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Abstract
We investigate the sample complexity of recovering tensors with low symmetric rank from sym-
metric rank-one measurements, a setting particularly motivated by the study of higher-order inter-
actions in statistics and the analysis of two-layer polynomial neural networks. Using a covering
number argument, we analyze the performance of the symmetric rank minimization program and
establish near-optimal sample complexity bounds when the underlying distribution is log-concave.
Our measurement model involves random symmetric rank-one tensors, leading to involved proba-
bility calculations. To address these challenges, we employ the Carbery-Wright inequality, a power-
ful tool for studying anti-concentration properties of random polynomials, and leverage orthogonal
polynomial expansions. Additionally, we provide a sample complexity lower bound via Fano’s
inequality, and discuss broader implications of our results for two-layer polynomial networks.
Keywords: Symmetric tensors, tensor recovery, rank minimization, covering numbers, low-rank,
log-concave distributions.

1. Extended Abstract

We study the problem of recovering an unknown, order-ℓ tensor T ∗ ∈ Rd×···×d from random
measurements of the form

Yi = ⟨T ∗,X⊗ℓ
i ⟩, i = 1, . . . , N, (1)

where N is the sample size and Xi ∈ Rd are i.i.d. random vectors with i.i.d. entries sampled from a
log-concave distribution on R. We assume T ∗ has low symmetric rank, i.e.,

rankS(T ∗) := min{t ≥ 1 : T ∗ =
∑

i≤t λiv
⊗ℓ
i , λ1, . . . , λr ∈ R,v1, . . . ,vr ∈ Rd} ≤ r

for some r. This setting arises naturally in the study of higher-order interactions in statistics (Bien
et al., 2013; Basu et al., 2018; Hao et al., 2020), where the unknown tensor often exhibits low-rank
structure (Sidiropoulos and Kyrillidis, 2012; Hung et al., 2016; Hao et al., 2020). Moreover, our
setting is also closely related to the problem of learning two-layer polynomial neural networks, see,
e.g., Soltanolkotabi et al. (2018); Du and Lee (2018); Emschwiller et al. (2020); Sarao Mannelli
et al. (2020); Kızıldağ (2022); Martin et al. (2024); Gamarnik et al. (2024).

Our main contributions are summarized as follows:

• Strong Recovery: We establish that for N = Ω(dr), the symmetric rank minimization pro-
gram, minT rankS(T ) subject to ⟨T ,X⊗ℓ

i ⟩ = Yi,∀i = 1, . . . , N , recovers all T ∗ with
probability one. Our proof leverages multiple techniques, including Carbery-Wright inequal-
ity for the anti-concentration of random polynomials (Carbery and Wright, 2001), orthogonal
polynomial expansions (Lalley; Szegö, 1939), covering number estimates for low-rank ten-
sors (Zhang and Kileel, 2023), and monotonicity of covering numbers (Vershynin, 2018).
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• Sample Complexity Lower Bound: In a different statistical setting where T ∗ is drawn from
a discrete space, we establish a sample complexity lower bound: any estimator T̂ for T ∗,
whether deterministic or randomized, incurs an estimation error of at least some δ > 0,
unless N = Ω̃(dr1−γ), where γ > 0 is arbitrary. To prove this result, we establish a packing
number bound for symmetric tensors with low symmetric rank, potentially of independent
interest, using a variant of the Gilbert-Varshamov lemma from coding theory (Gilbert, 1952;
Varshamov, 1957) derived via the probabilistic method (Alon and Spencer, 2016).

• Implications for Neural Networks: Consider a two-layer neural network of width r, comput-
ing

∑
1≤j≤r a

∗
jσ(⟨W ∗

j ,X⟩) on input X ∈ Rd, where W ∗
j ∈ Rd and a∗j ∈ R are ground-truth

weights, and σ(x) = xℓ is the activation function. Our results provide improved sample com-
plexity bounds in the underparameterized regime, r = O(dℓ−1); they remain competitive
in the overparameterized regime, r = Ω(dℓ−1), particularly when a∗i = Θ(1) or when the
spectral norm of W ∈ Rr×d with rows W ∗

j grows polynomially with max{r, d}.

Our work aligns with a broad literature on low-rank matrix and tensor recovery (Candes and Tao,
2005; Candès et al., 2006; Cai et al., 2010; Eldar et al., 2012; Mu et al., 2014; Rauhut et al., 2017; Cai
et al., 2020; Ahmed et al., 2020; Grotheer et al., 2022; Luo and Zhang, 2023). Much of this literature
adopts measurement models of form Yi = ⟨T ∗,Xi⟩ for tensors Xi consisting of i.i.d. sub-Gaussian
entries or satisfying the tensor restricted isometry property, simplifying probability estimates. Our
approach extends beyond these settings and captures polynomial networks.
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