
Published as a conference paper at ICLR 2025

ALCHEMY: AMPLIFYING THEOREM-PROVING CAPA-
BILITY THROUGH SYMBOLIC MUTATION

Shaonan Wu 1,2, ∗ Shuai Lu 3,† Yeyun Gong 3, Nan Duan 3, Ping Wei 1,2,†
1 National Key Laboratory of Human-Machine Hybrid Augmented Intelligence
2 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
3 Microsoft Research Asia
{shaonanwu@stu.,pingwei@}xjtu.edu.cn,
{shuailu,yegong,nanduan}@microsoft.com

ABSTRACT

Formal proofs are challenging to write even for experienced experts. Recent
progress in Neural Theorem Proving (NTP) shows promise in expediting this pro-
cess. However, the formal corpora available on the Internet are limited compared
to the general text, posing a significant data scarcity challenge for NTP. To address
this issue, this work proposes Alchemy, a general framework for data synthesis that
constructs formal theorems through symbolic mutation. Specifically, for each can-
didate theorem in Mathlib, we identify all invocable theorems that can be used to
rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing
the corresponding term in the statement with its equivalent form or antecedent. As
a result, our method increases the number of theorems in Mathlib by an order of
magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and
supervised finetuning on this augmented corpus for large language models. Exper-
imental results demonstrate the effectiveness of our approach, achieving a 4.70%
absolute performance improvement on Leandojo benchmark. Additionally, our
approach achieves a 2.47% absolute performance gain on the out-of-distribution
miniF2F benchmark based on the synthetic data. To provide further insights, we
conduct a comprehensive analysis of synthetic data composition and the training
paradigm, offering valuable guidance for developing a strong theorem prover. 1

1 INTRODUCTION

Nowadays, some pioneer mathematicians are attempting to verify their proofs using the proof as-
sistant Lean (de Moura et al., 2015; Tao, 2023). Writing proofs for formal statements demands
mastery of formal language and domain-specific mathematical knowledge. To mitigate the com-
plexity associated with completing proofs, several research efforts (Polu & Sutskever, 2020; Polu
et al., 2023; Trinh et al., 2024) seek to automatically generate formalized proof through a neural
model, known as Neural Theorem Proving (NTP). NTP represents a long-standing challenge for
machine learning-based methods (Li et al., 2024), highlighting the limitations in the reasoning abil-
ities of neural models. Prevalent Large Language Models (LLMs) (Brown et al., 2020; Dubey et al.,
2024) still struggle with theorem-proving, despite excelling in related reasoning-intensive scenarios
such as math reasoning (Reid et al., 2024) or code generation (Guo et al., 2024).

The key challenge of theorem-proving lies in data scarcity (Li et al., 2024; Trinh et al., 2024). Due
to the difficulties associated with the manual formalization of theorems, formal corpora available on
the Internet are relatively scarce compared to the general text (Azerbayev et al., 2024). Synthetic
data has shown promise in alleviating the data scarcity problem. Some works propose to directly
create theorems in symbolic space. For instance, Wang & Deng (2020) attempts to train a neural the-
orem generator on human-written formal theorems for the low-weighted formal system Metamath.
Other efforts focus on generating theorems based on symbolic rules (Wu et al., 2021; Trinh et al.,

∗ Work done during internship at Microsoft Research Asia.
† corresponding author.
1 The code is available at https://github.com/wclsn/Alchemy.

1

https://github.com/wclsn/Alchemy

Published as a conference paper at ICLR 2025

2024), which are restricted to a specific domain of mathematics, such as inequality theorems and 2D
geometry. Additionally, there are endeavors focusing on autoformalization (Xin et al., 2024; Ying
et al., 2024), which typically translates natural language mathematical problems into formalized
statements, samples correct proofs, and retrains the theorem prover iteratively. Autoformalization
has yielded promising results in competition-level theorem-proving tasks through the use of large
autoformalized datasets (Xin et al., 2024). However, the process of formalizing problems and re-
trieving proofs is labor-intensive and cost-prohibitive. The distribution of formalized theorems is
constrained by the pool of human-collected natural language problems and the intrinsic capabilities
of the model. Compared to autoformalization, synthesizing theorems in symbolic space is a more
direct process without intermediate translation, and is also easier to scale up to large, cost-effective
CPU units.

Building upon the advanced Lean theorem prover (de Moura et al., 2015), we introduce a general
method that synthesizes theorems directly in symbolic space. We analogize theorem synthesis to
constructing functions in general programming language and adopt an up-to-down approach. Ini-
tially, a new statement (function declaration) is constructed for each candidate theorem. Specifically,
with the mathematical library of Lean Mathlib2 as seed data, we aim to find a symbolic manipula-
tion between two existing statements. We posit that Lean’s tactics serve as suitable candidates for
manipulation because of their efficacy in handling symbolic expressions. {rw, apply} are two basic
tactics frequently used in theorem proving and capable of handling the equality and implication rela-
tionship between terms. We assign both tactics to the set of manipulations and retrieve the invocable
theorems for each candidate theorem by executing a predefined list of instructions in an interactive
Lean environment. Then we mutate the candidate statement by replacing its components with their
corresponding equivalent forms or logical antecedents. Ultimately, we construct the corresponding
proof (function body) based on the existing proof and verify its correctness using Lean. The worked
example shown in Fig.1 illustrates the entire procedure of our algorithm. This algorithm is executed
on a large CPU-only computing unit for several days. Our method increases the number of theorems
in Mathlib by an order of magnitude from 110,657 to 6,326,649. This significant increase in the
number of theorems demonstrates the potential of creating theorems in symbolic space.

We pre-train the LLMs on the combination of Mathlib theorems and their mutated variants. Then we
fine-tune the models on the extracted state-tactic pairs, composing both the training split of Mathlib
and additional synthesized state-tactic pairs. We demonstrate the effectiveness of our method by
evaluating the theorem-proving capability of these provers on the challenging Leandojo benchmark
(Yang et al., 2023). Our synthetic data improve the performance by 4.70% (over 70 theorems) on
the novel premises split. Furthermore, the synthesized data exhibit promise in enhancing the out-
of-distribution theorem-proving ability of LLMs, as evidenced by a performance increase of about
2.47% on the competition-level miniF2F benchmark (Zheng et al., 2022).

Our main contributions are as follows. To the best of our knowledge, this work represents the first
general data synthesis framework in the symbolic space for the Lean theorem prover, effectively
complementing mainstream autoformalization-based methods. Notably, our synthesis pipeline in-
creases the number of theorems in Mathlib by an order of magnitude. Associated code has been
made open-source to facilitate further research in data synthesis for formal systems. Also, the syn-
thesized theorems can serve as a valuable supplement to Mathlib. We conduct a comprehensive
evaluation on both in-distribution and out-of-distribution benchmarks, providing empirical insights
to enhance the theorem-proving capabilities of LLMs.

2 RELATED WORK

Neural Theorem Proving. Proof assistants such as Lean (de Moura et al., 2015), Isabelle (Paulson,
1994) or Coq (Barras et al., 1997) are gaining traction within the mathematical community. These
tools help mathematicians in interactively formalizing and checking the correctness of proofs (Tao,
2024). Neural networks have shown promise in lowering the barrier of using a specific formal
language for mathematicians, serving as a copilot (Song et al., 2024; Welleck & Saha, 2023). Polu
& Sutskever (2020) propose to prove theorems automatically by training a decoder-only transformer
to predict the next proofstep and construct the entire proof through a predefined search tragedy. Then
a series of works seek to enhance the efficiency of this framework by incorporating auxiliary training

2https://github.com/leanprover-community/mathlib4

2

Published as a conference paper at ICLR 2025

Find Invocable Theorems

Formal Knowledge Base

Mathlib/Algebra/IsPrimePow.lean
theorem Nat.disjoint_divisors_filter_isPrimePow {a b : ℕ} (hab : a.Coprime b) :

 Disjoint (a.divisors.filter IsPrimePow) (b.divisors.filter IsPrimePow) := by
 simp only [Finset.disjoint_left, Finset.mem_filter, and_imp, Nat.mem_divisors, not_and]
 rintro n han _ha hn hbn _hb -
 exact hn.ne_one (Nat.eq_one_of_dvd_coprimes hab han hbn)

NL description:
If two natural numbers a and b are coprime, then the sets of prime power divisors of a and b are
disjoint.

Equality:
theorem coprime_iff_isRelPrime {m n : ℕ} : m.Coprime n IsRelPrime m n := by …
NL description:
For two natural numbers m and n, the property of being coprime is equivalent to the property of being
relatively prime.
Implication:
theorem coprime_of_mul_modEq_one (b : ℕ) {a n : ℕ} (h : a * b ≡ 1 [MOD n]) : a.Coprime n := by
…
NL description:
If there exist natural numbers a, b, and n, such that the product a * b is congruent to 1 modulo n, then
a and n are coprime.

Construct New Theorems
Equality-Variant:
example {a b : ℕ} (hab : IsRelPrime a b) :

 Disjoint (a.divisors.filter IsPrimePow) (b.divisors.filter IsPrimePow) := by
 have hab : a.Coprime b := by rw [←Nat.coprime_iff_isRelPrime] at hab ; exact hab

 …
Implication-Variant
example {a b : ℕ} (c : ℕ) (h : a * c ≡ 1 [MOD b]) :

 Disjoint (a.divisors.filter IsPrimePow) (b.divisors.filter IsPrimePow):= by
 have hab : a.Coprime b := by apply Nat.coprime_of_mul_modEq_one <;> assumption

 ...

Simplified Proof Tree

⊢

a b : ℕ a.Coprime b

a.Coprime b

IsRelPrime a b

a.Coprime b

a * c ≡ 1 [MOD b])c : ℕ

⊢

a b : ℕ a.Coprime b

IsRelPrime a b

⊢

a b : ℕ a.Coprime b

a * c ≡ 1 [MOD b])c : ℕ

Equality Implication

Variants of Original Theorem

Figure 1: The overview of our synthesis pipeline. At the theorem level, we find invocable theorems
that can be used to rewrite or apply to the assumptions or assertion of the candidate statement,
such as the iff and implication rules about the Coprime. Then, we construct the new statements by
replacing the specific component with its equivalent form or antecedent. At the proof tree level, our
method merges two existing proof trees.

objectives (Han et al., 2022), conducting reinforcement learning (Polu et al., 2023; Xin et al., 2024),
improving proof search tragedy (Lample et al., 2022; Wang et al., 2023; Xin et al., 2024), refining
the premise-selection (Mikula et al., 2024; Yang et al., 2023) and so on.

Synthetic Theorem Creation. Data scarcity is a main challenge for NTP (Li et al., 2024). Syn-
thetic data can effectively alleviate this problem alongside manual data collection (Wu et al., 2024).
The current approach for synthesizing theorems diverges into two pathways. For autoformalization-
based methods, the prevalent statement-level autoformalization is to translate a set of natural lan-
guage problems into formal statements, followed by expert iteration to sample a collection of proofs
for these statements (Wu et al., 2022; Xin et al., 2024; Ying et al., 2024). The proof-level autofor-
malization (Jiang et al., 2023; Huang et al., 2024) leverages LLM to generate a proof sketch, which
is completed by symbolic engines such as Sledgehammer (Böhme & Nipkow, 2010). In contrast, the
second pathway focuses on synthesizing theorems in formal space. Wang & Deng (2020) propose to
train a neural theorem generator to synthesize theorems on a low-weight formal system, Metamath
(Megill & Wheeler, 2019) which has only one tactic substitute. Wu et al. (2021) sequentially edits
the seed expression according to a predefined set of axioms and an axiom order to create a new
statement, concatenating the implications from all steps to build a complete proof. This method is
used to create theorems on domains grounded in well-established axioms, such as inequality theo-
rems and ring algebra (Polu & Sutskever, 2020). Beyond these works, AlphaGeometry (Trinh et al.,
2024) can solve olympiad geometry without human demonstrations by constructing statements and
proofs in symbolic space from scratch, using a carefully designed deduction engine and large-scale
computing resources. Our method aims to directly synthesize theorems in symbolic space on the
advanced Lean theorem prover, fully utilizing the power of computing.

3

Published as a conference paper at ICLR 2025

Benchmarks for Theorem Proving. Most neural theorem provers based on Lean are primarily
trained on Lean’s mathematical library, Mathlib. It encompasses a broad spectrum of mathematical
subjects (e.g., algebra and analysis), composed of over 110,000 theorems along with their respective
axioms and definitions. Researchers test the capability of neural models to prove in-distribution
theorems on a held-out set of Mathlib (Polu & Sutskever, 2020; Han et al., 2022; Polu et al., 2023).
Yang et al. (2023) creates a challenging data split of Mathlib (novel premise split) which requires
testing proofs to use at least one premises not seen in the training stage and mitigates the over-
estimated phenomena in the traditional setting of evaluation (random split). Another widely-used
benchmark, miniF2F, (Zheng et al., 2022) is a cross-system benchmark and includes competition-
level problems as well as IMO-level problems in the domain of algebra and number theory.

3 METHOD

Theorems written in Lean can be viewed as a special form of code, where declarations and func-
tion bodies possess precise mathematical meanings. The initial step in creating a new theorem
involves formulating a theorem statement (function declaration) that defines the essence of the theo-
rem. Then, one must verify its correctness by generating a proof block (function body) and submit-
ting it to the proof assistant for validation. The resulting theorems that pass type checking can serve
as supplementary data for training a neural theorem prover. Following Polu & Sutskever (2020), we
use proofstep prediction as the training objective and best-first-search as the search tragedy.

3.1 STATEMENT GENERATION

Find invocable theorems. Constructing a new statement is the first step in creating a Lean theo-
rem. The candidate theorem t has a statement denoted as s. In the corresponding Lean repository,
there exists M potentially invocable theorems Tpinv = {tj}M−1

j=0 . We assume that the challenge
in creating a new theorem involves effectively leveraging the possibly invocable theorem tj to mu-
tate the candidate statement s. This understanding arises from two perspectives. Each theorem in
Lean can be represented in the form of a proof tree as presented in Fig.1. The leaf nodes represent
the assumptions, and the root node signifies the assertion. At the tree level, the task of generating
a new Lean theorem with existing theorems is equivalent to defining manipulations Φ that com-
bine the proof trees of tj and t. To streamline this process, our focus is solely on establishing the
connection between the root node of tj and the leaf node (or root node) of the candidate theorem
t. From a mathematical standpoint, we can transform a target formula into an equal variant or
break it down into multiple subformulas that suffice to prove the original formula, by employing
the equality or “only if” relationship between formulas. The mathematical interconnections be-
tween formulas provide heuristic insights on how to mutate s to create a new theorem. Similarly,
we can substitute the terms in s with their equivalent forms or logical antecedents. For instance,
consider the statement a + b > c + d,m > 0 → m(a + b) > m(c + d) and the known theorems
a > b ⇐⇒ ea > eb and a > c, b > d =⇒ a+b > c+d. From these, we can derive new theorems:
a+b > c+d,m > 0→ em(a+b) > em(c+d), and a > c, b > d,m > 0 =⇒ m(a+b) > m(c+d).
In summary, identifying manipulations Φ that use tj to modify the assumptions or assertion of s is
the primary step in constructing new statements.

With their intrinsic mathematical meanings and proficiency in manipulating terms within Lean, tac-
tics are promising candidates for the manipulations Φ. Following the preceding discussion, we
choose two frequently used basic tactics, rw and apply to formulate Φ.

• rw. The “rewriting” tactic rw is mostly used to replace some terms in the target expression
with their equivalent forms according to the given identity or iff (a.k.a., if and only if)
rules3. In the presence of an identity h : a = b or an iff rule h : P ⇐⇒ Q, rw [h]
substitutes all occurrences of term on the left side of equality in the proof goal with term
on the right side. The direction of substitution can be reversed by adding a back arrow in
the bracket (rw [← h]). The target of rewriting can also be changed using at, e.g. rw [h] at
h1, where h1 is an arbitrary assumption of the current proof state.

3Strictly speaking, the rw tactic is used to handle equality in Lean. The identity and iff are just some kinds
of equality.

4

Published as a conference paper at ICLR 2025

Table 1: Templates for instructions designed to be executed in a Lean environment. We determine
if a theorem is invocable by running the specific instruction.

Tactic Instruction Template Description

rw

Equality invocable theorem : a = b or a ⇐⇒ b

rw [invocable theorem] replace all as in goal with b
rw [←invocable theorem] replace all bs in goal with a
rw [invocable theorem] at assumption replace all as in assumption with b
rw [←invocable theorem] at assumption replace all bs in assumption with a

apply
Implication invocable theorem : a =⇒ b

have assumption := by apply invocable theorem set assumption as current proof
goal, and try to argue backwards

• apply. The apply tactic is a “suffice-to” tactic. Given an implication, it will match the
consequent with the proof goal. If matched, it will transform the goal into the antecedent
of the implication. With an implication rule h : P =⇒ Q and a proof goal Q, then apply
[h] will reduce the goal to proving P , which means that “proving P suffices to prove Q
by implication”. Similarly, apply can be used to modify the assumption by deducing the
implication forward. With assumption h1 : P , then apply [h] at h1 will change h1 into Q,
which means “If P is true, then we can assert Q is true by the implication”.

Algorithm 1 Find invocable theorems

Input: candidate statement s, potential invocable theorems Tpinv , instruction templates I
Output: invocable theorems Tinv ▷ Tinv : {(init state, next state, instruction) · · · }
(env, init state)← INIT(s) ▷ initialize gym-like environment and retrieve initial state
Tinv ← ∅
for t in Tpinv do

for i in I do ▷ for each instruction template
instruction inst← FORMAT(t, i)
next state← RUN TAC(env, init state, inst) ▷ run a tactic specified by instruction i

and theorem t
if VALID(next state) then ▷ if return a valid proof state

Add (init state, next state, inst) to Tinv

end if
end for

end for

To generate a new statement, we need to find the relationship between the candidate statement s and
the potentially invocable theorems Tpinv . The pseudocode outlined in Algorithm 1 describes the
main procedure to find invocable theorems. The process involves initializing a gym-like environment
to interact with Lean and extracting the initial proof state for the candidate statement. Then, the
algorithm iteratively tests whether one theorem can be used to rewrite or apply to the candidate
theorem leveraging the instruction templates shown in Table 1. Suppose the feedback from the
interactive environment is deemed valid according to predefined criteria, the algorithm adds the
proof states before and after the tactic running together with the respective instruction to the set of
invocable theorems Tinv . More information about this process is described in Appendix C.2.

Mutate statements. After obtaining the initial set of invocable theorems, we applied some filtering
rules to Tinv to improve the quality of the data and lower the complexity of mutating statements.
With filtered invocable theorems, we construct new statements by replacing the components with
their equivalent forms or antecedents. Since we use tactics in Lean to formulate the manipulations
Φ, most symbolic manipulations are bypassed to the Lean proof assistant. What remains is just
parsing and replacing. Specifically, for the candidate statement s and instruction i, we utilize its
abstract syntax tree to pinpoint the exact location within the code that requires modification. Then

5

Published as a conference paper at ICLR 2025

we replace the corresponding parts with mutants parsing from the subsequent proof state generated
by the execution of a specific tactic. The details of our algorithm are described in C.3.

3.2 PROOF GENERATION AND THEOREM VERIFICATION

Mutated statements can serve as useful lemmas for theorem-proving only if we can construct proofs
that pass the verification of the proof assistant. We construct the entire proof using symbolic rules.
Although neural provers or other automated theorem proving tools, such as hammer (Böhme & Nip-
kow, 2010)), can generate more diverse proofs than rule-based methods, they are compute-intensive
and do not guarantee the correctness of the generated proofs. The idea of building a proof block is
intuitive. Given that we only make a one-step modification to the statement, transforming the origi-
nal proof state to a mutated proof state, a logical approach is to reverse the mutation and utilize the
original proof to complete the remaining proving process. We use have tactic to restore the modified
part of a statement (the original assumption or assertion) by introducing a lemma.

• have. The have tactic enables users to introduce new assumption into the current proof state
if they can prove it. Given an assumption h1 : P and an implication rule h2 : P =⇒ Q,
a new assumption h : Q can be added by have h: Q := by apply h2 at h1; exact h1. This
tactic is usually used to introduce helpful lemmas when proving a theorem.

In addition to its ability to introduce new assumptions into the proof state, have can be used in both
tactic-style proof and term-style proof, which enlarges the margin for theorems to which our method
can be applied. Apart from this, the additional have instruction transforms the mutated complex
proof state into a canonical proof state. To some extent, this transformation is analogous to con-
structing an auxiliary point in geometry problems, which we assume will be beneficial for theorem
proving in the general domain. Subsequently, we combine the original proof with this lemma to
build the proof for the new statement. The details of the implementation of proof generation are
depicted in the Appendix C.3. We construct the proof block for each mutated theorem. Then we
submit the synthesized theorems to the Lean theorem prover for verification and remove the wrong
ones. Details of the verification process are provided in Appendix C.4. Finally, we obtain M̂ variants
V = {vj}M̂−1

j=0 defined by the keyword “example” for each candidate theorem.

3.3 MODEL TRAINING

Regarding the synthetic data, we have two observations. At the theorem level, the synthetic data
comprises numerous theorems, each with statement distinct from existing theorems. At the state-
tactic level, the process of constructing proofs introduces additional state-tactic pairs, primarily
centered on rw and apply. Based on these insights, we assume that the synthetic data can serve as
an augmented corpus for continual pretraining (CPT) and supervised finetuning (SFT). Specifically,
we fine-tune LLMs using the proofstep prediction objective proposed by Polu & Sutskever (2020),
utilizing state-tactic pairs derived from both seed theorems and synthetic theorems. Given the current
proof state, the model is required to predict the next tactic sequence that contributes to the proving
of the target theorem. We utilize the prompt template used by Welleck (2023), as shown in Fig.2.

/- You are proving a theorem in Lean 4.

You are given the following information:

- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof. Put the next tactic inside [TAC]...[/TAC] -/
[STATE]

{state}

[/STATE]

[TAC]

Figure 2: Prompt template

6

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

We implement the data-synthesis pipeline described in Section 3 for rw and apply, constructing a
set of variants for each candidate theorem in Mathlib. We train the LLMs on a mixture of human-
written theorems and synthetic ones. To examine the effectiveness of synthetic data, we evaluate
the theorem prover on two benchmarks that are widely adopted by the research community: 1) Le-
andojo Benchmark (Yang et al., 2023), which shares the same distributional characteristics as the
seed theorems; 2) miniF2F (Zheng et al., 2022), a challenging benchmark focusing on competition-
level problems that exhibits a distinct distribution compared to seed data. The experimental results
derived from both benchmarks demonstrate the potential efficacy of our approach.

4.1 IMPLEMENTATION DETAILS

Data-Synthesis. We choose Mathlib44 which contains around 110k theorems as the seed data for
data-synthesis. Our synthesis pipeline is built upon Leandojo5 (Yang et al., 2023), a Python module
that enables tracing a specific Lean repository, extracting the state-tactic pairs and abstract syntax
trees (ASTs), and interacting with the Lean environment6 (run tac API). Finding invocable theorems
is the most time-consuming step of our pipeline. For rw, the time overhead amounts to 14 days using
4,096 CPU cores7. For apply, it takes 7 days at this stage using 2,048 CPU cores with a one-hour
timeout for each theorem. The substantial time cost is attributed to the O(n2) complexity of our
algorithm and the memory-intensive characteristics of Leandojo. We believe this overhead could be
greatly reduced through a more meticulous implementation. After retrieving the invocable theorems,
we construct new statements and proofs for the target theorems in approximately an hour using 24
CPU cores. We then write back the mutated theorems and compile the enlarged repository through
lake build 8, utilizing 2,048 CPU cores. We retrieve the error messages returned by Lean, which
can be parsed to locate the wrong theorems. Finally, we trace the enlarged repository on a 96-core
machine for 3 days, obtaining the additional state-tactic pairs by parsing the AST of each file.

Model Training. We select Llama-3-8B (Dubey et al., 2024) and deepseek-coder-base-v1.5- 7B
(Guo et al., 2024) as our base models. We conduct continual pretraining with the next-token predic-
tion objective for one epoch. Then we fine-tune the models with the proofstep prediction objective
(Polu & Sutskever, 2020) for two epochs. All experiments are conducted on 8 ×H100 GPUS. We
employ a linear learning rate scheduler with a 3% warm-up period and a maximum learning rate of
2e-5. We set the global batch size to 256 and the cutoff length to 2,048. All models are trained using
Deepspeed ZeRO Stage3 (Rajbhandari et al., 2021) and Flash-Attention 2 (Dao, 2024). We utilize
the open-sourced codebase Llama-Factory (Zheng et al., 2024) for all training experiments.

Evaluation. We follow the evaluation setting used in Azerbayev et al. (2024). We use best-
first-search as our search tragedy with a 10-minute timeout. The search budget is represented as
attempt × sample × step. Here attempt denotes the number of attempts, sample denotes the
number of generated tactics per iteration, and step denotes the maximum number of steps per at-
tempt. We choose 1 × 32 × 100 as our search setting. The evaluation script is modified from
an open-source implementation (Welleck, 2023) which is based on vLLM (Kwon et al., 2023) and
Leandojo (Yang et al., 2023). We utilize Leandojo Benchmark (Yang et al., 2023) which contains
2,000 theorems as the test split of Mathlib4 and report the results on both the random split and the
novel premises split. We remove the subsets of theorems for both splits that can not be initialized
by Leandojo. There remain 1,929 theorems in random split and 1,659 theorems in novel premises
split. We upgrade the tool-chain version of miniF2F (Zheng et al., 2022) to v4.6.0 rc1.

4.2 ANALYSIS OF SYNTHETIC DATA

We separately run the synthesis pipeline for these two tactics. For rw, we choose Mathlib theorems
as candidate theorems. Additionally, candidate theorems for apply should have at least one explicit
assumption. In practice, the synthesis process is divided into two stages. In the first stage, we find

4commit: 3c307701fa7e9acbdc0680d7f3b9c9fed9081740
5version: 1.7.1
6lean-toolchain: v4.6.0 rc1
7512 CPU nodes, each node has 8 cores and 56GB RAM
8https://github.com/leanprover/lean4/blob/master/src/lake/README.md

7

Published as a conference paper at ICLR 2025

Table 2: Number of theorems. Stage one: the number of invocable instructions for all candidate
theorems. Stage two: the number of theorems that pass the verification of the Lean theorem prover.

Tactic Candidate theorems Stage one Stage two Expansion Conversion Ratio
rw 110,657 5,081,544 2,830,817 ×25 56%
apply 78,871 9,483,504 3,495,832 ×44 37%

the potential invocable theorems for each candidate theorem by running a specific tactic. In the
second stage, we construct the new theorems and verify their correctness using the Lean theorem
prover. Table 2 shows the number of theorems of different stages. For both tactics, we increase the
number of theorems by an order of magnitude (×25 for rw and×44 for apply). The conversion ratios
from the potential invocable theorems to the outcomes are primarily determined by the method used
to construct the new statements and proofs. We believe that a finer implementation could greatly
improve the conversion ratio. Fig.3 shows the dynamics of the distribution of mathematical subjects.
The rw tactic increases the percentages of Analysis, Ring Algebra, Number Theory, and so on. The
apply tactic mainly contributes to the fields of Analysis and Topology. Further information about
synthetic data can be found in the Appendix D.

a) b) c)

Figure 3: Distribution of mathematical subjects. For each employed tactic, we mix the generated
variants with the original theorems. a) The distribution of Mathlib. b) The distribution of Mathlib +
rw. c) The distribution of Mathlib + apply.

Our method synthesizes a large collection of new theorems utilizing each tactic. Then we combine
them with the theorems in Mathlib as the training data for continual pre-training. Our approach also
introduces new state-tactic pairs during the theorem-construction process. We write the variants to
corresponding lean files and extract additional state-tactic pairs using Leandojo. The synthesized
data are categorized primarily based on the employed tactic, specifically rw and apply. Variants
and their corresponding state-tactic pairs that appear in the test split of the Leandojo benchmark are
removed. Furthermore, the extracted state-tactic pairs are deduplicated according to the invocable
theorem (i.e., premise) used in the tactic instruction. Finally, we obtain about 30k data points for
each tactic. We combine them with the training set of Leandojo (Mathlib-train) that composes
over 200k data points to form the supervised fine-tuning dataset. A detailed description of the
deduplication process and training data are presented in the Appendix D.3.

4.3 EXPERIMENTAL RESULTS

4.3.1 MAIN RESULTS

We conduct continual pretraining on the augmented lean corpus. Then we fine-tune the LLMs on
the mixture of Mathlib-train and additional state-tactic pairs. The training data are grouped by the
tactic employed in the additional state-tactic pairs. We evaluate the effectiveness of our method on
the challenging Leandojo benchmark and report results on different mixtures of data. As shown in
Table 3, our synthetic data consistently improve the theorem-proving capabilities of LLMs. Com-
pared with solely finetuning on the training split of Mathlib, data augmentation for a single tactic

8

Published as a conference paper at ICLR 2025

Table 3: Results on Mathlib. tidy: a tactic in Mathlib that uses heuristics to complete a proof. The
results of tidy and GPT4 were reported in Yang et al. (2023). We select the performance of each
model solely fine-tuned using Mathlib-train as the main baseline. Mathlib-train + x: the performance
of the model pre-trained and fine-tuned on a mixture of Mathlib-train and additional data about x.

Methods random novel premises Search Budget
tidy 23.8 5.3 -
GPT-4 29.0 7.4 1× 35
Reprover (Yang et al., 2023) 47.6 23.2 1× 64

w/ retrieval 51.2 26.3 1× 64
llmstep (Pythia 2.8b) (Welleck & Saha, 2023) 47.6 - 1× 32

50.1 - 2× 32

Llama3-8b 58.22 38.52 1× 32

Mathlib-train + rw 59.62 (+1.40) 42.13 (+3.62) 1× 32
Mathlib-train + apply 58.84 (+0.62) 41.29 (+2.77) 1× 32
Mathlib-train + rw + apply 59.82 (+1.60) 43.22 (+4.70) 1× 32

deepseek-coder-7b-base-v1.5 57.7 39.24 1× 32

Mathlib-train + rw 59.25 (+1.55) 42.98 (+3.74) 1× 32
Mathlib-train + apply 58.68 (+0.98) 40.51 (+1.27) 1× 32
Mathlib-train + rw + apply 60.39 (+2.69) 43.46 (+4.22) 1× 32

demonstrates a beneficial effect on the theorem-proving ability of LLMs. Moreover, the positive
impacts of each tactic can be cumulative. Training on the combination of rw variants and apply
variants results in a significant performance improvement in the challenging novel premises split
of Leandojo benchmark, where the model is required to use at least one new premise to prove the
target theorem (+4.70%, 78 theorems for Llama3-8b; +4.22%, 70 theorems for deepseek-coder-7b-
base-v1.5). Our synthetic data still make a certain improvement on the random split, where the
performance of models is over-estimated by allowing it to prove many theorems through memoriza-
tion. In conclusion, the results of the experiment show that simply mutating the seed theorems and
introducing state-tactic pairs of a single tactic can relieve the data scarcity problem and enhance the
theorem-proving ability of LLMs.

4.3.2 EFFECTIVENESS OF CONTINUAL PRETRAINING

Table 4: Effectiveness of continual pre-training. We grouped the
dataset for CPT and SFT by the tactic employed in the additional
state-tactic pairs.

Methods random novel premises random novel premises
Llama3-8b deepseek-coder-base-7b-v1.5

sft: mathlib-train
w/o cpt 58.22 38.52 57.70 39.24
rw 59.56 (+1.34) 42.56 (+4.04) 58.74 (+1.04) 40.69 (+1.45)
apply 58.42 (+0.21) 41.29 (+2.77) 58.58 (+0.88) 40.02 (+0.78)
rw + apply 59.72 (+1.50) 42.19 (+3.67) 59.67 (+1.97) 41.65 (+2.41)

sft: mathlib-train + rw
w/o cpt 57.85 41.59 58.63 41.05
rw 59.62 (+1.77) 42.13 (+0.54) 59.25 (+0.62) 42.98 (+1.93)

sft: mathlib-train + apply
w/o cpt 56.71 40.02 57.96 41.17
apply 58.84 (+2.13) 41.29 (+1.27) 58.68 (+0.72) 40.51 (-0.66)

sft: mathlib-train + rw + apply
w/o cpt 58.53 41.95 58.37 42.92
rw + apply 59.82 (+1.29) 43.22 (+1.27) 60.39 (+2.02) 43.46 (+0.54)

rw apply

Downsample Deduplicate

Figure 4: Influence of the quantity
of synthesized data points.

9

Published as a conference paper at ICLR 2025

To examine the necessity of continual pretraining, we assess and contrast the performance of the
LLM on Leandojo benchmark when the pretraining stage is included versus when it is excluded
from the experimental setup. We use models fine-tuned on various combinations of state-tactic pairs
as our baselines and present the results of pretraining on the augmented corpus. As shown in Table 4,
the continual pretraining stage demonstrates a positive influence on the performance of LLMs across
diverse supervised fine-tuning settings. The experimental results indicate that continual pretraining
before the supervised finetuning stage is also beneficial to the theorem-proving ability of the LLM.

4.3.3 INFLUENCE OF THE QUANTITY OF SFT DATASET

We deduplicate the synthesized state-tactic pairs of each tactic by the invocable theorem (i.e.,
premise). Then we obtain about 30k data points for each tactic. To examine the influence of the
quantity of the SFT dataset, we compare the performance of Llama-3-8B, trained on different quan-
tities of additional data points, on novel premises split of Leandojo benchmark. As shown in Fig.4,
the selected quantity (30k) achieves a relatively optimal compromise between the performance and
overhead. The experimental results also reveal that enlarging the quantity of state-tactic pairs of
a single tactic tends to lead to rapid saturation. We assume that the key to continually improving
the theorem-proving ability lies in keeping the diversity of tactics during the process of scaling the
synthetic data. More details are presented in Appendix D.3.4.

4.3.4 ANALYSIS OF OUT-OF-DISTRIBUTION PERFORMANCE

We evaluate Llama-3-8b using the competition-level theorem proving benchmark miniF2F. As
shown in Table 5, our synthesized data still helps to improve the theorem-proving ability of LLMs
on the out-of-distribution benchmark. The magnitude of this improvement is comparatively smaller
than that observed on the in-distribution benchmark. We attribute this discrepancy to the divergence
between synthesized tactics and the preferred tactics to prove competition-level problems. Through
manual inspection of the correct proofs generated by various LLMs trained on Mathlib-train, we
identify a tendency to favor advanced and automated tactics (e.g., simp, omega, linarith, norm num,
etc.). Additionally, we analyze the distribution of tactics used in proved theorems across different
data compositions and make the following observations: 1) Data augmentation on a single tactic
will increase the model’s preference for the specific tactic; 2) Adjusting the distribution of different
tactics within the dataset is promising to improve the theorem-proving ability of LLMs. The entire
analysis process is illustrated in Appendix E.2.

Table 5: Results on miniF2F. We evaluate the performance across different data compositions and
list the ratio of rw, apply, norm num and linarith used by Llama3-8b to prove these theorems.

Methods miniF2F-test Correct/Total rw apply norm num linarith
Mathlib-train 34.01 83/244 16.10 0.00 27.12 16.95
Mathlib-train + rw 35.24 86/244 18.75 0.78 14.84 21.88
Mathlib-train + apply 36.07 88/244 8.87 2.42 20.16 15.63
Mathlib-train + rw + apply 36.48 (+2.47) 89/244 12.31 0.77 26.92 16.92

5 CONCLUSION

We have presented a general data-synthesis framework for the Lean theorem prover, which amplifies
the theorem-proving capability of the LLM through symbolic mutation. Our algorithm increases the
number of theorems in Mathlib by an order of magnitude and achieves promising results in improv-
ing the theorem-proving ability of the LLM. Synthesizing formal theorems is an inherently challeng-
ing problem. Our approach, much like ancient alchemy, involves experimenting with a substantial
number of theorems in the hope of uncovering valuable “gold”. We aspire for our algorithm to serve
as a foundation for further research, advancing theorem synthesis from alchemy to chemistry.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (No. U23B2060,
No.62088102). We sincerely thank the Lean Community for providing help about this work. We
also appreciate the anonymous reviewers for their helpful comments.

REFERENCES

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In the 12th International Conference on Learning Representations, 2024.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo
Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof
assistant reference manual: Version 6.1. PhD thesis, Inria, 1997.

Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In the 5th International Joint
Conference on Automated Reasoning, 2010.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In the 12th
International Conference on Learning Representations, 2024.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In 25th International Conference on
Automated Deduction, 2015.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
CoRR, abs/2407.21783, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196,
2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. In the 10th International Conference on
Learning Representations, 2022.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. MUSTARD: mastering uniform synthesis of theorem and
proof data. In the 12th International Conference on Learning Representations, 2024.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In the 11th International Conference on Learning Repre-
sentations, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In the 29th Symposium on Operating Systems Principles, 2023.

Guillaume Lample, Timothée Lacroix, Marie-Anne Lachaux, Aurélien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Advances in Neural Information Processing Systems, 2022.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. CoRR, abs/2404.09939, 2024.

11

Published as a conference paper at ICLR 2025

Norman Megill and David A Wheeler. Metamath: A computer language for pure mathematics,
2019. URL http://us.metamath.org/downloads/metamath.pdf.

Maciej Mikula, Szymon Tworkowski, Szymon Antoniak, Bartosz Piotrowski, Albert Q. Jiang,
Jin Peng Zhou, Christian Szegedy, Lukasz Kucinski, Piotr Milos, and Yuhuai Wu. Magnusham-
mer: A transformer-based approach to premise selection. In the 12th International Conference on
Learning Representations, 2024.

Lawrence C. Paulson. Isabelle - A Generic Theorem Prover, volume 828 of Lecture Notes in Com-
puter Science. 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In the 11th International Con-
ference on Learning Representations, 2023.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the GPU memory wall for extreme scale deep learning. CoRR, abs/2104.07857, 2021.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. CoRR,
abs/2403.05530, 2024.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in lean. CoRR, abs/2404.12534, 2024.

Terence Tao. The polynomial freiman-ruzsa conjecture project. https://github.com/
teorth/pfr, 2023.

Terence Tao. Machine assisted proof. Notices of the American Mathematical Society, 2024.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nat., 625(7995):476–482, 2024.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. Dt-solver: Automated theorem
proving with dynamic-tree sampling guided by proof-level value function. In the 61st Annual
Meeting of the Association for Computational Linguistics, 2023.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and Xiaodan Liang. Lego-prover: Neural
theorem proving with growing libraries. In the 12th International Conference on Learning Rep-
resentations, 2024.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems. In
Advances in Neural Information Processing Systems, 2020.

Sean Welleck. Neural theorem proving tutorial ii. https://github.com/cmu-l3/
ntptutorial-II, 2023.

Sean Welleck and Rahul Saha. LLMSTEP: LLM proofstep suggestions in lean. CoRR,
abs/2310.18457, 2023.

Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, and Roger Baker Grosse. INT: an inequality benchmark for
evaluating generalization in theorem proving. In the 9th International Conference on Learning
Representations, 2021.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models. In Advances in Neural
Information Processing Systems, 2022.

12

http://us.metamath.org/downloads/metamath.pdf.
https://github.com/teorth/pfr
https://github.com/teorth/pfr
https://github.com/cmu-l3/ntptutorial-II
https://github.com/cmu-l3/ntptutorial-II

Published as a conference paper at ICLR 2025

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. Lean-github: Compiling github LEAN reposito-
ries for a versatile LEAN prover. CoRR, abs/2407.17227, 2024.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search. CoRR, abs/2408.08152, 2024.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. In Advances in Neural Information Processing Systems, 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In Advances in
Neural Information Processing Systems, 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In the 10th International Conference on Learning Represen-
tations, 2022.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, and Yongqiang Ma. Lla-
mafactory: Unified efficient fine-tuning of 100+ language models. CoRR, abs/2403.13372, 2024.

13

Published as a conference paper at ICLR 2025

CONTENTS

A Background on Lean 15

B Limitations 15

C Detailed Information of Synthesizing Algorithms 16

C.1 Overview . 16

C.2 Find Invocable Theorems . 16

C.3 Construct New Theorems . 18

C.3.1 rw tactic . 18

C.3.2 apply tactic . 19

C.4 Verify the Theorems . 20

C.5 Limitations of Synthesis Pipeline . 21

D Deeper Analysis of Synthetic Dataset 22

D.1 Numerical Analysis . 22

D.2 Examples . 22

D.3 Details of Training Data . 22

D.3.1 Examples of Training Data . 22

D.3.2 Preprocessing . 23

D.3.3 Classification of Extracted Tactics . 23

D.3.4 Influence of the Quantity of SFT Dataset 23

E Additional Experiments 26

E.1 Effectiveness of Different Tactics . 26

E.2 Analysis of the Tactics to Prove miniF2F Theorems 26

E.2.1 Preference in Used Tactics . 26

E.2.2 Influence of Additional Tactics . 26

14

Published as a conference paper at ICLR 2025

A BACKGROUND ON LEAN

Lean (de Moura et al., 2015) is a functional programming language and interactive theorem prover
based on dependent type theory. As one of the most popular formal systems, Lean aids mathe-
maticians in formalizing statements and proofs in a semi-auto style and enables them to verify the
correctness of each proof step through rigorous type-checking.

Theorem in Lean. To some extent, theorems in Lean can be seen as a special variant of functions
in general-purpose programming languages. A theorem consists of a statement and corresponding
proof. In Lean, the keyword “theorem”, “example” or “lemma” is used to define the “function”,
sometimes followed by a specific function name. The assumption of a statement can be formatted
as implicit or explicit arguments, while the assertion of the statement specifies the return type of the
function. The proof of the statement can be viewed as the function body, which constructs a proof
term with the type specified by the assertion. There are two main proof styles in Lean: term-style
and tactic-style. In term-style proofs, theorems are proven using constructive methods. On the other
hand, tactic-style proofs sequentially decompose the proof goal using specific tactics. Although
tactic-style proofs are less readable, they tend to have shorter proof lengths. Most machine learning-
based theorem-proving systems focus on tactic-style proof. The synthesis method proposed by our
paper can be applied to both styles.

Tactic. Lean offers various advanced tactics for theorem proving, which set it apart from other
formal systems (e.g., Coq, Isabelle). In handwritten proofs, authors tend to guide the reader on
building the proof through instructions such as “apply the previous lemma”, “invoke the principle
of mathematical induction”, or “simplify the expression”. Similarly, tactics in Lean are used to
describe how to construct a proof term incrementally. They help users decompose the proof goal
step by step, allowing users to focus on only one proof goal at a time.

Mathlib. Mathlib9 is a comprehensive mathematical library for Lean, largely maintained by the
community, which encompasses a broad spectrum of mathematical subjects (e.g., algebra and anal-
ysis) and consists of over 110,000 theorems along with their respective axioms and definitions. This
extensive knowledge base serves as the primary corpus for neural theorem provers.

B LIMITATIONS

Our method exhibits some limitations that remain to be addressed in future endeavors.

Data Diversity and Quality. We only define two symbolic rules (using two tactics) to synthesize
new theorems. The implementation of the synthesis pipeline is over general and utilizes little domain
knowledge, which affects the diversity and quality of synthetic data.

The Cost of Synthesizing. Despite the CPU-only nature of our algorithm, the cost of synthesizing
remains huge. We believe the overhead can be significantly reduced with a finer implementation and
more specialized tools to interact with the Lean theorem prover.

Single-Round v.s. Multi-Round. Theoretically speaking, our algorithms can be iteratively executed
by adding the synthesized theorems into seed theorems. Conversely, the synthesized repository is
very heavy, which makes it hard to interact with Lean using Leandojo and deploy our algorithm on
existing hardware.

Theorem-level or Term-level. Our method synthesizes theorems from top to bottom and introduces
additional state-tactic pairs of specific tactics. Synthesizing formal data at the theorem level is not
efficient and not consistent with the step-by-step nature of theorem-proving. Ideally, we anticipate
that we can synthesize formal data directly at the term level, which aligns with the characteristics of
interactive theorem proving.

Up-to-down v.s. Down-to-up. We synthesize theorems in an up-to-down fashion. We construct
the new statements first and then retrieve the correct proofs. The up-to-down fashion depends on a
specific set of seed theorems, which restricts the diversity of synthetic data. A more fundamental
idea is that we can sample some terms in the symbolic space directly, merge them using symbolic
manipulations, and then find the corresponding goals for this new theorem. This AlphaGeometry-

9https://github.com/leanprover-community/mathlib4

15

Published as a conference paper at ICLR 2025

style idea is hard to implement in Lean and requires a large amount of domain knowledge and
engineering endeavors.

Symbolic Synthesis in Conjunction with Other Techniques. Our proposed method demonstrates
significant potential for integration with other techniques to enhance the theorem-proving capabil-
ities of LLMs. We posit that theorem synthesis in the symbolic space serves as a valuable com-
plement to prevailing auto-formalization methods. For instance, it may contribute to the expansion
of autoformalized datasets. Besides, our approach generates a substantial quantity of new proven
statements which can be utilized as a comprehensive database for Retrieval-Augmented Generation
(RAG) (Yang et al., 2023; Wang et al., 2024). Our objective is to amalgamate these methodologies
to develop a robust theorem prover in the future.

C DETAILED INFORMATION OF SYNTHESIZING ALGORITHMS

C.1 OVERVIEW

As discussed in Section 3, the entire algorithm is composed of four steps: 1) Find invocable theorems
for the candidate theorem by executing a specific tactic and retrieving the resulting proof state; 2)
Construct new statements, where we parse the resulting proof state and mutate the old statement
with the help of AST; 3) Establish the entire proof by inserting a have tactic and integrating it with
the old proof to build the whole proof for this new statement; 4) Verify the correctness of generated
theorems in Lean theorem prover. In practice, we separately run the time-consuming first step on
hundreds of 8-core CPU nodes and unify step 2) and step 3) together to construct the new theorem.
Then we will write back synthetic theorems and run “lake build” to verify the generated theorems.

C.2 FIND INVOCABLE THEOREMS

For each candidate theorem, we check whether other theorems can be used to rewrite or apply to
it by executing tactics. We use the run tac API provided by Leandojo to run a specific tactic and
extract the valid proof state according to predefined criteria. The instruction templates for each tactic
are listed in Table1. Here is the code snippet that illustrates this process.

1 ’’’args:
2 dojo: interactive environment
3 init_state: initial proof state of target theorem
4 theorem: a possible invocable theorem
5 hypos: the assumptions of the target theorem (extracted by parsing

the AST)
6 ’’’
7 def is_invocable_theorem(
8 dojo, init_state, theorem, hypos, mode="rw"
9):

10 name = theorem.full_name
11 if mode == "rw":
12 # e.g. rw [name] at hypo_name
13 insts = get_rw_insts(name, hypos)
14 elif mode == "apply":
15 # e.g. have hypo_str := by apply name
16 insts = get_apply_insts(name, hypos)
17 res = []
18 for i, inst in enumerate(insts):
19 try: next_state = dojo.run_tac(init_state, inst)
20 except Exception as e: ...
21 else:
22 state_info = {
23 "init_state": init_state.pp, # pp means pretty-printed
24 "next_state": next_state.error if isinstance(next_state,

LeanError) else next_state.pp,
25 "rule": inst
26 }
27 if isinstance(next_state, LeanError):
28 if mode == "implication" \

16

Published as a conference paper at ICLR 2025

29 and "unsolved goals" in next_state.error:
30 res.append(state_info)
31 elif isinstance(next_state, TacticState):
32 res.append(state_info)
33 return res

Listing 1: Find invocable theorems by running tactics.

We set different validation criteria for each tactic. For the rw tactic, if the resulting state is a Tac-
ticState, we annotate this theorem as invocable. In contrast, for the apply tactic, the resulting state
should be “unsolved goals”. Additionally, we filter the resulting invocable theorems to simplify
the problem of constructing new theorems. Specifically, we remove the invocable theorems whose
next state contains meta-variables (e.g.,?a, ?m123) for the rw tactic and unnamed meta-variables
(e.g.,?e12384) for the apply tactic. Ultimately, we retrieve the invocable theorems for each candi-
date theorem. One example of invocable theorems is shown in Fig.5.

theorem_name: Char.ofNat_toNat
rule: have h : isValidCharNat c.toNat := by apply List.rel_of_pairwise_cons
init_state:
c : Char
h : isValidCharNat (toNat c)
⊢ ofNat (toNat c) = c
next_state:
unsolved goals
case hp
c : Char
h : isValidCharNat (toNat c)
⊢ Std.RBNode.All isValidCharNat ?t

case H
c : Char
h : isValidCharNat (toNat c)
⊢ ∀ {x : ℕ}, x ∈ ?lb → isValidCharNat x

case a
c : Char
h : isValidCharNat (toNat c)
⊢ Std.RBNode.lowerBound? ?cut ?t ?lb = some (toNat c)

case lb
c : Char
h : isValidCharNat (toNat c)
⊢ Option ℕ

case cut
c : Char
h : isValidCharNat (toNat c)
⊢ ℕ → Ordering

case t
c : Char
h : isValidCharNat (toNat c)
⊢ Std.RBNode ℕ

Figure 5: Examples of invocable theorems for apply

The experiments run on a large collection of CPUs (512×8-core for the rw tactic and 256×8-core for
apply). The substantial CPU requirement is largely due to the memory-intensive nature of Leandojo,
which hinders multiprocessing on a single node. We anticipate a significant reduction in the cost of

17

Published as a conference paper at ICLR 2025

our experiments by implementing a lighter interface for Lean interaction. The operation of apply is
more complex and time-consuming than rw. We set a one-hour timeout for each dojo environment
to reduce the time cost. When running a specific tactic, we do not add additional imports to the dojo
environment to avoid introducing human preferences in the process of synthesis. This setting may
narrow the scope of theorems that the tactic can access and lower the variety of invocable theorems.

In summary, finding invocable theorems constitutes the most time-consuming and computationally
intensive stage of our algorithm, entailing trade-offs among cost, time, and generated data volume.

C.3 CONSTRUCT NEW THEOREMS

To create a new theorem, we construct the new statement using the invocable theorems returned by
Section C.2 and then establish the entire proof through have tactic. Our symbolic engine is built upon
Leandojo API, utilizing the extracted AST and some string manipulations. To facilitate the detailed
explanation of algorithms, we will delineate the implementation of these two tactics separately in
the following pseudocode or source code.

C.3.1 rw TACTIC

The logic of constructing a new statement for rw tactic is simple. We just identify whether a specific
assumption or assertion has been rewritten by parsing invocable instructions with regular expres-
sions. Then we parse the AST node of the candidate statement to locate the corresponding part that
should be mutated. Finally, we extract the new assumption or assertion from the next proof state and
replace the old one with the new one. The main procedure is shown in Algorithm 2.

Algorithm 2 Construct new statement for rw tactic

Input: candidate statement s, invocable theorem tinv
Output: mutated statement sm
node← EXTRACT AST(s) ▷ extract the AST of candidate statement
, next state, inst← tinv ▷ get the next state and instruction

flag← IDENTIFY(i) ▷ flag specifies whether the assumption or assertion should be mutated
location l← PARSE(node, tinv, f lag) ▷ parse AST node and locate the corresponding part that
should to be mutated
mutant m← CONSTRUCT(next state) ▷ parse the next proof state and construct the target
string
new statement sm ← REPLACE(s,m, l)

After creating a new statement, we should insert a have tactic to construct the whole proof. If the
assumption is modified, then we just restore it to the old one by reversing the direction of rw within
a have instruction and then concatenate it with the original proof. If the assertion is mutated, the
have tactic can be used to prove the original assertion with initial proof block. Then we just rewrite
the old proof goal to the new one to construct the whole proof. Here is a simplified code snippet that
illustrates this process.

1 def proof_generation_rw(
2 invocable_inst,
3 flag,
4 proof_str,
5 conc_or_hypo_old=None,
6 is_tactic_style=False
7):
8 inst = invocable_inst["rule"]
9 if flag == "hypo":

10 hypo_name = parse(inst, flag)
11 # find the delimiter for proof str(e.g. := by or :=)(simplified

version)
12 if is_tactic_style:
13 delimiter = ":= by"
14 else:
15 delimiter = ":="

18

Published as a conference paper at ICLR 2025

16 splits = proof_str.split(delimiter)
17 proof_seqs = delimiter.join(splits[1:])
18 if flag == "hypo":
19 rev_inst = reverse_rw(invocable_inst)
20 have_template = "have {subgoal} := by {proof_seqs}"
21 have_inst = have_template.format(
22 subgoal=conc_or_hypo_old,
23 proof_seqs=rev_inst)
24 have_inst += f’;exact {hypo_name}’
25 end_inst = proof_seqs
26 elif flag == "conclusion":
27 have_template = "have : {subgoal} {delimiter} {proof_seqs}"
28 have_inst = have_template.format(
29 subgoal=conc_or_hypo_old,
30 delimiter=delimiter,
31 proof_seqs=proof_seqs)
32 head = "by " if not is_tactic_style else ""
33 _suffix = " at this;exact this"
34 end_inst = head + inst + _suffix
35 # do indentation
36 have_inst = indent_code(delimiter, proof_str, have_inst, indent_level

=...)
37 end_inst = indent_code(delimiter, proof_str, end_inst, indent_level

=...)
38 # concat the different parts of proof
39 prefix = splits[0] + delimiter + ’\n’
40 suffix = end_inst if end_inst.startswith(’\n’) else ’\n’ + end_inst
41 new_proof = prefix + have_inst + suffix
42 return new_proof

Listing 2: Build the whole proof for rw tactic

C.3.2 apply TACTIC

Algorithm 3 Construct new statement for apply tactic

Input: candidate statement s, invocable theorem tinv
Output: mutated statement sm
H ← ∅ ▷ initialize the set of new assumptions
node← EXTRACT AST(s) ▷ extract the AST of candidate statement
, next state, inst← tinv ▷ get the next state and instruction
Metavs,Goals← PARSE(next state) ▷ get the set of metavaribales and other subgoals
for metav ∈Metavs do ▷ Assigning metavariables

Add ASSIGN(metav, next state) to H
end for
for goal ∈ Goals do ▷ Fill the other subgoals depending on meta-varibales

Add ASSIGN(goal, next state,Metavs) to H
end for
H ← HANDLE NAMING CONFLICTS(H)
new assumption hm ← CONCAT(H)
location l← PARSE(node, tinv) ▷ parse AST node and locate the old assumption that needs to
be mutated
sm ← REPLACE(s, hm, l)

Constructing new statements for apply tactic is more complex than rw. Applying a theorem may
introduce some metavariables and new subgoals into the local context for the resulting proof state as
shown in Fig.5. We assign values to the metavariables by parsing the next state and then retrieve all
subgoals containing metavariables as new assumptions. For each new assumption, we can extract
its name and type from the proof state. To avoid naming conflicts, we define a set of rules to rename

19

Published as a conference paper at ICLR 2025

the variable according to the naming conversion of Mathlib10. Ultimately, we concatenate all new
assumptions and replace the old assumption with them. This procedure is shown in Algorithm 3.

Similarly, we can construct the entire proof for the new statement by inserting a have lemma. The
simplified code snippet illustrates this process.

1 def proof_generation_apply(cases_goals, inst, proof_str, is_tactic_style)
:

2 if len(cases_goals) == 1:
3 lemma = inst + "; assumption"
4 elif len(cases_goals) > 1:
5 lemma = inst + "<;> assumption"
6 else:
7 raise Exception("no available case and corresponding goal")
8

9 if is_tactic_style:
10 delimiter = ":= by"
11 else:
12 delimiter = ":="
13

14 splits = proof_str.split(delimiter)
15 proof_seqs = delimiter.join(splits[1:])
16 lemma = indent_code(delimiter, proof_str, lemma, indent_level=...)
17 prefix = splits[0] + delimiter + ’\n’
18 suffix = proof_seqs if proof_seqs.startswith(’\n’) else ’\n’ +

proof_seqs
19 new_proof = prefix + lemma + suffix
20 return new_proof

Listing 3: Build the whole proof for apply tatic

.

C.4 VERIFY THE THEOREMS

Our method creates a set of variants for each candidate theorem in Mathlib. We write the variants
back to the original file and execute lake build for verification. We remove the wrong lines for
each file by parsing the error message returned by Lean. Then, we will rebuild the repo to ensure
the effectiveness of verification. We remove the files that cause errors in the rebuilding process.
Specifically, for each 8-core CPU node, we only build one “.lean” file each time to speed up this
process and simplify the logic of parsing. The whole experiment runs on 2,048 CPUs (256×8-core).
The code snippets illustrate the procedure for each CPU node. After verifying the correctness of the
synthesized theorem, we extract the state-tactic pairs from our augmented Mathlib repository using
Leandojo. For rw or apply, it takes three days for a 96-core CPU machine to trace the enlarged
repository. In practice, we split the modified lean files into several portions, separately write them
into multiple lean repositories, and trace the repos on several 96-core CPU machines.

1 # A single 8-core CPU node
2 res = []
3 for idx, file in enumerate(files): # for each modified file
4 ’’’file {
5 file_name: "name of the lean file",
6 text: "the content of this file after writing synthesized

variants into this file"
7 "loc": {"theorem_name": [(start_line_nb, end_line_nb)...]}
8 }’’’
9 tmp = {

10 ’loc’: file[’loc’],
11 ’file_name’: file[’file_name’],
12 ’text’: file[’text’]
13 }
14 file_name = file[’file_name’]

10https://leanprover-community.github.io/contribute/naming.html

20

Published as a conference paper at ICLR 2025

15 file_path = os.path.join(mathlib_package_path, file_name)
16 # extract the old content of this file
17 with open(file_path, "r") as f:
18 old_str = f.read()
19 # replace the old content with new content
20 with open(file_path, "w") as f:
21 f.write(file[’text’])
22 # change the build target to current file
23 with open(LIBRARY_ROOT_FILE, ’w’) as f: # LIBRARY_ROOT_PATH:

Mathlib.lean
24 module_name = file_name.replace(’/’, ’.’).replace(’.lean’, ’’)
25 f.write(f"import {module_name}")
26 if have_variants(file):
27 ## lake build the new mathlib project
28 wd = os.getcwd()
29 result = lake_build(mathlib_package_path) #a helper function
30 os.chdir(wd)
31 ## parse the output
32 # subprocess error
33 if result == None: tmp[’valid_loc’] = ["No variants"]
34 elif result == 0:
35 tmp[’valid_loc’] = tmp[’loc’]
36 print(’successful build’)
37 # timeout error
38 elif result == -1: tmp[’valid_loc’] = ["No variants"]
39 else:
40 # find the error locations(line numbers)
41 pattern = fr"({file_name}):(\d+):(\d+): error:"
42 errors = re.findall(pattern, result)
43 if len(errors) == 0: tmp[’valid_loc’] = ["No variants"] #

parse exception
44 else:
45 # extract line numbers from errors
46 error_line_nbs = ...
47 # get the locations of all variants
48 intervals = ...
49 # drop the error ones and write back
50 valid_locs = diff(intervals, error_line_nbs)
51 write_back(valid_locs, file[’text’])
52 ## rebuilt the project if causes error then remove this

file
53 wd = os.getcwd()
54 result = lake_build(mathlib_package_path)
55 os.chdir(wd)
56 if result != 0: tmp[’valid_loc’] = ["No variants"] #

rebuild error
57 else: # pass the rebuilding process
58 tmp[’valid_loc’] = valid_locs
59 else:
60 tmp[’valid_loc’] = [’No variants’]
61 # write back the original content
62 with open(file_path, "w") as f:
63 f.write(old_str)
64 res.append(tmp)

Listing 4: Verify the correctness of generated theorems

C.5 LIMITATIONS OF SYNTHESIS PIPELINE

Our synthesis pipeline is mainly based on the advanced Leandojo tool. We use it to interact with
Lean, parse abstract syntax trees and trace state-tactic pairs. However, this tool has the following
weaknesses: 1) It will generate a significant number of temporary files that consume substantial disk
space when initializing a “dojo” environment. The memory-intensive nature of this tool hinders our
ability to effectively implement multiprocessing; 2) Moreover, it lacks native support for tracing a

21

Published as a conference paper at ICLR 2025

local Lean repository, so we must first upload our data to GitHub; 3) We encounter challenges when
tracing a repository of a scale significantly larger than that of Mathlib, which makes it hard to do
multi-round synthesis. We aspire to enhance the functionality of the Leandojo tool to tackle more
demanding scenarios in our forthcoming endeavors.

In addition, the process of constructing statements and proofs plays an important role in data volume
and diversity. Our implementation involves parsing the abstract syntax tree for localization and
conducting various string manipulations, which is straightforward but struggles with sophisticated
situations such as coercion, naming conflicts, and other corner cases. We are looking forward to
refactoring our modification logic with the metaprogramming API of lean 11 in the future, which is
more robust and easier to extend.

D DEEPER ANALYSIS OF SYNTHETIC DATASET

D.1 NUMERICAL ANALYSIS

The histogram of the number of variants synthesized by each tactic is shown in Fig.6.

rw apply

Figure 6: The distribution of the number of variants (only 99% of the data are visualized).

For each tactic, we also list the top 20 theorems with the highest number of variants in Fig.7.

D.2 EXAMPLES

Due to the large volume of synthetic data, it is challenging to display all the data in the appendix.
We only display a subset of demo theorems for reference. The proof lengths of these theorems range
from 1 to 3 lines. The synthesized theorems of rw tactic are displayed in Fig.8. The synthesized
theorems of apply are displayed in Fig.9.

D.3 DETAILS OF TRAINING DATA

D.3.1 EXAMPLES OF TRAINING DATA

As shown in Fig.10, we synthesize a series of variants for each candidate theorem by employing
different tactic instructions to mutate existing theorems. We simply combine these additional theo-
rems with the original theorems in Mathlib and train LLMs on this augmented corpus. In addition
to synthesizing variants for each candidate theorem, symbolic manipulations to construct new theo-
rems also introduce some new state-tactic pairs. What should be noted is that the state-tactic pairs
are extracted by Leandojo rather than manually designed symbolic rules. We have not performed

11https://leanprover-community.github.io/lean4-metaprogramming-book/

22

Published as a conference paper at ICLR 2025

rw apply

Figure 7: The top20 theorems for rw and apply.

any post-processing on the extracted state-tactic pairs. We group the extracted theorems by the em-
ployed tactics (rw, apply, have). The examples of rw and apply are shown in Fig.11. The examples
of have are shown in Fig.12.

D.3.2 PREPROCESSING

The synthesized variants of theorems and corresponding state-tactic pairs appearing in the test split
of Leandojo benchmark are removed. During the data synthesis process, an invocable theorem may
be used to rewrite or apply to different candidate theorems. Thus, many data points extracted from
the augmented Mathlib repository share the same tactic and invocable theorem (i.e., premise), such
as premise A in “rw [A]” or “apply A”. These data points have similar changes in the proof state.
We keep one state-tactic pair for each used premise in the synthesized state-tactic pairs and obtain
about 30k data points for each tactic.

D.3.3 CLASSIFICATION OF EXTRACTED TACTICS

The types of extracted state-tactic pairs are mainly determined by the symbolic manipulations to
construct the theorems. We construct the proof by inserting a have instruction and integrating it
with the original proof. As a result, we manually introduce tactics centered on rw, apply or have.
The traced data predominantly features these tactics. The style of the seed theorem (tactic-style or
term-style) and the implementation of the tracing tool are also key factors for the traced data. To see
more details of this process, it is a good choice to trace the synthesized repository in person. Being
familiar with the tracing process will offer some valuable guidance in designing symbolic rules to
modify the proof. The extracted state-tactic pairs can also be post-processed (e.g., split the chained
tactics into single ones), which has not been explored by our work.

D.3.4 INFLUENCE OF THE QUANTITY OF SFT DATASET

We assess the impact of varying quantities of additional state-tactics pairs for each tactic under
several conditions: 1) Mathlib-train with no additional data points; 2) Downsampling with a ratio of
0.25, resulting in 7.5k additional data points; 3) Downsampling with a ratio of 0.5, resulting in 15k
additional data points; 4) Our setting with a deduplication threshold of 1, resulting in 30k additional
data points; 5) Deduplication with a threshold of 50, resulting in 500k additional data points; and
6) No deduplication, resulting in 3M additional data points. We fine-tune Llama-3-8b on these

23

Published as a conference paper at ICLR 2025

Finset.multiplicativeEnergy_mono_right

theorem multiplicativeEnergy_mono_right (ht : t₁ ⊆ t₂) :
 multiplicativeEnergy s t₁ ≤ multiplicativeEnergy s t₂ :=
 multiplicativeEnergy_mono Subset.rfl ht

example (ht : t₁ ∩ t₂ = t₁) :
 multiplicativeEnergy s t₁ ≤ multiplicativeEnergy s t₂:=
 have ht : t₁ ⊆ t₂ := by rw [Finset.inter_eq_left] at ht;exact ht
 multiplicativeEnergy_mono Subset.rfl ht

example (ht : t₁.val ⊆ t₂.val) :
 multiplicativeEnergy s t₁ ≤ multiplicativeEnergy s t₂:=
 have ht : t₁ ⊆ t₂ := by rw [←Finset.subset_def] at ht;exact ht
 multiplicativeEnergy_mono Subset.rfl ht

example (ht : t₁ ⊆ t₂) :
 max (multiplicativeEnergy s t₂) (multiplicativeEnergy s t₁) = multiplicativeEnergy s t₂:=
 have : multiplicativeEnergy s t₁ ≤ multiplicativeEnergy s t₂ :=
 multiplicativeEnergy_mono Subset.rfl ht
 by rw [←max_eq_left_iff] at this;exact this

Multiset.card_le_card

theorem card_le_card {s t : Multiset α} (h : s ≤ t) : card s ≤ card t :=
 leInductionOn h Sublist.length_le

example {s t : Multiset α} (h : s ≤ t) : ∀ ⦃c : ℕ⦄, card t < c → card s < c:=
 have : card s ≤ card t :=
 leInductionOn h Sublist.length_le
 by rw [←forall_lt_iff_le'] at this;exact this

example {s t : Multiset α} (h : s ≤ t) : card s ⊓ card t = card s:=
 have : card s ≤ card t :=
 leInductionOn h Sublist.length_le
 by rw [←inf_eq_left] at this;exact this

example {s t : Multiset α} (h : s ≤ t) : card s = card t ∨ card s < card t:=
 have : card s ≤ card t :=
 leInductionOn h Sublist.length_le
 by rw [le_iff_eq_or_lt] at this;exact this

Nat.one_lt_pow'

theorem one_lt_pow' (n m : ℕ) : 1 < (m + 2) ^ (n + 1) :=
 one_lt_pow (n + 1) (m + 2) n.succ_ne_zero (Nat.lt_of_sub_eq_succ rfl)

example (n m : ℕ) : (m + 2) ^ (n + 1) ≠ 0 ∧ (m + 2) ^ (n + 1) ≠ 1:=
 have : 1 < (m + 2) ^ (n + 1) :=
 one_lt_pow (n + 1) (m + 2) n.succ_ne_zero (Nat.lt_of_sub_eq_succ rfl)
 by rw [Nat.one_lt_iff_ne_zero_and_ne_one] at this;exact this

example (n m : ℕ) : (m + 2) ^ (n + 1) < (m + 2) ^ (n + 1) * (m + 2) ^ (n + 1):=
 have : 1 < (m + 2) ^ (n + 1) :=
 one_lt_pow (n + 1) (m + 2) n.succ_ne_zero (Nat.lt_of_sub_eq_succ rfl)
 by rw [←Nat.lt_mul_self_iff] at this;exact this

Figure 8: Examples of synthesized theorems for rw

different mixtures of data and evaluate their performance on random split of Leandojo Benchmark.
The experimental results are shown in Fig.4, demonstrating that our setting achieves a relatively
optimal balance between overhead and performance.

24

Published as a conference paper at ICLR 2025

StrictMonoOn.mapsTo_Ioc

lemma StrictMonoOn.mapsTo_Ioc (h : StrictMonoOn f (Icc a b)) :
 MapsTo f (Ioc a b) (Ioc (f a) (f b)) :=
 fun _c hc ↦ ⟨h (left_mem_Icc.2 <| hc.1.le.trans hc.2) (Ioc_subset_Icc_self hc) hc.1,
 h.monotoneOn (Ioc_subset_Icc_self hc) (right_mem_Icc.2 <| hc.1.le.trans hc.2) hc.2⟩

example (h : StrictMonoOn f (Icc a b) True) :
 MapsTo f (Ioc a b) (Ioc (f a) (f b)):=
 have h : StrictMonoOn f (Icc a b) := by apply of_iff_true; assumption
 fun _c hc ↦ ⟨h (left_mem_Icc.2 <| hc.1.le.trans hc.2) (Ioc_subset_Icc_self hc) hc.1,
 h.monotoneOn (Ioc_subset_Icc_self hc) (right_mem_Icc.2 <| hc.1.le.trans hc.2) hc.2⟩

example (H : ∀ (b_1 : Prop), (StrictMonoOn f (Icc a b) → b_1) → StrictMonoOn f (Icc a b)) :
 MapsTo f (Ioc a b) (Ioc (f a) (f b)):=
 have h : StrictMonoOn f (Icc a b) := by apply peirce'; assumption
 …
example (h : Icc a b ∈ {x | StrictMonoOn f x}) :
 MapsTo f (Ioc a b) (Ioc (f a) (f b)):=
 have h : StrictMonoOn f (Icc a b) := by apply Membership.mem.out; assumption
 …

PNat.XgcdType.reduce_a

theorem reduce_a {u : XgcdType} (h : u.r = 0) : u.reduce = u.finish := by
 rw [reduce]
 exact if_pos h

example {u : XgcdType} (h : 0 ∣ r u) : u.reduce = u.finish:= by
 have h : u.r = 0 := by apply Nat.eq_zero_of_zero_dvd; assumption
 rw [reduce]
 exact if_pos h

example {u : XgcdType} (H : u.bp + 1 ∣ u.ap + 1) : u.reduce = u.finish:= by
 have h : u.r = 0 := by apply Nat.mod_eq_zero_of_dvd; assumption
 …
example {u : XgcdType} (n : ℕ) (H : Nat.gcd (r u) n = 0) : u.reduce = u.finish:= by
 have h : u.r = 0 := by apply Nat.eq_zero_of_gcd_eq_zero_left<;> assumption
 …

Ordnode.not_le_delta

theorem not_le_delta {s} (H : 1 ≤ s) : ¬s ≤ delta * 0 :=
 not_le_of_gt H

example {s} (h : 0 < s) (a : 1 ∣ s) : ¬s ≤ delta * 0:=
 have H : 1 ≤ s := by apply Nat.le_of_dvd<;> assumption
 not_le_of_gt H

example {s} (n : ℕ) (H1 : s ∣ n) (H2 : 0 < n) : ¬s ≤ delta * 0:=
 have H : 1 ≤ s := by apply Nat.pos_of_dvd_of_pos<;> assumption
 …
example {s} (l : List ℕ) (p : List.Pairwise LE.le (1 :: l)) (a : s ∈ l) : ¬s ≤ delta * 0:=
 have H : 1 ≤ s := by apply List.rel_of_pairwise_cons<;> assumption
 …

Figure 9: Examples of synthesized theorems for apply

25

Published as a conference paper at ICLR 2025

Variant of rw
theorem_name: CategoryTheory.Limits.Multicofork.sigma_condition_variant_0
file_path: Mathlib/CategoryTheory/Limits/Shapes/Multiequalizer.lean
text:
example : MultispanIndex.fstSigmaMap I ≫ Sigma.desc (π K) ∈ [MultispanIndex.sndSigmaMap I ≫ Sigma.desc (π K)]:= by

 have : I.fstSigmaMap ≫ Sigma.desc K.π = I.sndSigmaMap ≫ Sigma.desc K.π := by
 ext
 simp

 rw [←List.mem_singleton] at this;exact this
meta: https://github.com/leanprover-community/mathlib4/commit/3c307701fa7e9acbdc0680d7f3b9c9fed9081740’

Variant of apply
theorem_name: UniformInducing.equicontinuous_iff_variant_26
file_path: Mathlib/Topology/UniformSpace/Equicontinuity.lean
text:
example {F : ι → X → α} {u : α → β} (B : Set (Set (α → β))) (s : Set (α → β)) (hB : TopologicalSpace.IsTopologicalBasis B)
(hs : IsOpen s) (h : ∀ U ∈ B, U ⊆ s → U ⊆ UniformInducing) (a : u ∈ s) :

 Equicontinuous F Equicontinuous ((u ∘ ·) ∘ F):= by
 have hu : UniformInducing u := by apply TopologicalSpace.IsTopologicalBasis.subset_of_forall_subset<;> assumption
 congrm ∀ x, ?_
 rw [hu.equicontinuousAt_iff]

meta: https://github.com/leanprover-community/mathlib4/commit/3c307701fa7e9acbdc0680d7f3b9c9fed9081740

Figure 10: Examples of data for pretraining

E ADDITIONAL EXPERIMENTS

E.1 EFFECTIVENESS OF DIFFERENT TACTICS

We evaluate the effectiveness of different tactics by combining additional state-tactic pairs of a
specific tactic with Mathlib-train and fine-tuning the LLMs using this mixture. The experimental
results are shown in Table 6. We observe that state-tactic pairs of rw and apply are beneficial for the
theorem-proving ability of the LLM. And the highest improvement is achieved by the combination
of these two tactics. For the state-tactic pairs of have, we assume that these data will teach the
model to introduce lemmas in the process of proving a theorem, helping them to prove the theorems
in multiple steps. However, experimental data show that have has complex effects on the proving
capacity of LLMs. The performance on a mixture of “have” and other tactics shows poorer results
compared to that on a single tactic. We hope to investigate the effectiveness of have tactic soon.

E.2 ANALYSIS OF THE TACTICS TO PROVE MINIF2F THEOREMS

E.2.1 PREFERENCE IN USED TACTICS

To see the preference for the tactics used to prove competition-level problems, we perform a com-
prehensive analysis of the theorems proved by different LLMs. Specifically, we fine-tune different
LLMs with the random train-split of Leandojo benchmark and gather all theorems proved by these
models. The collection of these models proves 100 theorems out of 244 theorems (41%) on the
test split of miniF2F benchmark. The average length of the proofs generated by these models is
1.38. And the distribution of these proved theorems is shown in Fig.14. We have the following
observations: 1) About half of the theorems in the miniF2F test split can be proven with only 1-2
line proofs; 2) Most of the theorems are proved with advanced and automatic tactics in Lean (e.g.,
norm num, linarith, omega, simp, etc.). We assume that these tactics play an important role in the
theorem-proving ability of LLMs to prove competition-level problems. From the above observa-
tions, we assume that synthesizing advanced tactic data points rather than basic data points featuring
rw and apply is promising to improve the performance of proving competition-level problems.

E.2.2 INFLUENCE OF ADDITIONAL TACTICS

We analyze the distribution of used tactics in proven miniF2F problems across different data com-
positions. The dynamics of distribution changes are shown in Fig.15. We assume that increasing the

26

Published as a conference paper at ICLR 2025

Table 6: The effectiveness of different tactics

Methods random novel premises Search Budget
Llama3-8b
Mathlib-train 58.22 38.52 1× 32

rw tactic
Mathlib-train + rw 57.85 (-0.37) 41.59 (+3.07) 1× 32
Mathlib-train + have 58.27 (+0.05) 41.29 (+2.77) 1× 32
Mathlib-train + rw + have 57.96 (-0.26) 41.53 (+3.01) 1× 32

apply tactic
Mathlib-train + apply 56.71 (-1.51) 40.02 (+1.51) 1× 32
Mathlib-train + have 57.44 (-0.78) 39.24 (+0.72) 1× 32
Mathlib-train + apply + have 57.23 (-0.99) 38.34 (-0.18) 1× 32

both tactic
mathlib-train + rw + apply 58.53 (+0.31) 41.95 (+3.44) 1× 32

deepseek-coder-7b-base-v1.5
Mathlib-train 57.7 39.24 1× 32

rw tactic
Mathlib-train + rw 58.63 (+0.93) 41.05 (+1.81) 1× 32
Mathlib-train + have 58.11 (+0.41) 39.06 (-0.18) 1× 32
Mathlib-train + rw + have 58.74 (+1.04) 40.57 (+1.33) 1× 32

apply tactic
Mathlib-train + apply 57.96 (+0.26) 41.17 (+1.93) 1× 32
Mathlib-train + have 57.02 (-0.68) 39.66 (+0.42) 1× 32
Mathlib-train + apply + have 58.16 (+0.46) 39.78 (+0.54) 1× 32

both tactic
Mathlib-train + rw + apply 58.37 (+0.67) 42.92 (+3.68) 1× 32

Table 7: The results of miniF2F for different LLMs. We fine-tune each model with the random
train-split of Leandojo benchmark and evaluate their performance on miniF2F benchmark.

Methods miniF2F-test
Llama-3-8b 34.01
deepseek-coder-base-7b-v1.5 37.70
deepseek-math-7b-base 34.42
llemma-7b 32.38
mistral-7b 32.38
internlm2-math-7b 36.06

Combination 40.98

diversity of synthesized tactics and adjusting the tactic distribution will be beneficial to enhance the
theorem-proving ability of LLMs.

27

Published as a conference paper at ICLR 2025

instruction:
/- You are proving a theorem in Lean 4.
You are given the following information:
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
rw tactic
input:
[STATE]
α : Type u_1
β : Type u_2
R : Type u_3
s t : Finset α
f : α → β
n : ℕ
inst : DecidableEq α
this : s.card = 2 ∃ x y, x ≠ y ∧ s = {x, y}
⊢ s.card = 2 ∃ a ∈ Set.range fun x y => x ≠ y ∧ s = {x, y}, Exists a
[/STATE]
[TAC]

output:
rw [←Set.exists_range_iff] at this[/TAC]
apply tactic
input:
[STATE]
n : ℕ
inst : NeZero n
a b : ZMod n
w : val b ∈ HAdd.hAdd (val a) ⁻¹' Nat.le n
⊢ n ≤ val a + val b
[/STATE]
[TAC]

output:
apply Set.mapsTo_preimage[/TAC]

Figure 11: Examples of rw and apply data points for finetuning

28

Published as a conference paper at ICLR 2025

[/TAC]

instruction:
/- You are proving a theorem in Lean 4.
You are given the following information:
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
have tactic-rw-related
Case one
input:
[STATE]
m n a b : ℕ
cop : Coprime m n
ha : a ≠ 0
hb : b ≠ Int.toNat 0
⊢ a * m + b * n ≠ m * n
[/STATE]
[TAC]

output:
have hb : b ≠ 0 := by rw [Int.toNat_zero] at hb;exact hb[/TAC]
Case two
input:
[STATE]
α : Type u_1
inst : DecidableEq α
𝒜𝒜 : Finset (Finset α)
u v a : Finset α
r : ℕ
huv : Equiv.swap u.card v.card = Equiv.refl ℕ
a : Finset α
⊢ (compress u v a).card = a.card
[/STATE]
[TAC]

output:
have huv : u.card = v.card := by rw [Equiv.swap_eq_refl_iff] at huv;exact huv[/TAC]

have tactic-apply-related
Input:
[STATE]
α : Type u
β : Type v
inst ¹ : DecidableEq α
inst : Fintype α
σ : Perm α
n : ℕ
h : orderOf σ ∈ {x | Nat.Coprime n x}
⊢ support (σ ^ n) = support σ
[/STATE]
[TAC]

output:
have h : Nat.Coprime n (orderOf σ) := by apply Membership.mem.out; assumption[/TAC]

Figure 12: Examples of have data points for finetuning

29

Published as a conference paper at ICLR 2025

a) b)

c) d)

Figure 13: The performance of models fine-tuned on different SFT datasets on novel premises split.
a) Mathlib-train; b) Mathlib-train + rw; c) Mathlib-train + apply; d) Mathlib-train + rw + apply.

a) b)

Figure 14: a) The distribution of theorems proved by different LLMs; b) The distribution of tactics
used in the proved theorems.

30

Published as a conference paper at ICLR 2025

a) b)

c) d)

Figure 15: The distribution of used tactics for Llama-3-8b fine-tuned on different SFT datasets to
prove miniF2F. a) Mathlib-train; b) Mathlib-train + rw; c) Mathlib-train + apply; d) Mathlib-train +
rw + apply.

31

	Introduction
	Related Work
	Method
	Statement Generation
	Proof Generation and Theorem Verification
	Model Training

	Experiments
	Implementation Details
	Analysis of Synthetic Data
	Experimental Results
	Main Results
	Effectiveness of Continual Pretraining
	Influence of the Quantity of SFT Dataset
	Analysis of Out-of-distribution Performance

	Conclusion
	Background on Lean
	Limitations
	Detailed Information of Synthesizing Algorithms
	Overview
	Find Invocable Theorems
	Construct New Theorems
	rw tactic
	apply tactic

	Verify the Theorems
	Limitations of Synthesis Pipeline

	Deeper Analysis of Synthetic Dataset
	Numerical Analysis
	Examples
	Details of Training Data
	Examples of Training Data
	Preprocessing
	Classification of Extracted Tactics
	Influence of the Quantity of SFT Dataset

	Additional Experiments
	Effectiveness of Different Tactics
	Analysis of the Tactics to Prove miniF2F Theorems
	Preference in Used Tactics
	Influence of Additional Tactics

