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The water that bears the boat
IS the same that swallows it up.



Motivation
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What makes a physical object fool?
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What makes a physical object fool?

e Multiple objects can support the same tool use.
e Compositional nature of tools makes it hard to understand
an object's tool-like functionalities without context.

e What can a book be?

A hammer for smashing

A lid covering instant noodles

Fuel when making fire

A pad for balancing an uneven table.
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Context of Tools Matter

® A toolis a composition of multiple functions, and the context determines which
one comes into action.

® To address this unique property, we introduce the Bongard-Tool benchmark for
understanding the compositional concepts of tool use.
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Group 1: canonical tools| Group 2: household objects Group 3: stones
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Few-Shot Learning Methods
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The Bongard Problem (Bongard, 1970)
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Bongard-LOGO (Nie ef al,2020)  Bongard-HOI (Jiang et al., 2022)
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he Bongard-Tool Benchmark
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Benchmark Formulation

Positive Examples Negative Examples

M=6 Tools

that can support the same function

M=6 Tools

that cannot support the function

1 Query Image
to be predicted




Jiang et al.

Generate 100 various functions
of using tools or tool-related concepts
smash, nail, screw, cut, .. E @
GPT-3
Generate 10 tools
that can support the function smash/cut/...

smash: hammer, rock, ..
- cut: knife, scissor, ..

GPT-3
b smash: hammer, rock, ..
cut: knife, scissor,

Tool names
screw: .. I::> .
hammer, rock, knife, ..

A oL AT — e 0.47 < T
[T[][]L:B] :> accept reject

[TooL_C]
[TooL_D] cLIp

=

Tech Report PKU-1AI-2023-0007

WE

V4
(hammer, % )

(rock,

Downloaded Images
(Central-cropping)

BS Microsoft Bing gcz ﬂ

L]
E Pexels Bl Unsplash

Search Engines & Image

Stocks
14



Jiang et al. Tech Report PKU-1AI-2023-0007

Bongard Instance Generation
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Text-Image Mismatch in Dataset Construction

Tool Cluster (Many-to-One) Text Polysemy (One-to-Many)
Hammer? Piler? Saw? ... Rock? Johnson the Rock? Rock’'n’Roll? ...
Grounding Disagreement Rare / Abstract Tools
Camera? Camera App? Camera Logo? ... Brick Hammer? PDF File? ... 7
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Baseline Experiments
with Existing Methods
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Normal Split v.s. Conceptual Generalization Split

Normal Split: Conceptual Generalization Split:

e sample Bongard-Tool instances from the whole dataset e randomly select: 80% of the functions for training 20% for

e randomly select: 80% for training and 20% for testing testing

° models have seen all concepts (functions) in training. ° sample Bongard-Tool instances from training concepts
(functions) and testing concepts respectively.

e models have never seen the testing concepts
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split Non-Episodic Meta-Learning Methods

CNN WReN SNAIL ProtoNet MetaOptNet ANIL Meta-SC Meta-IN
NS 5297 7410 6391 75.18 75.13 63.03 76.54 88.82
CGS 51.35 5590 64.42 61.83 61.02 54.29 61.37 69.78

Table 1: Test accuracy on baseline methods. We report the test accuracy of baseline methods on our benchmark.
Bold fonts indicate the best result in the group.

° Meta-learning methods generally outperform
non-episodic methods

e These models may find some shortcuts to our
Bongard-Tool tasks.

e  Visual representations are not enough.
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Discussion
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Group 1: canonical tools| Group 2: household objects Group 3: stones
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Concept Induction
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Few-Shot Visual Classification v.s. Few-Shot Reasoning

® Requires almost no high-level reasoning ability ® Requires high-level reasoning ability
® Object-level knowledge ® Object & function-level knowledge
® A test-bed for visual perception ability ® A test-bed for visual reasoning ability
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Conclusion
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Problem Formulation: What is Bongard-Tool?

e We take the form of Bongard, but base on the affordance and functionalities of tools.

® Our benchmark requires more knowledge than the information provided by the images.

® For explainable human-level induction, many aspects should be taken into consideration,
including priors of physical properties of tools, experiences of using tools, etc.

e Existing methods show acceptable performance, but it is more likely that they find

shortcuts between tool functionalities and their image patterns.
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Contributions

e We formulate the context-dependent tool understanding as a few-shot concept induction
problem, which can represent a broad range of compositional functionalities of tools.

® We propose the Bongard-Tool benchmark for addressing the context-dependent tool
understanding in visual reasoning. Extensive experiments on recent few-shot and meta-
learning methods show the hardship of understanding compositional tool concepts from
pure visual perception.

e We demonstrate the effectiveness of fast constructing large-scale datasets by utilizing large

language models for knowledge building, web crawling, and vision-language models for
content retrieval and filtering.
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