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an oil painting of an eiffel tower 
in the distance, Van Gogh Style

an oil painting of a shopping mall 
in the distance, Van Gogh Style

a pencil drawing of a car and a 
willow, black and white painting

a pencil drawing of buildings in the 
distance, black and white painting

a cartoon animation of an elephant 
in the forest

a cartoon animation of a cabinet a professional photograph of a wet 
puppy in a pool, ultra realistic

a professional photograph of a castle 
in the distance, ultra realistic

Figure 1: Displayed are the results generated using PrimeComposer, showcasing its prowess across various domains: oil painting,
sketching, cartoon animation, and photorealism.

ABSTRACT
Image composition involves seamlessly integrating given objects
into a specific visual context. Current training-free methods rely
on composing attention weights from several samplers to guide the
generator. However, since these weights are derived from disparate
contexts, their combination leads to coherence confusion and loss
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of appearance information. These issues worsen with their exces-
sive focus on background generation, even when unnecessary in
this task. This not only impedes their swift implementation but also
compromises foreground generation quality. Moreover, these meth-
ods introduce unwanted artifacts in the transition area. In this paper,
we formulate image composition as a subject-based local editing
task, solely focusing on foreground generation. At each step, the
edited foreground is combined with the noisy background to main-
tain scene consistency. To address the remaining issues, we propose
PrimeComposer, a faster training-free diffuser that composites the
images by well-designed attention steering across different noise
levels. This steering is predominantly achieved by our Correlation
Diffuser, utilizing its self-attention layers at each step. Within these
layers, the synthesized subject interacts with both the referenced
object and background, capturing intricate details and coherent
relationships. This prior information is encoded into the attention
weights, which are then integrated into the self-attention layers
of the generator to guide the synthesis process. Besides, we intro-
duce a Region-constrained Cross-Attention to confine the impact of
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specific subject-related words to desired regions, addressing the un-
wanted artifacts shown in the prior method thereby further improv-
ing the coherence in the transition area. Our method exhibits the
fastest inference efficiency and extensive experiments demonstrate
our superiority both qualitatively and quantitatively. The code is
available at https://github.com/CodeGoat24/PrimeComposer.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
diffusion, image composition, image editing

1 INTRODUCTION
Image composition entails seamlessly incorporating the given ob-
ject into the specific visual context without altering the object’s ap-
pearance while ensuring natural transitions. Earlier studies employ
personalized concept learning [14, 15, 20, 21, 35], yet they often rely
on costly instance-based optimization and encounter limitations in
generating concepts with specified backgrounds. Although these
challenges are effectively addressed by utilizing diffusion models to
explicitly incorporate additional guiding images [37, 46], retraining
these pre-trained models on customized datasets risks compromis-
ing their rich prior knowledge. Consequently, these methods exhibit
limited compositional abilities beyond their training domain, and
they still demand substantial computational resources.

A recent study [28] develops a training-free framework, TF-
ICON, that leverages attention weights from several samplers to
composite the self-attention map of the diffuser during the com-
position process. Despite achieving notable success in this task,
it still faces substantial challenges in preserving the appearance
of complex objects (Fig. 2 (left)) and synthesizing a natural coher-
ence (Fig. 2 (right)). The primary issue resides in its composite
self-attention maps: the incorporation of attention weights from
different contexts introduces potential ambiguity. To be precise,
in TF-ICON, each sampler’s weights are calculated within its spe-
cific global context [39], and the act of forcibly combining them
leads to the synthesized confusion in coherent relations and loss of
appearance information. This undoubtedly hampers its ability to
accurately represent the intrinsic characteristics of the given object
and establish a coherent relationship. These issues are further ac-
centuated by its overemphasis on background generation (a tailored
sampler). It is essential to underscore that the background inher-
ently necessitates no alteration, given the user’s exclusive focus on
foreground area generation. This superfluous emphasis not only
introduces computational overhead but also leads to compromise
on the foreground synthesis. Moreover, this approach introduces
the unwanted artifacts in the transition area as shown in Fig. 4,
further hindering the natural coherence establishment.

In summary, while the current training-free method has miti-
gated the need for costly optimization and retraining, it remains
incapable of capturing the nuanced appearance of objects and forg-
ing dependable coherent relations. Urgent exploration of more ef-
fective steering mechanisms for training-free composition, without
compromising efficiency, is imperative.

In this paper, we novelly formulate this task as a subject-guided
local editing problem, focusing solely on foreground generation
due to the unnecessary alteration of the background. To achieve
this, as depicted in Fig. 3, we utilize the pre-trained Latent Diffu-
sion Model (LDM) [34] to edit local foreground areas evolvingly
based on the given object and text. Then the resultant edited area
is spatially combined with a certain noised background at each
step to maintain the scene. To address the remaining issues, we
propose a faster training-free method, dubbed PrimeComposer, a
progressively combined diffusion model that integrates the user-
provided object to the background through well-designed attention
steering across different noise levels. This progressive steering is
primarily facilitated by our Correlation Diffuser (CD). Specifically,
in each step, we combine specific noisy-level versions of the pro-
vided object and background at the pixel level while simultaneously
segmenting the synthesized subject from the previous step’s results.
These components are then fed into the CD’s diffusion pipeline
where the synthesized subject interacts with both the referenced
object and background within self-attention layers. The interre-
lation information, encoded as prior weights, encapsulates rich
mutual correlations and object appearance features. Consequently,
we infuse them into LDM’s self-attention maps (yellow and orange
regions in Fig. 3 (bottom right), respectively) to meticulously steer
the preservation of object appearance and ensure harmonious co-
herence establishment. To fortify the steering impact, we further
advance the classifier-free guidance [17], elaborated in Sec. 4.5. Ad-
ditionally, we introduce Region-constrained Cross-Attention (RCA),
replacing cross-attention layers in LDM, to confine the impact of
specific subject-related words to predefined regions in attention
maps. This helps mitigate unwanted artifacts, thereby enhancing
coherence in the transition area.

Note that CD is the only sampler for steering and all the in-
fused attention weights are computed from the accordant context.
However, intuitively infusing object appearance-related weights
on all layers will result in the subject overfitting, as shown in Fig. 5,
thereby leading to unexpected coherence problems: style inconsis-
tency. Therefore, we propose to control appearance infusion only
in the decoder part of the U-Net since the decoder has been proven
to focus on learning the appearance and textures [52].

Our contributions can be summarized as follows. 1)We formulate
image composition as a subject-guided local editing problem and
propose a faster training-free method, namely, PrimeComposer. 2)
We develop the CD to simultaneously alleviate the challenge of
preserving complex objects’ appearance and synthesizing natural
coherence bywell-designed attention steering. 3)We introduce RCA
to address the unwanted artifacts in prior methods. 4) Our method
exhibits the fastest inference efficiency and extensive experiments
demonstrate our superiority both qualitatively and quantitatively.

2 RELATEDWORK
Image composition serves as a valuable tool for diverse downstream
tasks, e.g., entertainment, and data augmentation [6, 11, 25, 28, 42].
The practice for this task broadly falls into two categories: text-
guided and image-guided composition.

Text-guided composition [1, 2, 7, 12, 26] involves generating
images based on a text prompt that specifies multiple objects. This
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a cartoon animation of buildings in the distance a pencil drawing of a fox in the sunset

a pencil drawing of a sheep in the sunset a professional photograph of skyscrapers behind the 
forest, ultra realistic

Ours OursTF-ICON (SOTA)
(from its original paper)

TF-ICON (SOTA)
(from its original paper)

(from its original paper) (from its original paper)

Problem 1:preserving the appearance Problem 2:synthesizing natural coherence

Figure 2: Current methods encounter significant challenges in preserving the objects’ appearance (left) and synthesizing natural
coherence (right). The problematic areas of coherence are indicated by red dotted lines.

approach allows for diverse appearances as long as the semantics
alignwith the prompt. Despite its effectiveness, semantic errorsmay
arise, especially with prompts involving multiple objects. These
errors, including attribute leakage and missing objects, often neces-
sitate extensive prompt engineering [43].

Conversely, image-guided composition [4, 13, 22, 28, 37, 45–47]
incorporates specific objects and scenarios from user-provided pho-
tos, potentially with the assistance of a text prompt. This approach
presents greater challenges, particularly when dealing with images
from different visual domains. Specifically, image-guided composi-
tion encompasses various sub-tasks [31], such as object placement
[3, 8, 23, 38, 40, 41, 48], image blending [44, 49], image harmoniza-
tion [9, 10, 19, 30, 32, 45], and shadow generation [18, 24, 36, 51].
These diverse tasks are typically tackled by distinct models and
pipelines, showcasing the intricacy of image-guided composition.
Recently, diffusion models have demonstrated impressive capabil-
ities in image-guided composition by simultaneously tackling all
these subtasks. While prior studies have explored personalized con-
cept learning [14, 15, 20, 21, 35], they often rely on costly instance-
based optimization and face limitations in generating concepts
with specified backgrounds. To overcome these challenges, sub-
sequent studies [37, 46] effectively incorporate additional guiding
images into diffusion models through retraining pre-trained models
on tailored datasets. However, this poses a risk of compromising
their rich prior knowledge. Besides, these models exhibit limited
compositional abilities beyond their training domain and demand
substantial computational resources. A recent study [28] introduces
a training-free method involving the gradual injection of composite
self-attention maps through multiple samplers. Despite its remark-
able success, it encounters challenges in preserving the appearance
of complex objects and synthesizing natural coherence.

Diverging from the approaches mentioned earlier, we novelly
formulate this task as an subject-guided local editing problem. Our

progressively combined Diffusion, PrimeComposer, intricately de-
picts the object and achieves harmonious coherence through well-
designed attention steering across a progression of noise levels.

3 PRELIMINARY
Denoising diffusion probabilistic models (DDPMs) [16] are designed
to reverse a parameterized Markovian image noising process. They
start with isotropic Gaussian noise samples and gradually trans-
form them into samples from a training distribution by iteratively
removing noise. Given a data distribution x0 ∼ 𝑞(x0), the forward
noising process produces a sequence of latents x1, ..., x𝑇 by adding
Gaussian noise with variance 𝛽𝑡 ∈ (0, 1) at each time step t:

𝑞(x1, ..., x𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1), (1)

𝑞(x𝑡 |x𝑡−1) = N(
√︁

1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I) .

When 𝑇 is sufficiently large, the last latent x𝑇 approximates an
isotropic Gaussian distribution.

An important property of the forward noising process is that
any step x𝑡 can be directly sampled from x0, without generating
the intermediate steps:

𝑞(x𝑡 |x0) = N(
√
𝛼𝑡x0, (1 − 𝛼𝑡 )I), (2)

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐,

where 𝝐 ∼ N(0, I), 𝛼𝑡 = 1 − 𝛽𝑡 , and 𝛼𝑡 =
∏𝑡

𝑠=0 𝛼𝑠 .
To draw a new sample from the distribution 𝑞(x0), the Mar-

kovian process is reversed. Starting from a Gaussian noise sample
x𝑇 ∼ N(0, I) with 𝛼𝑡 = 1 − 𝛽𝑡 , a reverse sequence is generated by
sampling the posteriors 𝑞(x𝑡−1 |x𝑡 , x0).

However, 𝑞(x𝑡−1 |x𝑡 , x0) is unknown and depends on the un-
known data distribution 𝑞(x0). To approximate this function, a
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deep neural network 𝑝𝜃 is trained to predict the mean and covari-
ance of x𝑡−1 given x𝑡 as input:

𝑝𝜃 (x𝑡−1 |x𝑡 ) = N(𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)) . (3)

Rather than inferring 𝜇 (x𝑡 , 𝑡) directly, Ho et al. [16] propose to pre-
dict the noise 𝜖𝜃 (x𝑡 , 𝑡) that was added to x0 to obtain x𝑡 according
to Equation 2. Then, 𝜇 (x𝑡 , 𝑡) is derived using Bayes’ theorem:

𝜇𝜃 (x𝑡 , 𝑡) =
1

√
𝛼𝑡

(
x𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (x𝑡 , 𝑡)
)
. (4)

For more detail see [16]. In this work, we leverage the pre-trained
text-to-image Latent Diffusion Model (LDM) [34], a.k.a. Stable Dif-
fusion, which applies the noising process in the latent space.

4 METHOD
This section begins with an overview of our method, followed by
an in-depth explanation of self-attention steering based on our
Correlation Diffuser (CD). Subsequently, we will explore the details
of our Region-constrained Cross-Attention (RCA). Finally, we will
introduce our careful extension of classifier-free guidance (CFG)
during inference.

4.1 Overview
This work formulates image composition as a local object-guided
editing task, utilizing LDM to depict the object and synthesize
natural coherence. We aim to seamlessly synthesize the given object
within specific foreground areas effectively without compromising
efficiency. To achieve this, we propose PrimeComposer, a faster
training-free progressively combined composer that composites the
images by well-designed attention steering across different noise
levels. Specifically, we leverage the prior attention weights from CD
to steer the preservation of object appearance and the establishment
of natural coherent relations. Its effectiveness is further enhanced
through our extension of CFG. Besides, we introduce RCA to replace
the cross-attention layers in LDM. RCA effectively restricts the
influence of object-specific words to desired spatial regions, thereby
mitigating unexpected artifacts around synthesized objects.

In the depicted pipeline (Fig. 3), the process begins with a back-
ground image, an object image, a caption prompt 𝑃 , and two binary
masksM𝑜𝑏 𝑗 andM 𝑓 𝑔 (designating the object and foreground areas,
respectively). The background and object images are first inverted
into latent representations z𝑏𝑔∗

𝑇
and z𝑜𝑏 𝑗∗

𝑇
using DPM-Solver++

[27] following [28]. These representations are then composited at
the pixel level based onM𝑜𝑏 𝑗 . To harness the prior knowledge of
LDM for synthesizing the coherence, Gaussian noise is introduced
to the transition areas (where M𝑜𝑏 𝑗 XOR M 𝑓 𝑔), resulting in the
initial input noise z𝑖𝑛𝑖𝑡 . In each step t, we discern the attention
weights embodying object appearance features and coherent cor-
relations from CD’s self-attention layers. These prior weights are
then infused into LDM’s self-attention maps to guide foreground
generation. Additionally, all cross-attention maps in LDM are rec-
tified to limit the impact of object-specific words in predefined
regions. To preserve the unchanged scene, the edited foreground
areas at each step are combined with the certain noisy version of
the background z𝑏𝑔∗

𝑡−1 based on M 𝑓 𝑔 . This iterative process ensures
seamless composition.

4.2 Self-Attention Steering
While the composite noise z𝑖𝑛𝑖𝑡 acts as the initial input, and the
caption prompt 𝑃 contributes to inpainting the transition areas,
LDM still encounters challenges in preserving the appearance of
the object and synthesizing harmonious results effectively as shown
in Fig. 7. To tackle this, we propose the CD to chase down the
attention weights that encapsulate rich prior semantic information
of the object’s features and coherent relations. Subsequently, these
prior attention weights are employed to guide the synthesis process
in the initial 𝛼𝑇 steps where 𝛼 is the hyperparameter.

4.2.1 Correlation diffuser. The CD is adapted from the pre-trained
Stable Diffusion with tailored self-attention layers to generate prior
attention maps. Specifically, at each timestep t, it takes the pixel
composite image z𝑝𝑐∗𝑡 (derived from the specific noise version of the
user-provided object and background) and the latent representation
of the synthesized object z𝑡,𝑜𝑏 𝑗 (segmented from the previous step’s
result z𝑡 ) as input. In each self-attention layer l, the self-attention
map A𝑙,𝑡 are computed as follows:

q𝑙,𝑡 = z𝑝𝑐∗,𝑙𝑡 W𝑞

𝑙
, k𝑙,𝑡 = z𝑙

𝑡,𝑜𝑏 𝑗
W𝑘

𝑙
, (5)

A𝑙,𝑡 = Softmax
(
q𝑙,𝑡 ·

(
k𝑙,𝑡

)T /
√
𝑑

)
, (6)

where A𝑙,𝑡 ∈ R(ℎ×𝑤 )×𝑛 , h, w denote the height and width of back-
ground, n denote the flatten pixel amount of the object andW𝑞

𝑙
,W𝑘

𝑙
are projection matrices.

4.2.2 Prior weights infusion. The obtained prior attention mapA𝑙,𝑡

comprises two constituents: A𝑐𝑟𝑜𝑠𝑠
𝑙,𝑡

∈ R(ℎ×𝑤−𝑛)×𝑛 and A𝑜𝑏 𝑗

𝑙,𝑡
∈

R𝑛×𝑛 . A𝑐𝑟𝑜𝑠𝑠
𝑙,𝑡

reflects the relations between the synthesized object

and background, while A𝑜𝑏 𝑗

𝑙,𝑡
contains the object appearance fea-

tures. These constituents are then infused into the l-th self-attention
maps A𝑙𝑑𝑚

𝑙,𝑡
in LDM, as illustrated by the yellow and orange regions

in Fig. 3 (bottom right), respectively. The process can be formu-
lated as: A∗

𝑙,𝑡
= 𝜗infusion (A𝑐𝑟𝑜𝑠𝑠

𝑙,𝑡
,A𝑜𝑏 𝑗

𝑙,𝑡
,A𝑙𝑑𝑚

𝑙,𝑡
), where 𝜗infusion is the

function to produce the infused self-attentionmaps A∗
𝑙,𝑡
.

However, the intuitive infusion of A𝑜𝑏 𝑗

𝑙,𝑡
on all layers may result

in the synthesized object closely resembling the given image, i.e.,
subject overfitting. This, in turn, can lead to unexpected coherence
problems, as depicted in Fig. 5. To address this issue, we propose
a controlled approach to appearance infusion: restricting it only
to the decoder part of the U-Net. This decision is grounded in the
understanding that the decoder primarily focuses on learning ap-
pearance and texture [52], thus promoting more natural coherence
in the synthesized output.

4.3 Region-constrained Cross Attention
Following [28], the caption prompt 𝑃 is utilized to guide the syn-
thesis of transition areas. However, this introduces a coherence
problem, as demonstrated in Fig. 4 and Fig. 7: the newly generated
object isn’t consistently guaranteed to appear appropriately within
the regions outlined by M𝑜𝑏 𝑗 , thereby causing the unwanted arti-
facts. To address this challenge, we introduce RCA, which replaces
the cross-attention layers in the U-Net to restrict the impact of
object-specific words to regions defined byM𝑜𝑏 𝑗 .
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Figure 3: The overview of our PrimeComposer.

Specifically, the latent noisy image is projected to a query matrix
q, while the text prompt’s embedding is projected to the key k and
value v matrices via learned linear projections. The cross-attention
mapsA ∈ R(ℎ×𝑤 )×𝑝 is computed asA = q ·kT/

√
𝑑 , where p denote

the amount of tokens.
Then, certain attentionmapsA𝑜𝑏 𝑗 corresponding to object-related

tokens (e.g., ’white fox’ and ’lemon’ in Fig. 4) in A are rectified by
applying the binary maskM𝑜𝑏 𝑗 :

A𝑜𝑏 𝑗 =

{
𝑎
𝑜𝑏 𝑗
𝑖 𝑗

, 𝑚𝑖 𝑗 = 1,
−𝑖𝑛𝑓 , 𝑚𝑖 𝑗 = 0,

(7)

where 𝑎
𝑜𝑏 𝑗
𝑖 𝑗

and 𝑚𝑖 𝑗 represents the weight of the object-related
token’s map and the value of M𝑜𝑏 𝑗 , respectively, at the position
(i, j). After that, we obtain the rectified attention maps Â and the
output of RCA layer is defined as F =Softmax(Â)v.

Through the use of rectified attention maps, this module effec-
tively restricts the impact of object-related words to specific spatial
regions on the image features. Consequently, the model can enforce
the generation of objects in desired positions and shapes, addressing
the coherence problem highlighted earlier.

4.4 Background Preserving Combining
Inspired by the concept of blending two images by separately com-
bining each level of their Laplacian pyramids [5], our approach
involves combining synthesized foreground areas and the given
background across different noise levels to maintain the unchanged

scene. The underlying principle is that at each step in the diffusion
process, a noisy latent is projected onto a manifold of naturally
noised images at a specific level. While blending two noisy im-
ages (from the same level) may result in output likely outside the
manifold, the subsequent diffusion step projects the result onto the
next-level manifold, thereby improving coherence [2].

Thus, at each step t, starting from a latent z𝑡 , we perform a
single diffusion step. The resultant latent is segmented based on
M 𝑓 𝑔 , yielding a latent denoted z𝑡−1,𝑓 𝑔 . In addition, we obtain a

noised version of the input background z𝑏𝑔∗
𝑡−1 using Equ. 2. The two

latents are combined using the foreground mask:

z𝑡−1 = z𝑡−1,𝑓 𝑔 ⊙ M 𝑓 𝑔 + z𝑏𝑔∗
𝑡−1 ⊙ (1 −M 𝑓 𝑔), (8)

4.5 Extended Classifier-free Guidance
To reinforce the steering effect of the infused prior weights in
foreground generation, CFG is extended in each sampling step to
extrapolate the predicted noise 𝜺 along the direction specified by
certain infusions:

𝜺 = 𝜀𝜃 (z𝑡 |∅) + 𝑠 [𝜀𝜃 (z𝑡 |𝑐, 𝑓 ) − 𝜀𝜃 (z𝑡 |𝑓 ) + 𝜀𝜃 (z𝑡 |𝑐, 𝑓 ) − 𝜀𝜃 (z𝑡 |𝑐)] .

Where ∅, c, and f signify a null, caption prompt, and infusion
condition, respectively. 𝜀𝜃 and 𝜺 represent the employed LDM and
its output noise. The hyperparameter 𝑠 > 0 denotes the guidance
scale, and the reinforcement effect becomes stronger as 𝑠 increases.

As shown in Fig. 7, this careful design effectively strengthens
the ability to generate more harmonious images, since this leads
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TF-ICON + our RCA
TF-ICON

(from its original paper)

a professional photograph of 
a huge buddha in the distance, ultra realistic

a cartoon animation of 
a white fox in the forest

TF-ICON
(from its original paper) TF-ICON + our RCA

a cartoon animation of 
a castle in the distance

a professional photograph of half a lemon, a cake and 
strawberries, ultra realistic

Figure 4: The effectiveness of our Region-constrained Cross Attention.

LDM to become more adept at capturing and preserving the subtle
details of the object’s appearance and coherence relations. The
visualization of the saliency maps derived from our extended CFG
is provided in the supplementary.

5 EXPERIMENTS
5.1 Implementation Details
5.1.1 Test benchmark. We employ the only publicly released cross-
domain composition benchmark [28], which contains 332 samples.
Each sample consists of a background image, an object image, a
foreground mask, an object mask, and a caption prompt. The back-
ground images comprise four visual domains: photorealism, pencil
sketching, oil painting, and cartoon animation. We adjust all the
caption prompts to mark the object-specific words. The details are
left to supplementary.

5.1.2 Baselines. We conduct a qualitative comparison between
our method and state-of-the-art baselines. The baselines includes
Deep Image Blending (DIB) [49], Blended Diffusion [2], Paint by
Example [46], SDEdit [29], and TF-ICON [28]. For the quantitative
assessment, all baselines are considered, excluding DCCF, as it is
designed for harmonizing images after copy-and-paste operations.

5.1.3 Test configures. Given that most baselines are trained primar-
ily in the photorealism domain, where objective metrics are more
effective, we conducted our quantitative comparison specifically
in this domain for the fairness. For other domains, we relied on
a user study and qualitative comparisons. We utilized the official
implementation of all the baselines. Our framework employed the
pre-trained Stable Diffusion with the second-order DPM-Solver++
in 20 steps. The hyperparameter 𝛼 for prior weights infusion was
set to 0.2 and the scale of classifier-free guidance was set to 2.5 for
the photorealism domain and 5 for other cross-domains.

5.1.4 Evaluation metrics. We evaluate our method using four met-
rics: (1) 𝐿𝑃𝐼𝑃𝑆 (𝐵𝐺 ) : measures background consistency based on the

Methods 𝐿𝑃𝐼𝑃𝑆 (𝐵𝐺 ) ↓ 𝐿𝑃𝐼𝑃𝑆 (𝐹𝐺 ) ↓ 𝐶𝐿𝐼𝑃 (𝐼𝑚𝑎𝑔𝑒 ) ↑ 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) ↑
WACV’20 DIB[49] 0.11 0.63 77.57 26.84
ICLR’22 SDEdit[29] 0.42 0.66 77.68 27.98
CVPR’22 Blended[2] 0.11 0.77 73.25 25.19
CVPR’23 Paint[46] 0.13 0.73 80.26 25.92

ICCV’23 TF-ICON[28] 0.10 0.60 82.86 28.11
Ours 0.08 0.48 84.71 30.26

Table 1: Quantitative evaluation results for image composi-
tion in the photorealism domain.
LPIPS metric [50]. (2) 𝐿𝑃𝐼𝑃𝑆 (𝐹𝐺 ) : evaluates the low-level similarity
between the object region and the reference using the LPIPS metric
[50]. (3) 𝐶𝐿𝐼𝑃 (𝐼𝑚𝑎𝑔𝑒 ) : assesses the semantic similarity between the
object region and the reference in the CLIP embedding space [49].
(4) 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) : measures the semantic alignment between the text
prompt and the resultant image [33].

5.2 Qualitative Comparisons
The qualitative comparison results in Fig. 6 highlight the superior
performance of PrimeComposer in seamlessly integrating objects
across various domains while preserving their appearance and syn-
thesizing natural coherence. Notably, some baselines, such as Paint
by Example, face challenges in maintaining the appearance of the
given object. Blended Diffusion, relying solely on text prompts,
fails to ensure the synthesized object matches the reference im-
age. Additionally, Deep Image Blending, DCCF and SDEdit struggle
to achieve harmonious transitions. While TF-ICON performs rel-
atively well compared to other methods, it still faces difficulties
in simultaneously preserving object appearance and synthesizing
natural coherence. For example, it fails to preserve the identity
features of the tortoise in the first row and struggles to achieve
optimal coherence around the synthesized building in the last row.
Additional qualitative comparison results are left to supplementary.

5.3 Quantitative Analysis
As demonstrated in Tab. 1, our proposed PrimeComposer outper-
forms all competitors consistently across all metrics, highlighting
the exceptional visual quality of the composite images it generates.
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Object’s Appearance Infusion Setting 
only in the decoder partin all layers of Unet only in the decoder partin all layers of Unet

an oil painting of a puppy, Van Gogh Style a pencil drawing of a croissant and other food, 
gray tone

Figure 5: Qualitative results regarding the unexpected coherence problem, i.e., style inconsistency.

Paint by Example Blended Diffusion Deep Imageg Blending SDEdit DCCF
TF-ICON

(from its original paper) Ours

a pencil drawing of a tortoise in the sunset

an oil painting of a croissant, Van Gogh Style

a cartoon animation of a panda in the forest

a professional photograph of skyscrapers, ultra realistic

Figure 6: Qualitative comparison with SOTA baselines in cross-domain image composition. All the results of TF-ICON come
from its originary paper.

Notably, TF-ICON also exhibits commendable generation quality.
However, its composite self-attention map, derived from multiple
samplers, introduces synthesis confusion. As a consequence, the
realism and harmony of its resulting images are compromised. In
contrast, our PrimeComposer Competently alleviates these chal-
lenges. Notably, PrimeComposer surpasses it by 1.85 and 2.15 on
𝐶𝐿𝐼𝑃 (𝐼𝑚𝑎𝑔𝑒 ) and 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) , respectively. This demonstrates that
our method outperforms previous approaches in preserving object
appearance and achieving harmonious coherence synthesis.

5.4 Inference Time Comparison
We conduct a comparison with the previous SOTA training-free
method on an NVIDIA A100 40GB PCIe. Considering the time
depends on the size of the user mask and reference image, we
measure the averaged inference time per image across various

domains in the test benchmark to ensure fairness. As shown in Tab.
2, PrimeComposer consistently exhibits faster inference times than
TF-ICON across all domains. Remarkably, our inference time in the
photorealism domain is notably lower than TF-ICON, specifically
achieving a time of 14.32 seconds. This phenomenon is expected,
considering that TF-ICON employs four samplers for composition,
while our approach only utilizes two samplers, i.e., the pre-trained
LDM and a Correlation Diffuser, during the process, resulting in
a more efficient computational performance. See supplementary
for additional inference speed comparisons with training baselines,
which further proves the efficiency of our method.

5.5 User Study
We conduct a user study to compare image composition baselines
across different domains. Specifically, we invited 30 participants
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Baseline +Background combinding +Correlation infusion +Object infusion +RCA +Extended CFG

a cartoon animation of a croissant, a croissant, a piece of bread and a cup of coffee

an oil painting of a panda, Van Gogh Style

Figure 7: Ablation study of different variants of our framework. RCA: Region-constrained Cross-Attention. CFG: Classifier-free
Guidance.

Methods PI in Cartoon PI in Sketch PI in Painting PI in Photorealism

TF-ICON[28] 28.98 sec 29.12 sec 29.75 sec 30.55 sec
Ours 16.62 sec 15.25 sec 15.58 sec 16.23 sec

Table 2: Inference time comparison with the previous SOTA
training-free method on various domains. PI and sec mean
Per Image and seconds, respectively.

through voluntary participation and assigned them the task of com-
pleting 40 ranking questions. The ranking criteria comprehensively
considered factors including foreground preservation, background
consistency, seamless composition, and text alignment. The results
are presented in Tab. 4, where the domain information is formatted
as ’foreground domain & background domain’. Notably, our method
received favorable feedback from the majority of participants across
various domains.

5.6 Ablation Study
we conduct ablations on key design choices in the following cases:
(1) Baseline, where the composition is synthesized by LDM from
T to 0 only with the caption prompt. The initial noise is the pixel
composition derived from inverted codes of the given object and
background; (2) Background combining is applied to maintain the
unchanged scene; (3) Correlation infusion is employed to steer
the natural coherent relation establishment; (4) Object infusion
is employed to steer the preservation of the object’s appearance;
(5) Region-constrained Cross-Attention is used to enforce the gen-
eration of objects in desired positions and shapes, addressing the
coherence problem caused by the caption prompt; (6) Extended CFG,
tailored to reinforce the steering impact of prior weights infusion.

Quantitative results: Tab. 3 presents quantitative ablation re-
sults, showcasing the superior performance of our complete algo-
rithm across all metrics except 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) . It is noteworthy that
the baseline achieves the best 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) result, as it generates
compositions solely relying on the caption prompt without any
additional constraints [28]. These ablation results underline the ef-
fectiveness of our proposed algorithm in enhancing various aspects
of the composition process.

Methods 𝐿𝑃𝐼𝑃𝑆 (𝐵𝐺 ) ↓ 𝐿𝑃𝐼𝑃𝑆 (𝐹𝐺 ) ↓ 𝐶𝐿𝐼𝑃 (𝐼𝑚𝑎𝑔𝑒 ) ↑ 𝐶𝐿𝐼𝑃 (𝑇𝑒𝑥𝑡 ) ↑
Baseline 0.40 0.56 74.68 31.32

+Background combining 0.10 0.53 75.49 30.01
+Correlation infusion 0.09 0.51 82.51 29.87

+Object infusion 0.09 0.50 83.36 30.18
+RCA 0.08 0.48 84.12 30.24

+Extended CFG 0.08 0.48 84.71 30.26

Table 3: Ablation study: quantitative comparison of various
variants of our framework.

Methods P & P P & O P & S P & C Total
Blended[29] 2.14 1.55 1.78 2.54 1.86
SDEdit[2] 3.09 2.88 2.43 2.97 2.71
Paint[46] 3.31 2.93 2.13 2.86 2.85
DCCF[49] 3.76 3.35 3.01 3.58 3.44

TF-ICON[28] 4.23 4.46 3.92 4.39 4.31
Ours 4.36 4.49 4.43 4.52 4.44

Table 4: User study: higher score, better ranking. P: photore-
alism; O: oil painting; S: sketchy painting; C: cartoon.

Qualitative results: To further visualize the effectiveness of
each design choice, we provide qualitative results shown in Fig.
7. These results directly prove the indispensable role of all design
choices. More qualitative ablation results are left to supplementary.

6 CONCLUSION
In this paper, we formulate image composition as a subject-guided
local image editing task and propose a faster training-free diffuser,
PrimeComposer. Leveraging well-designed attention steering, pri-
marily through the Correlation Diffuser, our method seamlessly
integrates foreground objects into noisy backgrounds while main-
taining scene consistency. The introduction of Region-constrained
Cross-Attention further enhances coherence and addresses un-
wanted artifacts in prior methods. Our approach demonstrates
fastest inference efficiency and outperforms existing methods both
qualitatively and quantitatively in extensive experiments.
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