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A BOUND PROOF

In this section, we provide proof for the upper bound of pruning process:
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Inspired by Neyshabur et al.[(2015), we can write the network f (x; W(I:L)) with its layers:
I (5 WED) = Wio (Wia0 (Wes (..o (Wia))) (12)
Then we can peel the highest layer Wp,:
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With Cauchy-Schwarz inequality Steele| (2004)), we have the upper bound of Equation 13| as:
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Suppose ¢ is the ReLLU activation, so we use the 1-Lipschitzness of ReL.U activation with respect to
{5 norm for the upper bound of Equation 14]as:
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Then we continue peeling the second highest layer W, _; to lower layers and stop the peeling at the
pruned layer 7 (). We have this upper bound for Equationlﬁl
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We consider the effect of pruning for the term on the right side and use Cauchy-Schwarz inequality
again:
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For the activation term, based on ¢(0) = 0, we have:
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If we continue the peeling process as shown in equation [I3] we can achieve equation [T1]

B MODULE DEFINITION

Attention-related Module (QKV-M and PRJ-M). Self-attention is an important operation in Swin
Transformer. In every transformer block, there are two layers related to self-attention, that is, ATT-
QKYV and ATT-PRJ in Figure 3] ATT-QKV means the “Query, Key, and Value” matrix for self-
attention, and ATT-PR]J indicates the projection layer for self-attention. Assuming z' is the feature
map of I, layer, two attention-related layers are:
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zZ T = ATT-QKV (z'), z't? = ATT-PRJ (z'*!) (19)

where z! is the input feature map of ATT-QKYV, and z'*! is the input feature map of ATT-PRJ. After
these two layers, there is a residual connection between the output of the ATT-PRJ layer and the
feature map before the LN layer:

il+2 — Zl+2 + Zl71 (20)

Assume there are J transformer blocks in the whole network. For the transformer block shown in
Figure a), assume the range of the layer index is [I, I + 5]. For the jy, block after this block, the
layer index range is [l + p;, | + p; + 5], where p; means the number of layers between these two
blocks. Then we can define QKV-M and PRJ-M as:

QKV-M : {W!H Wittt for je[1,J].

1)
PRIJ-M : {W!2  WHPit2 4 for je[L,J].

Multilayer Perceptron-related Module (MLP-M). Another important part of the Swin Trans-
former is the multilayer perceptron. There are two MLP layers in every Swin Transformer block.
‘We name these two layers MLP-FC1 and MLP-FC2:

z'™* = MLP-FC1 (z73), 2™ = MLP-FC2 (z/™*) (22)

where z!*3 is the input feature map of MLP-FC1, and z!** is the input feature map of MLP-FC2.
Similarly, after two MLP layers, there is a residual connection between the output of the MLP-FC2
layer and the feature map before the LN layer:

25 = g5 4 g2 (23)
Considering J blocks in the whole network, and j € [1, J|, we can define the MLP-M as:
MLP-M : {WHH W5 Wit awhtes 5 3 (24)

Auxiliary Module (AUX-M). The auxiliary module consists of the auxiliary layers inside and out-
side the Swin Transformer block. Inside the Swin Transformer block, as shown in Figure a), there
are two LN layers. Some other auxiliary layers outside the Swin Transformer blocks, including
a patch embedding layer and several patch merging layers, are also included in AUX-M. We do
not prune these layers due to their important contribution to the network and their relatively small
parameter count.

C MODEL AS MODULE

Despite defining multiple modules in our experiments and evaluating weight importance within
each module, it is intriguing to view the entire model as a single module. In this setting, we keep the
auxiliary layers unpruned and view all other layers, including ATT-QKYV, ATT-PRJ, MLP-FC1, and
MLP-FC2, as a module. This means all the weights are compared based on our novel weight metric.
The results are shown in Tab. |4, demonstrating that our weight metric can achieve reasonably good
performance, even when considering all functional layers as a unified module.

Multiple Single .
Model Modules (%) Module (%) Difference (%)
Swin-B-DIMAP3 83.28 83.17 0.11
Swin-S-DIMAP3 82.63 82.31 0.32
Swin-T-DIMAP3 80.35 80.12 0.23

Table 4: Comparison of assigning functional layers as multiple modules and a single module.
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