠, 𝑡}}, ∅);
• Types for𝜓1,0 (symmetrically for𝜓0,1):

– the types (𝜓1,0, {{𝑙, 𝑠}}, ∅) and (𝜓1,0, {{𝑙, 𝑠}}, {𝑡}),
– the types (𝜓1,0, {{𝑙, 𝑡}}, ∅) and (𝜓1,0, {{𝑙, 𝑡}}, {𝑠});

• Types for𝜓1,1:

– for every 𝑆 ⊆ {𝑠, 𝑡} the type (𝜓1,1, {{𝑙, 𝑟 }}, 𝑆),
– the types (𝜑1,1, {{𝑙, 𝑠}, {𝑡, 𝑟 }}, ∅) and (𝜑1,1, {{𝑙, 𝑡}, {𝑠, 𝑟 }}, ∅);

• Types for𝜓2,0 (symmetrically for𝜓0,2):

– for every 𝑆 ⊆ {𝑠, 𝑡}, the type (𝜓2,0, {{𝑙, 𝑙 ′}}, 𝑆),
– the type (𝜓2,0, {{𝑠, 𝑡}, {𝑙, 𝑙 ′}}, ∅),
– the type (𝜓2,0, {{𝑙, 𝑠}, {𝑙 ′, 𝑡}}, ∅),

• Types for𝜓2,1 (symmetrically for𝜓1,2):

– the type (𝜓2,1, {{𝑙, 𝑟 }, {𝑙 ′, 𝑡}}, {𝑠}),
– for every 𝑆 ∈ {∅, {𝑡}}, the type (𝜓2,1, {{𝑙, 𝑙 ′}, {𝑠, 𝑟 }}, 𝑆),
– for every 𝑆 ∈ {∅, {𝑠}}, the type (𝜓2,1, {{𝑙, 𝑙 ′}, {𝑡, 𝑟 }}, 𝑆),

• Types for𝜓2,2:

– the type (𝜓2,2, {{𝑙, 𝑙 ′}, {𝑠, 𝑟 }, {𝑡, 𝑟 ′}}, ∅),
– the type (𝜓2,2, {{𝑟, 𝑟 ′}, {𝑙, 𝑠}, {𝑙 ′, 𝑡}}, ∅),
– the type (𝜓2,2, {{𝑙, 𝑙 ′}, {𝑟, 𝑟 ′}, {𝑠, 𝑡}}, ∅),
– for every 𝑆 ⊆ {𝑠, 𝑡}, the type (𝜓2,2, {{𝑙, 𝑙 ′}, {𝑟, 𝑟 ′}}, 𝑆),
– the type (𝜓2,2, {{𝑙, 𝑟 }, {𝑙 ′, 𝑟 ′}}, {𝑠, 𝑡}),

Note that R(𝑙) can be computed in constant time and actually contains all types of Pe(𝑙) and therefore also satisfies

(R1) and (R2). □

We are now ready to show Lemma 22.

Lemma 22. Let 𝐺 be a biconnected multi-graph with 𝑛 vertices and𝑚 edges and SPQR-tree B. Then, we can decide in

time O(315𝜔𝑛 + 𝑛3) whether 𝐺 is subhamiltonian, where 𝜔 is the maximum branchwidth of Sk(𝑏) over all R-nodes and
S-nodes 𝑏 of B.

Proof. We start by showing how to compute the set of types R(𝑏) for every node 𝑏 of the SPQR-tree B, which

we will achieve using a bottom-up dynamic programming algorithm along B. As stated in Section 2, we assume that

B is rooted at some Q-node with edge 𝑒 , whose child 𝑏𝑟 has 𝑒 as its reference edge. Starting at the leaves of B, we

use Lemma 44 to compute R(𝑙) for every leaf node 𝑙 of B in constant time. We then iteratively consider the inner nodes

𝑏 for which R(𝑐) for all children 𝑐 of 𝑏 in B have already been computed. Let 𝑏 be a node of B with ℓ children. If 𝑏 is

an R-node or an S-node, we use Lemma 36 to compute R(𝑏) in time O(315𝜔 ℓ + ℓ3), where 𝜔 is the branchwidth of

Sk(𝑏). Otherwise 𝑏 is a P-node and we use Lemma 23 to compute R(𝑏) in time O(ℓ)). By applying the above procedure

exhaustively, we obtain the set R(𝑏) of types for all nodes apart from the root node 𝑟 of B; this is because 𝑟 is a Q-node

which is not a leaf of B. Let 𝑏𝑟 be the unique child of 𝑟 in B and let 𝑒 = (𝑠, 𝑡) be the reference edge of 𝑏𝑟 (which is also

the reference edge of 𝑟 , because 𝑟 is a Q-node). Since 𝑏𝑟 is not the root of B, we have computed the set R(𝑏𝑟) of types
for 𝑏𝑟 . We now claim that𝐺 is subhamiltonian if and only if (𝜓∅ , ∅, {𝑠, 𝑡}) ∈ R(𝑏𝑟), where𝜓∅ (𝐿) = 𝜓∅ (𝑅) = ∅. Towards
showing the forward direction of the claim suppose that 𝐺 is subhamiltonian. It then follows from Lemma 16 that𝐺

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 33

has a witness (𝐷, 𝐷𝐻 ,𝐺𝐻 , 𝐻) that respects B. Consequently, we obtain from (R2) that Γ𝑊 (𝑏𝑟) ∈ R(𝑏𝑟). Therefore, if
Γ𝑊 (𝑏𝑟) = (𝜓∅ , ∅, {𝑠, 𝑡}), then we are done. Otherwise, consider first the case that 𝐻 contains the edge {𝑠, 𝑡} of𝐺 . In this

case we can replace the edge in 𝐻 by adding a new edge between 𝑠 and 𝑡 , which we can draw arbitrary close to the

original edge in 𝐺 between 𝑠 and 𝑡 . Therefore, we can assume that 𝐻 does not contain the edge of 𝐺 between 𝑠 and

𝑡 . But then, we can obtain a new witness𝑊 ′ = (𝐷,𝐷′
𝐻
,𝐺𝐻 , 𝐻) that respects B such that Γ𝑊 ′ (𝑏𝑟) = (𝜓∅ , ∅, {𝑠, 𝑡}) by

changing the drawing 𝐷𝐻 of 𝐻 into the new drawing 𝐷′
𝐻
such that 𝐻 touches the noose 𝑁𝑏𝑟 only at 𝑠 and 𝑡 ; this can

be achieved by replacing every subcurve in 𝐷𝐻 of 𝐻 outside of 𝑁𝑏𝑟 with a curve inside 𝑁𝑏𝑟 drawn arbitrarily close to

𝑁𝑏𝑟 . Towards showing the reverse direction, suppose that (𝜓, ∅, {𝑠, 𝑡}) ∈ R(𝑏𝑟). By the definition of a type, it follows

that there is a Hamiltonian cycle 𝐻 for 𝐺 that can be drawn together with 𝐺 \ {𝑒} entirely within the noose 𝑁𝑏 . But

then, 𝐻 can also be drawn together with 𝐺 and therefore shows that 𝐺 is subhamiltonian, as required.

The run-time of the algorithm is at most the number of nodes of B, which because of Lemma 5 is at most O(|𝐸 (𝐺) |) =
O(|𝑉 (𝐺) |) (because 𝐺 is planar), times the maximum time required by the dynamic programming procedure at every

node of B. Since the latter is dominated by the time required for R-nodes, i.e., O(315𝜔 + ℓ3) due to Lemma 36, where 𝜔

is the branchwidth of Sk(𝑏) and ℓ is the number of children of the node in B, we obtain O((315𝜔 |𝑉 (𝐺) | + |𝑉 (𝐺) |3)) as
the total run-time of the algorithm. □

6 An Algorithm Using the Feedback Edge Number

In this section, we establish the following theorem:

Theorem 45. Book Thickness is fixed-parameter tractable when parameterized by the feedback edge number of the

input graph.

To obtain the result, we distinguish whether the bound on the number of pages is 2, or more. We begin with the

latter case.

6.1 The Case with More than Two Pages

The remainder of this section is devoted to a proof of Theorem 46 (stated below), which is based on providing an

(exponentially sized) kernel for the problem. We begin by introducing a few section-specific definitions.

Theorem46. When restricted to inputs (𝐺,𝑘) such that𝑘 ≥ 3, Book Thickness is fixed-parameter tractable parameterized

by the feedback edge number.

Notation and Definitions. Let 𝐺 be an 𝑛-vertex graph and 𝐿 = (≺, 𝜎) be a 𝑘-page embedding of 𝐺 . For the purposes of

this section, it will be useful to think of the linear order ≺ on 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛} as a set of 𝑛 points on the real line

such that 𝑣1 < 𝑣2 < . . . < 𝑣𝑛 . With this interpretation in mind, we can define a region as the open interval between two

consecutive elements of 𝑉 (𝐺).
Let 𝑈 ⊆ 𝑉 (𝐺) be a subset of vertices of 𝐺 . We say that a path 𝑃 of 𝐺 is maximal proper for 𝑈 if 𝑃 (1) is not only

a single edge, (2) every internal vertex 𝑣 of 𝑃 satisfies deg𝐺 (𝑣) = 2 and 𝑣 ∉ 𝑈 , and (3) 𝑃 is maximal (with respect to

containment) among all paths satisfying properties (1) and (2).

Let 𝐿 = (≺, 𝜎) be a book embedding, we say that edge 𝑒′ = 𝑢′𝑣 ′ is nested under the edge 𝑒 = 𝑢𝑣 if 𝜎 (𝑒) = 𝜎 (𝑒′) and
(𝑢′, 𝑣 ′) ⊂ (𝑢, 𝑣), that is either 𝑢 ≺ 𝑢′ ≺ 𝑣 ′ ≺ 𝑣 or 𝑢 = 𝑢′ ≺ 𝑣 ′ ≺ 𝑣 or 𝑢 ≺ 𝑢′ ≺ 𝑣 ′ = 𝑣 . Moreover, we say that an edge

touches a region if one of its endpoints belongs to the interior of that region, and that a path touches a region 𝑡 times if 𝑡

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

of its edges touches that region. We use 𝜎 (𝑣) = {𝜎 (𝑒) | 𝑒 ∈ 𝐸 (𝐺) ∧ 𝑣 ∈ 𝑒} to denote the set of all the page numbers of

the edges incident to 𝑣 .

We say that a graph 𝐺 and a set of paths P are near-disjoint if the vertices that are in common among 𝐺 and the

paths of P are exactly their endpoints. Let 𝐺 be a graph and P be a set of paths such that 𝐺 and P are near-disjoint:

we say that a set of paths P′
serves as P if 𝐺 and P′

are near-disjoint, |P′ | = |P |, and there is a path in P with 𝑢 and

𝑣 as endpoints if and only if there is a path in P′
with 𝑢 and 𝑣 as endpoints. If a graph 𝐺 and a set of paths P are

near-disjoint, we denote the graph obtained by inserting 𝑃 into 𝐺 as 𝐺 ⋎ P.

The Branching Step. In the first part of the algorithm, we apply brute-force branching and a simple preprocessing rule.

We begin by exhaustively removing all pendant vertices in the graph.

Lemma 47. Let 𝐺 be a graph and 𝑣 be a vertex of degree at most one in 𝐺 . Then (𝐺,𝑘) and (𝐺 − 𝑣, 𝑘) are equivalent
instances of Book Thickness.

Proof. We show that (𝐺,𝑘) is a yes-instance of Book Thickness if and only if (𝐺 − 𝑣, 𝑘) is a yes-instance of the
same problem. The forward direction follows directly from the fact YES instances are preserved when considering

subgraphs: if 𝐻 is a subgraph of𝐺 , a 𝑘-page book embedding of 𝐻 can be obtained from a 𝑘-page book embedding of𝐺

by removing 𝐺 − 𝐻 .
Consider now a 𝑘-page book embedding 𝐿 for 𝐺 − 𝑣 . If 𝑣 is an isolated vertex of 𝐺 , a 𝑘-page book embedding for 𝐺

can be obtained from 𝐿 by inserting 𝑣 in any region of 𝐿. Suppose 𝑣 is a leaf of 𝐺 and let 𝑢𝑣 be the unique neighbor of 𝑣

in 𝐺 . A 𝑘-page book embedding 𝐿′ for 𝐺 can be obtained from 𝐿 by inserting 𝑣 in any of the two regions of 𝐿 adjacent

to 𝑢𝑣 and by setting 𝜎 (𝑣𝑢𝑣) = 1. Note that 𝐿′ is indeed a 𝑘-page book embedding because the edge 𝑣𝑢𝑣 neither nests

nor intersects any other edge (on any page). □

Let 𝐺 be a graph and let 𝐺≥2 be the graph obtained from 𝐺 by removing, exhaustively, every vertex of degree at

most one. Note that every vertex of 𝐺≥2 has at least two neighbors.

Corollary 48 (of Lemma 47). Then instances (𝐺,𝑘) and (𝐺≥2, 𝑘) are equivalent instances of Book Thickness.

Let 𝐹 be a minimum feedback edge set of 𝐺≥2; note that |𝐹 | = fen(𝐺) = fen, since none of the vertices or edges that

are present in 𝐺 but not in 𝐺≥2, that is no element of (𝑉 (𝐺) \𝑉 (𝐺≥2)) ∪ (𝐸 (𝐺) \ 𝐸 (𝐺≥2)), is part of a cycle of 𝐺 . We

define 𝐺𝐹 to be the tree 𝐺≥2 − 𝐹 . We denote with 𝑇1 and 𝑇≥3 the set of leaves and of vertices of degree at least 3 of 𝐺𝐹 ,

respectively. The elements of 𝑇≥3 are also usually called branching vertices.

Let 𝑉𝐹 be the set of all the vertices in 𝐺𝐹 that are adjacent to an edge of 𝐹 in 𝐺≥2, and note that 𝑇1 ⊆ 𝑉𝐹 . Let

𝐵𝐹 = 𝑇≥3 ∪𝑉𝐹 and let P𝐹 be the set of all maximal proper paths of 𝐺𝐹 for 𝐵𝐹 .

Lemma 49. (a) |𝑇≥3 | ≤ |𝑇1 | ≤ |𝑉𝐹 | ≤ 2fen and (b) |P𝐹 | ≤ |𝐵𝐹 | ≤ 4fen.

Proof. Let us first prove that |𝑇≥3 | ≤ |𝑇1 |. It is immediate to note that in any tree the number of branching vertices

is at most the number of leaves. Recall that 𝑇1 ⊆ 𝑉𝐹 . Finally recall is 𝑉𝐹 is defined as the set of all the vertices in 𝐺≥2
that are adjacent to an edge of 𝐹 and so the number of vertices in 𝑉𝐹 is at most twice the size of 𝐹 . This completes the

proof of (a).
By recalling that 𝐵𝐹 = 𝑇≥3 ∪ 𝑉𝐹 , we obtain that |𝐵𝐹 | ≤ 4fen. Now let us consider the auxiliary graph 𝐺 ′

𝐹
that is

obtained from 𝐺𝐹 by contracting to one edge every path of P𝐹 .
Note that 𝐺 ′

𝐹
is a tree and there are two 1-to-1 correspondences: one between the vertices of 𝐺 ′

𝐹
and 𝐵𝐹 , and one

between the edges of 𝐺 ′
𝐹
and P𝐹 . It follows that |P𝐹 | = |𝐸 (𝐺 ′

𝐹
) | ≤ |𝑉 (𝐺 ′

𝐹
) | − 1 ≤ |𝐵𝐹 |. This proves (b). □

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 35

We remark that, in view of Fact 1, all of these objects are efficiently computable.

Observation 50. It is possible to compute 𝐺≥2, a minimum feedback edges set 𝐹 of 𝐺≥2, 𝐺𝐹 , 𝑇1, 𝑇≥3, 𝑉𝐹 , 𝐵𝐹 and P𝐹 in

polynomial time.

Thanks to Observation 50, we are able to compute 𝐵𝐹 , P and, by Lemma 49, all these sets have bounded size.

At this point, the only issue to obtain a kernel of the desired size is that P𝐹 might contain paths of unbounded length.

Long Path Insertion. As our first step towards dealing with the long paths that remain in our instance, we show that

yes-instances are preserved if we extend a path that is near-disjoint with the rest of the graph.

Lemma 51. Let𝐺 be a graph and 𝑃 be a path of length at least 2 such that𝐺 and {𝑃} are near-disjoint. If𝐺 ⋎ 𝑃 admits a

𝑘-page book embedding, then 𝐺 ⋎ 𝑃 ′ admits a 𝑘-page book embedding, where 𝑃 ′ is obtained from 𝑃 by subdividing an

arbitrary edge of 𝑃 once.

Proof. Consider a 𝑘-page book embedding 𝐿 for𝐺 ⋎ 𝑃 and let 𝑒 = 𝑢𝑣 of be an edge of 𝑃 . Now we want to show that

we can always subdivide 𝑒 once. First, suppose there is no edge that is nested under 𝑒 . In this case, we can delete 𝑒 , add

a vertex𝑤 such that 𝑢 ≺ 𝑤 ≺ 𝑣 , and insert the edges 𝑢𝑤 and𝑤𝑣 .

Since 𝑃 is of length at least two, one of the two endpoints of 𝑒 is an internal vertex of 𝑃 , say it is 𝑢 (the case for 𝑣 can

be proven symmetrically). Consider any edge 𝑒′ = 𝑢′𝑣 ′ that is nested under 𝑒 and has minimum 𝑢′. If 𝑢′ = 𝑢, that is 𝑒

and 𝑒′ are two consecutive edges of 𝑃 , then let 𝑅 be the region of 𝐿 that has 𝑢 as the right endpoint. We delete 𝑒 , add a

vertex𝑤 in the region 𝑅 (and so we have𝑤 ≺ 𝑢 ≺ 𝑣). See Figure 8 (left) for this replacement. If 𝑢′ ≠ 𝑢, then let 𝑅 be the

region (𝑢,𝑢′) of 𝐿. We delete 𝑒 , add a vertex𝑤 in the region 𝑅 (and so we have 𝑢 ≺ 𝑤 ≺ 𝑢′ ≺ 𝑣). See Figure 8 (right) for
this replacement. For every of these cases, we set 𝜎 (𝑢𝑤) = 𝜎 (𝑤𝑣) = 𝜎 (𝑒). □

𝑢 = 𝑢′ 𝑣′ 𝑣

𝑒

𝑒′

𝑤

𝑢 𝑢′ 𝑣

𝑒

𝑒′

𝑤 𝑣′

Fig. 8. The subdivision of the edge 𝑒 = 𝑢𝑣 when 𝑢 is a vertex of degree 2 while containing the edge 𝑒′ = 𝑢′𝑣′ by Lemma 51: when 𝑒′

is incident to 𝑢 (left) and when 𝑒′ is not incident to 𝑢 (right).

By exhaustively applying Lemma 51, we can transform paths of length at least two into arbitrarily long proper paths

while preserving yes-instances. To obtain our kernel, we will however need to shorten sufficiently long paths while

preserving yes-instances. The following lemma allows us to handle this in case where all the considered paths are

sufficiently long.

Lemma 52. Let 𝑘 ≥ 3, 𝐺 be a graph and P be a set of paths each of length more than (|𝑉 (𝐺) | + 1)2 | P | |P | such that 𝐺

and P are near-disjoint. Then, 𝐺 ⋎ P admits a 𝑘-page book embedding if and only if there exists a set of paths P′
each of

length at most (|𝑉 (𝐺) | + 1)2 | P | |P | that serves as P such that 𝐺 ⋎ P′
also admits a 𝑘-page book embedding.

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Proof. We start with the forward direction. Consider a 𝑘-page book embedding 𝐿 for 𝐺 ⋎ P and let 𝐿𝐺 be the

restriction of 𝐿 to𝐺 . First we establish that, given any region 𝑅 of 𝐿𝐺 , in 𝐿 we can replace P with a set of paths P′
that

serves as P such that every path of P′
touches the region 𝑅 most 2

| P | |P | times.

If every path of P touches 𝑅 at most 2
| P | |P | times, then the statement is true for P′ = P. Suppose otherwise, and

let R be the set of all paths in P that touch the region 𝑅.

For every 𝑃 ∈ R, say 𝑃 has vertex set {𝑢1, . . . , 𝑢𝑡 } for some 𝑡 ≥ 2 with edges 𝑢𝑖𝑢𝑖+1 for every 𝑖 ∈ [𝑡 − 1], and let 𝑍𝑃

be the set of all vertices of 𝑃 in the region 𝑅 that have either minimum or maximum label. Clearly, since 𝑃 ∈ R, the set
𝑍𝑃 must have either one or two elements. If 𝑍𝑃 = {𝑎}, we define 𝑢𝑃 and 𝑣𝑃 both to be equal to 𝑎. If 𝑍𝑃 = {𝑎, 𝑏} with
𝑎 ≺ 𝑏, we define 𝑢𝑃 = 𝑎 and 𝑧𝑃 = 𝑏.

The idea now is to delete the subpath 𝑃𝑢𝑣 of 𝑃 between 𝑢𝑃 and 𝑣𝑃 and create a path 𝑆𝑃 such that 𝑆𝑃 (1) has bounded
length, (2) serves as 𝑃𝑢𝑣 and (3) is completely contained in 𝑅. Intuitively, the length of the path 𝑆𝑃 will be at most the

number of vertices between 𝑢𝑃 and 𝑣𝑃 : we will show that we will always be able to “jump” at least one vertex with an

edge. For the argument to work, the replacement of the path segments 𝑃𝑢𝑣 with 𝑆𝑃 will be carried out using a recursive

strategy where the next path to be replaced is selected based on a specific condition.

We initiate by having R contain all the paths that touch region 𝑅, as introduced earlier. Moreover, we set R′ = ∅ to

be the empty set, and we will use R′
to store paths which have already been processed. Inductively, until R = ∅, we

consider a path 𝑃 ∈ R such that for every other path 𝑃 ′ ∈ R we have (𝑢𝑃 ′ , 𝑣𝑃 ′) ⊈ (𝑢𝑃 , 𝑣𝑃), i.e., the interval between 𝑢𝑃 ′

and 𝑣𝑃 ′ does not fully contain the corresponding interval for any other path in R. Let𝑀𝑃 be the set defined as follows

𝑀𝑃 = (
⋃
𝑃 ′′∈R

{𝑢𝑃 ′′ , 𝑣𝑃 ′′ } ∪
⋃
𝑃 ′∈R′

𝑉 (𝑃 ′)) ∩ (𝑢𝑃 , 𝑣𝑃)

The set𝑀𝑃 represents the set of all vertices, that are present at this stage, in the interval (𝑢𝑃 , 𝑣𝑃).
If 𝑀𝑃 = ∅ then we either do not do anything if 𝑢𝑃 = 𝑣𝑃 or add the edge 𝑢𝑃𝑣𝑃 and set 𝜎 (𝑢𝑃𝑣𝑃) = 1. Suppose

𝑀𝑃 ≠ ∅ and let 𝑀𝑃 = {𝑣0, . . . , 𝑣𝑡 } for some 𝑡 ≥ 0 and assume 𝑣0 ≺ . . . ≺ 𝑣𝑡 . We add a path 𝑆𝑃 in the following way:

if 𝑡 = 0, we add the edge 𝑢𝑃𝑣𝑃 and set 𝜎 (𝑢𝑃𝑣𝑃) = min([ℎ] \ 𝜎 (𝑣0)). If 𝑡 ≥ 1, 𝑆𝑃 has 𝑡 internal vertices {𝑢1, . . . , 𝑢𝑡 }
such that 𝑣0 ≺ 𝑢1 ≺ 𝑣1 ≺ . . . ≺ 𝑢𝑡 ≺ 𝑣𝑡 . We add the edges 𝑢𝑃𝑢1, 𝑢𝑡𝑣𝑃 and 𝑢𝑖𝑢𝑖+1, for every 𝑖 ∈ [𝑡 − 1]. Finally we set

𝜎 (𝑢𝑃𝑢1) = min([ℎ] \ 𝜎 (𝑣0)), 𝜎 (𝑢𝑡𝑣𝑃) = min([ℎ] \ 𝜎 (𝑣𝑡)) and 𝜎 (𝑢𝑖𝑢𝑖+1) = min([ℎ] \ 𝜎 (𝑣𝑖)) for every 𝑖 ∈ [𝑡 − 1].
Now we show that the way we assigned pages to the edges of 𝑆𝑃 do not any create edge crossings. Since ℎ ≥ 3 and

every vertex in𝑀𝑃 has at most two incident edges (thus resulting in |𝜎 (𝑣𝑖) | ≤ 2), the sets [ℎ] \ 𝜎 (𝑣0), [ℎ] \ 𝜎 (𝑣𝑡) and
[ℎ] \ 𝜎 (𝑣𝑖) for every 𝑖 ∈ [𝑡 − 1] are not empty: since the edge of 𝑆𝑃 used to jump 𝑣𝑖 can not be assigned to any of the

pages in 𝜎 (𝑣𝑖), we can always assign a page in [ℎ] to every edge of 𝑆𝑃 in such a way no edge crossing is created. We

can finally define 𝑃 ′ as the path obtained from 𝑃 by replacing 𝑃𝑢𝑣 with 𝑆𝑃 .

Now we are left to show how many vertices are necessary to construct 𝑆𝑃 at each step: recall that this number

is equal to |𝑀𝑃 | − 1. Let 𝑖 be an integer such that 0 ≤ 𝑖 ≤ |R| ≤ |P|. We aim to evaluate 𝑇 (𝑖 + 1), that is the
maximum number of internal vertices of the (𝑖 + 1)-th subpath 𝑆𝑃 . Let 𝑁𝑃 = (⋃𝑃 ′′∈R {𝑢𝑃 ′′ , 𝑣𝑃 ′′ }) ∩ (𝑢𝑃 , 𝑣𝑃) and
𝑂𝑃 = (⋃𝑃 ′∈R′ 𝑉 (𝑃 ′)) ∩ (𝑢𝑃 , 𝑣𝑃) and note that𝑀𝑃 = 𝑁𝑃 ∪𝑂𝑃 .

Let us first analyze the case 𝑖 = 0, that is 𝑇 (1). Since R′
is empty, 𝑆𝑃 creates |𝑁𝑃 | − 1 new vertices and so we have

𝑇 (1) = |𝑁𝑃 | − 1 ≤ |R| ≤ |P|.
Let us consider the case 𝑖 ≥ 1. The set 𝑁𝑃 contains at most one vertex per path of R: this is ensured by the choice of

𝑃 . For this reason, we have |𝑁𝑃 | ≤ |R| ≤ |P|. The set 𝑂𝑃 might contain every vertex in 𝑅, both endpoint and internal,

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 37

𝑢𝑃 𝑣𝑃𝑣0 𝑣1 𝑣2𝑢1 𝑢2

Fig. 9. An example where black vertices and full edges are part of 𝑃 ′ , the path obtained from 𝑃 by replacing the subpath 𝑃𝑢𝑣 between

𝑢𝑃 and 𝑣𝑃 with 𝑆𝑃 . Note that edges with different colors belong to different pages of the book embedding.

of every path of R′
. For this reason we have |𝑂𝑃 | ≤ 2|R′ | +∑𝑖

𝑗=1𝑇 (𝑗). Now we have that

𝑇 (𝑖 + 1) ≤ |R| + 2|R′ | +∑𝑖
𝑗=1𝑇 (𝑗)

≤ 2|P | +∑𝑖
𝑗=1𝑇 (𝑗)

≤ 𝑇 (𝑖) + 2|P | +∑𝑖−1
𝑗=1𝑇 (𝑗)

≤ 2𝑇 (𝑖)
≤ 2

𝑖𝑇 (1)
≤ 2

𝑖 |P |

To summarize we have found out that 𝑇 (𝑖 + 1) ≤ 2
𝑖 |P | for every 0 ≤ 𝑖 ≤ |R| ≤ |P|. In particular, we have found

a set P′
that serves as P, where every path in P′

touches the region 𝑅 at most 2
| P | |P | times. At this point we set

R := R \ {𝑃} and R′
:= R′ ∪ {𝑃 ′} and, if possible, select another path of R.

Note that by the construction described in the paragraphs above, applying this procedure to a region 𝑅 does not

increase the number of times paths of P touch regions that are not 𝑅. This means we can apply this procedure on one

region at a time until the claim holds for every region and thus satisfying the statement. This provides a 𝑘-page book

embedding of 𝐺 ⋎ P′
with the desired property.

Let us consider the backwards direction. Suppose there exists a set P′
that serve as P, where every path in P′

has

length at most (|𝑉 (𝐺) | + 1)2 | P | |P | and 𝐺 ⋎ P′
admits a 𝑘-page book embedding. Since each path of P is of length

more than (|𝑉 (𝐺) | + 1)2 | P | |P |, we apply Lemma 51 the appropriate number of times on the paths of P′
so that the

lengths of the paths coincide with the ones of P and obtain that 𝐺 ⋎ P admits a 𝑘-page book embedding. □

The following result is a direct consequence of combining Lemma 51 and 52.

Corollary 53. Let 𝑘 ≥ 3, 𝐺 be a graph and P be a set of paths each of length more than (|𝑉 (𝐺) | + 1)2 | P | |P | such that

𝐺 and P are near-disjoint. Then, 𝐺 ⋎ P admits a 𝑘-page book embedding if and only if 𝐺 ⋎ P′
admits a 𝑘-page book

embedding where P′
is a set of paths each of length exactly (|𝑉 (𝐺) | + 1)2 | P | |P | that serves as P.

Proof. Let us start with the forward direction. Suppose that 𝐺 ⋎ P admits a 𝑘-page book embedding. We apply the

forward direction of Lemma 52 and that𝐺 ⋎ P′
admits a 𝑘-page book embedding where every path of P′

has length at

most (|𝑉 (𝐺) | + 1)2 | P | |P |. Now by Lemma 51, we obtain obtain that 𝐺 ⋎ P′′
admits a 𝑘-page book embedding where

every path of P′′
has length exactly (|𝑉 (𝐺) | + 1)2 | P | |P |.

The reverse direction follows directly from Lemma 51. □

Putting Everything Together. At this point, we have all the ingredients needed to establish the fixed-parameter tractability

of Book Thickness with respect to the feedback edge number.

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Proof of Theorem 46. Let (𝐺,𝑘) be an input of Book Thickness. We establish fixed-parameter tractability by

constructing a problem kernel in polynomial time. By Observation 50, we compute 𝐺≥2, 𝐹 , 𝐺𝐹 and 𝐵𝐹 . We set 𝐵 := 𝐵𝐹

and let P := P𝐹 be the set all maximal proper paths of 𝐺𝐹 for 𝐵. Note that, given 𝐵, the set P𝐹 can be computed using

Observation 50. Let P≤ be the set of all the paths of P of length at most (|𝐵 | + 1)2 | P | |P |.
At this point we start a loop that repeats at most |P | ≤ 4fen times: at each iteration either we obtain a kernel of the

desired size and the algorithm ends, or the size of P is reduced by at least one. If P≤ = ∅ holds, that is, all the paths in P
have length more than (|𝐵 | +1)2 | P | |P |, Lemma 52 can be applied to obtain a kernel of the desired size and the algorithm

ends. If P≤ ≠ ∅ holds; denote with 𝑉≤ the set of vertices in paths of P≤ . Note that |𝑉≤ | ≤ (|𝐵 | + 1)2 | P | |P | |P≤ | ≤
(|𝐵 | + 1)2 | P | |P |2. In this case, We update the sets 𝐵 and P by setting the former to 𝐵 ∪𝑉≤ and the latter to P \ P≤ ,

and enter the next iteration of the loop.

To conclude the proof, it suffices to provide an upper bound to the size of a graph created in this way. The largest

graph obtained by this construction results from there being |P | iterations, whereas in each iteration there is only a

single path in P≤ and this path is of maximum length. Let 𝑆 (𝑖 + 1) be an upper bound on the number of vertices that

have been added to 𝐵 after the 𝑖-th step of the recursion. For 𝑖 = 0, we have that 𝑆 (1) = |𝐵𝐹 |.
Let us consider the case 𝑖 ≥ 1. Together with the vertices that were present after the (𝑖−1)-th step, that is 𝑆 (𝑖), we also

have to consider the vertices of a unique path havingmaximum length allowed at this step, that is 2
| P |−𝑖 (|P|−𝑖) (𝑆 (𝑖)+1).

Now we have that:

𝑆 (𝑖 + 1) ≤ 𝑆 (𝑖) + 2
| P |−𝑖 | (P| − 𝑖) (𝑆 (𝑖) + 1)

≤ 𝑆 (𝑖) + 2
| P |−𝑖 (|P| − 𝑖)𝑆 (𝑖) + 2

| P |−𝑖 (|P| − 𝑖)
≤ 3 ∗ 2 | P |−𝑖 (|P| − 𝑖)𝑆 (𝑖)

Hence, the total size of the obtained kernel can be upper-bounded by (3 ∗ 2 | P |−𝑖 (|P| − 𝑖)) | P | · 𝑆 (1), which is at most

2
O(fen(𝐺)2)

. □

6.2 An FPT-algorithm for SUBHAM using the Feedback Edge Number

In this section, we provide a linear kernel for SUBHAM parameterized by the feedback edge number. The main idea is

to reduce the size of the tree𝐺 − 𝐹 , where 𝐹 is minimum feedback edge set of the input graph 𝐺 . To do so we need the

following simple corollary and lemma that allow us to bound the number of leaves and vertices of degree at most two

in 𝐺 . We have already seen in Lemma 47 that we can remove vertices of degree at most one. The next lemma allows us

to bound the number of vertices of degree two.

Lemma 54. Let 𝐺 be a graph and 𝑃 be a path of length 4 in 𝐺 such that all inner vertices of 𝑃 have degree two. Let 𝐺 ′
be

a graph obtained from 𝐺 by contracting any edge on 𝑃 . Then, 𝐺 is subhamiltonian if and only if so is 𝐺 ′
.

Proof. Let’s assume that 𝐺 ′
is subhamiltonian with witness (𝐺𝐻 , 𝐻) and 𝑃 ′ = [𝑣𝑏 , 𝑣1, 𝑣2, 𝑣𝑒] is a path 𝑃 after

contracting. Due to the fact that 𝑑𝑒𝑔𝐺 (𝑣1) = 𝑑𝑒𝑔𝐺 (𝑣2) = 2 and 2 ≤ 𝑑𝑒𝑔𝐺𝐻
(𝑣1), 𝑑𝑒𝑔𝐺𝐻

(𝑣2) ≤ 4, there exist a face 𝑓𝐻

in drawing 𝐺 ′
𝐻
such that (𝑣1, 𝑣2) ∈ 𝐸 (𝑓𝐻) and 𝐸 (𝑓𝐻) ∩ 𝐸 (𝐻) ≠ ∅. From Observation 4 (2) and (1) we obtain that 𝐺 is

subhamiltonian.

Let’s assume that𝐺 is subhamiltonian with witness (𝐺𝐻 , 𝐻). Let 𝑃 be a path [𝑣𝑏 , 𝑣1, 𝑣2, 𝑣3, 𝑣𝑒] and 𝐷 be a drawing of

𝐺 that respects 𝐻 . All inner vertices from 𝑉 (𝑃) have degree two, which implies that there exists a face 𝑓 of 𝐷 such that

𝑉 (𝑃) ⊆ 𝑉 (𝑓). From Lemma 14 applied to 𝑣𝑏𝑣𝑒 and a face 𝑓 , we get new witness (𝐺𝐻 ′ , 𝐻 ′) and 𝐻 ′
crosses 𝑣𝑏𝑣𝑒 at most

in two points. There cannot be three edges which have one ending in 𝑣1, 𝑣2 and 𝑣3 and crosses 𝑣𝑏𝑣𝑒 , so at least one pair

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 39

of varieties (𝑣𝑏 , 𝑣2), (𝑣1, 𝑣3) or (𝑣2, 𝑣𝑒) are in the same face together, so from Observation 2 we can connect them. From

Observation 4 (1) we obtain that 𝐺 ′
is subhamiltonian. □

We are now ready to provide our kernel for SUBHAM.

Theorem 55. SUBHAM parameterized by the feedback edge number 𝑘 admits a kernel with at most 12𝑘 − 8 vertices and

at most 14𝑘 − 9 edges.

Proof. Let 𝐺 be a connected graph, i.e., the given instance of SUBHAM. We first use Lemma 47 to ensure that 𝐺

has no leaves. We now compute a minimum feedback edge set 𝐹 ⊆ 𝐸 (𝐺) for 𝐺 using Fact 1. Let 𝑇 be the tree 𝐺 − 𝐹 .
Note that 𝑇 has at most 2|𝐹 | many leaves, since every leaf of 𝑇 must be adjacent to an edge in 𝐹 . This also implies

that 𝑇 has at most |𝐿 | − 2 vertices of degree at least 3, where 𝐿 is the set of all leaves of 𝑇 . Therefore, it only remains

to obtain an upper bound on the vertices having degree exactly two in 𝑇 . We say that a path 𝑃 in 𝑇 is proper if it is

an inclusion-wise maximal path in 𝑇 having only inner vertices of degree two in 𝐺 . Because of Lemma 54, we can

assume that any proper path in 𝑇 has length at most three. Also note that every vertex having degree two in 𝑇 is an

inner vertex of such a maximal path. Moreover, since every proper path must have both of its endpoints in 𝑉 (𝐹) ∪ 𝐵,
where 𝐵 is the set of all vertices having degree at least three in 𝑇 , the number of distinct proper paths in 𝑇 is equal

to the number of edges in a tree with |𝑉 (𝐹) ∪ 𝐵 | many vertices. Therefore, the number of proper path in 𝑇 is at most

|𝑉 (𝐹) ∪ 𝐵 | − 1 ≤ 2|𝐹 | + 2|𝐹 | − 2 − 1 = 4|𝐹 | − 3. Since every proper path contains at most two vertices of degree two

in 𝑇 , we obtain that 𝑇 contains at most 2(4|𝐹 | − 3) = 8|𝐹 | − 6 vertices of degree two. Altogether, 𝑇 contains at most

2|𝐹 | + 2|𝐹 | − 2 + 8|𝐹 | − 6 = 12|𝐹 | − 8 vertices and at most 12|𝐹 | − 9 edges. Therefore, 𝐺 has at most 12|𝐹 | − 8 vertices

and at most 14|𝐹 | − 9 edges. Finally, the time required to obtain the kernel is at most O(|𝑉 (𝐺) | + |𝐸 (𝐺) |). □

Theorem 45 now follows directly from Theorems 55 and 46. Moreover, by combining Theorem 55 with the subexpo-

nential algorithm of Corollary 21, we can slightly strengthen our main result as follows.

Corollary 56. SUBHAM can be solved in time 2
O(

√
𝑘) · 𝑛O(1)

, where 𝑘 is the feedback edge number of the input graph.

7 Concluding Remarks

While our main algorithmic result settles the complexity of computing 2-page book embeddings under the exponential

time hypothesis, many questions remain when one aims at computing 𝑘-page book embeddings for a fixed 𝑘 greater

than 2. To the best of our knowledge, even the existence of a single-exponential algorithm for this problem is open.

In terms of the problem’s parameterized complexity, it is natural to ask whether one can obtain a generalization of

Theorem 20 for computing 𝑘-page book embeddings when 𝑘 > 2. In fact, it is entirely open whether computing, e.g.,

4-page book embeddings is even in XP when parameterized by the treewidth. In this sense, our positive result for the

feedback edge number can be seen as a natural step on the way towards finally settling the structural boundaries of

tractability for computing page-optimal book embeddings.

Acknowledgments

Robert Ganian was supported by Project No. Y1329 of the Austrian Science Fund (FWF) and Project No. ICT22-029 of

the Vienna Science Foundation (WWTF). Sebastian Ordyniak was supported by the Engineering and Physical Sciences

Research Council (EPSRC) (Project EP/V00252X/1).

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

References

[1] Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and Gelasio Salazar. The 2-page crossing number of 𝐾𝑛 . Discrete

& Computational Geometry, 49(4):747–777, 2013. doi:10.1007/S00454-013-9514-0.

[2] Patrizio Angelini, Marco Di Bartolomeo, and Giuseppe Di Battista. Implementing a partitioned 2-page book embedding testing algorithm. Proc. GD

2012, 7704:79–89, 2012. doi:10.1007/978-3-642-36763-2_8.

[3] Michael J. Bannister and David Eppstein. Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. Journal of

Graph Algorithms and Applications, 22(4):577–606, 2018. doi:10.7155/jgaa.00479.

[4] Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing. Proc. FOCS 1989, pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.

[5] Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185,

2016. doi:10.1007/s00453-015-0016-8.

[6] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-

8956(79)90021-2.

[7] Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for book embedding problems. Journal of

Graph Algorithms and Applications, 24(4):603–620, 2020. doi:10.7155/jgaa.00526.

[8] Daniel Bienstock and Clyde L. Monma. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989. doi:10.1002/NET.3230190107.

[9] Daniel Bienstock and Clyde L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica,

5(1):93–109, 1990. doi:10.1007/BF01840379.

[10] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems

parameterized by treewidth. Information and Computation, 243:86–111, 2015. doi:10.1016/J.IC.2014.12.008.

[11] F. Chung, F. Leighton, and A. Rosenberg. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM Journal on Algebraic

Discrete Methods, 8(1):33–58, 1987. doi:10.1137/0608002.

[12] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12–75, 1990.

doi:10.1016/0890-5401(90)90043-H.

[13] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, DánielMarx,Marcin Pilipczuk,Michal Pilipczuk, and Saket Saurabh. Parameterized

Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.

[14] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of perfect matchings. Journal of the ACM, 65(3):12:1–12:46,

2018. doi:10.1145/3148227.

[15] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity

problems parameterized by treewidth in single exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.

[16] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-first search algorithm for planar graphs. Discrete & Computational Geometry,

13:459–468, 1995. doi:10.1007/BF02574056.

[17] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.

[18] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact algorithms on planar graphs: Exploiting sphere cut

decompositions. Algorithmica, 58(3):790–810, 2010. doi:10.1007/S00453-009-9296-1.

[19] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:

10.1007/978-1-4471-5559-1.

[20] Vida Dujmović and David R. Wood. On linear layouts of graphs. Discrete Mathematics & Theoretical Computer Science, 6(2):339–358, 2004.

doi:10.46298/dmtcs.317.

[21] Vida Dujmovic and David R. Wood. Graph treewidth and geometric thickness parameters. Discrete & Computational Geometry, 37(4):641–670, 2007.

doi:10.1007/s00454-007-1318-7.

[22] Toshiki Endo. The pagenumber of toroidal graphs is at most seven. Discrete Mathematics, 175(1):87–96, 1997. doi:10.1016/S0012-365X(96)00144-

6.

[23] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

[24] Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized complexity in graph drawing (dagstuhl seminar

21293). Dagstuhl Reports, 11(6):82–123, 2021. doi:10.1016/j.artint.2017.12.006.

[25] Joseph L. Ganley and Lenwood S. Heath. The pagenumber of 𝑘-trees is 𝑂 (𝑘) . Discrete Applied Mathematics, 109(3):215–221, 2001. doi:

10.1016/S0166-218X(00)00178-5.

[26] M. R. Garey, D. S. Johnson, and R. Endre Tarjan. The planar hamiltonian circuit problem is np-complete. SIAM Journal on Computing, 5(4):704–714,

1976. doi:10.1137/0205049.

[27] Emilio Di Giacomo and Giuseppe Liotta. The hamiltonian augmentation problem and its applications to graph drawing. Proc. WALCOM 2010, LNCS,

5942:35–46, 2010. doi:10.1007/978-3-642-11440-3_4.

[28] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica, 64(3):416–453,

2012. doi:10.1007/S00453-012-9627-5.

[29] Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. Proc. GD 2000, 1984:77–90, 2000. doi:10.1007/3-540-44541-

2_8.

Manuscript submitted to ACM

https://doi.org/10.1007/S00454-013-9514-0
https://doi.org/10.1007/978-3-642-36763-2_8
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1002/NET.3230190107
https://doi.org/10.1007/BF01840379
https://doi.org/10.1016/J.IC.2014.12.008
https://doi.org/10.1137/0608002
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1145/3506707
https://doi.org/10.1007/BF02574056
https://doi.org/10.1007/S00453-009-9296-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.46298/dmtcs.317
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1016/S0012-365X(96)00144-6
https://doi.org/10.1016/S0012-365X(96)00144-6
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1137/0205049
https://doi.org/10.1007/978-3-642-11440-3_4
https://doi.org/10.1007/S00453-012-9627-5
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

A Tight Subexponential-time Algorithm for Two-Page Book Embedding 41

[30] Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an edge into a planar graph. Algorithmica, 41(4):289–308, 2005. doi:

10.1007/S00453-004-1128-8.

[31] András Gyárfás and Jenö Lehel. Covering and coloring problems for relatives of intervals. Discrete Mathematics, 55(2):167–180, 1985. doi:

10.1016/0012-365X(85)90045-7.

[32] Christian Haslinger and Peter F. Stadler. RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties. Bulletin of

Mathematical Biology, 61(3):437–467, 1999. doi:10.1006/bulm.1998.0085.

[33] Lenwood S. Heath. Embedding outerplanar graphs in small books. SIAM Journal on Algebraic Discrete Methods, 8(2):198–218, 1987. doi:

10.1137/0608018.

[34] Michael Hoffmann and Boris Klemz. Triconnected planar graphs of maximum degree five are subhamiltonian. Proc. ESA 2019, LIPIcs, 144(58):1–14,

2019. doi:10.4230/LIPIcs.ESA.2019.58.

[35] Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding and clustered graph planarity. Technical report, Citeseer, 2009.

[36] Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing two-page book embedding of partitioned graphs. Theoretical Computer

Science, 725:79–98, 2018. doi:10.1016/J.TCS.2015.12.039.

[37] John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549–568, 1974. doi:10.1145/321850.321852.

[38] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System

Sciences, 63(4):512–530, 2001. doi:10.1006/JCSS.2001.1774.

[39] Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs. Proc. WG 2022,

13453:287–299, 2022. doi:10.1007/978-3-031-15914-5_21.

[40] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. Proc. FOCS 2021, pages 184–192, 2021. doi:10.1109/

FOCS52979.2021.00026.

[41] Germain Kreweras. Sur les partitions noncroisees d’un cycle. Discrete Mathematics, 1, 1972.

[42] Seth M. Malitz. Genus 𝑔 graphs have pagenumber𝑂 (√𝑔) . Journal of Algorithms, 17(1):85–109, 1994. doi:10.1006/jagm.1994.1028.

[43] Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. Treewidth, Kernels, and Algorithms, 12160:129–144, 2020. doi:

10.1007/978-3-030-42071-0_10.

[44] Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. A subexponential parameterized algorithm for directed subset traveling salesman problem on

planar graphs. SIAM Journal on Computing, 51(2):254–289, 2022. doi:10.1137/19M1304088.

[45] Petra Mutzel. The SPQR-tree data structure in graph drawing. Proc. ICALP 2003, 2719:34–46, 2003. doi:10.1007/3-540-45061-0_4.

[46] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer,

2012. doi:10.1007/978-3-642-27875-4.

[47] Malgorzata Nowicka, Vinay K. Gautam, and Pekka Orponen. Automated rendering of multi-stranded dna complexes with pseudoknots, Proc. UCNC

2024, 14776:190–202, 2023. https://doi.org/10.1007/978-3-031-63742-1_14.

[48] Neil Robertson and Paul D. Seymour. Graph minors. x. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190,

1991. doi:10.1016/0095-8956(91)90061-N.

[49] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph. Journal of Combinatorial Theory, Series B, 62(2):323–348,

1994. doi:10.1006/JCTB.1994.1073.

[50] Rodica Simion. Noncrossing partitions. Discrete Mathematics, 217(1):367–409, 2000. doi:10.1016/S0012-365X(99)00273-3.

[51] Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback edge set. Theoretical Computer Science, 494:99–111,

2013. doi:10.1016/J.TCS.2013.01.029.

[52] Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report, 1982. doi:10.1137/0205049.

[53] Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-

0000(89)90032-9.

Manuscript submitted to ACM

https://doi.org/10.1007/S00453-004-1128-8
https://doi.org/10.1007/S00453-004-1128-8
https://doi.org/10.1016/0012-365X(85)90045-7
https://doi.org/10.1016/0012-365X(85)90045-7
https://doi.org/10.1006/bulm.1998.0085
https://doi.org/10.1137/0608018
https://doi.org/10.1137/0608018
https://doi.org/10.4230/LIPIcs.ESA.2019.58
https://doi.org/10.1016/J.TCS.2015.12.039
https://doi.org/10.1145/321850.321852
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/978-3-031-15914-5_21
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1006/jagm.1994.1028
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1137/19M1304088
https://doi.org/10.1007/3-540-45061-0_4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1006/JCTB.1994.1073
https://doi.org/10.1016/S0012-365X(99)00273-3
https://doi.org/10.1016/J.TCS.2013.01.029
https://doi.org/10.1137/0205049
https://doi.org/10.1016/0022-0000(89)90032-9
https://doi.org/10.1016/0022-0000(89)90032-9

	Abstract
	1 Introduction
	2 Preliminaries
	3 Solution Normal Form
	4 Setting Up the Framework
	4.1 Reducing to the Biconnected Case
	4.2 Defining the Types for Nodes in the SPQR-tree
	4.3 Framework for Sphere-cut Decomposition

	5 An FPT-algorithm for SUBHAM using Treewidth
	5.1 Handling P-nodes
	5.2 Handling R-nodes and S-nodes
	5.3 Putting Everything Together

	6 An Algorithm Using the Feedback Edge Number
	6.1 The Case with More than Two Pages
	6.2 An FPT-algorithm for SUBHAM using the Feedback Edge Number

	7 Concluding Remarks
	Acknowledgments
	References

