Codes README
DuRND: Dual Random Networks Distillation

The codes for our proposed Dual Random Networks Distillation (DuRND) algorithm.
The following figure illustrates an overview of the DuRND algorithm to shape rewards:

| Success RN module N DuRND Reward Shaping

_____________ [[DURND _

env nov

v+ Ar

i

o~ B(N /e +1,N /" +1)]

ey

observation

I
Yes! _ | No T_ a s . action & ’
i T =S8, 8y g, Environment Agent
Agent Interaction S8 8y NH <—‘ gent ‘G,

Figure 1: An overview of the Dual Random Networks Distillation (DuRND) framework. The observation is
processed through both Success and Failure RN modules to derive errors that reflect its novelty in successful
and failed scenarios, respectively. The two errors jointly form the DuRND shaping rewards (novelty reward
and contribution reward) used to train the agent. At the end of each trajectory, the corresponding RN
module is updated based on the trajectory’s outcome, as indicated by the sparse environmental reward.

1 Requirements

e The code is only supported for Python 3.6 to 3.10. (Due to the PyBullet rendering package, the code
is not supported for Python higher than 3.11.)

e The code is tested on Ubuntu 20.04, with PyTorch 2.0.1 and cuda 11.7.
e All required packages can be installed using the requirements.txt file:

pip install -r requirements.txt

2 Run DuRND Algorithm

The DuRND algorithm is implemented in the ./DuRND/DuRND_Algo.py file. We separately provide two
variants of the DuRND algorithm:

e The original DuRND algorithm for task-completion-indication episodic rewards, e.g., ThreeRooms and
TMaze environments.

python run-DuRND.py --env-id <ENV-ID>

e The DuRND algorithm for common sparse rewards, using the T},,, to divide sub-trajectories, e.g.,
Atari games and VizDoom games.

python run-DuRND-Tmax.py --env-id <ENV-ID>

All tasks evaluated in the paper are listed below:

e Atari games: ALE/Freeway-vb, ALE/Frogger-v5, ALE/Solaris-v5, ALE/BeamRider-v5.

e VizDoom (and LevDoom) games: VizdoomDefendLine-vO0, VizdoomDefendCenter-vo0,
Levdoom/HealthGatheringLevelO-v0, Levdoom/SeekAndSlayLevelO-vO.

e MiniWorld: MiniWorld-ThreeRooms-v0, MiniWorld-TMazeLeft-vO.
Some important hyperparameters are listed as follows (for the full list, please refer to the running scripts):

--exp-name: The experiment name for logging.

-—env-id: The environment ID.

--seed: The random seed.

--rollout-length: the rollout length for the backbone PPO algorithm.

--num-mini-batches: the number of mini-batches for the backbone PPO algorithm.

--1r: the learning rate for the agent.

--rnd-1r: the learning rate for the random network modules.

--total-timesteps: the total training steps.

--max-sub-tra: the maximum steps for sub-trajectories, i.e., T_{max}, only for the DuRND

algorithm with sub-trajectories.

3 Plot Experimental Results

All experimental data are saved in the ./Experiments/data.zip file, to plot the results in our paper, you
can unzip the data and run the following commands:

1. To plot the results of comparing the DuRND algorithm with the baseline algorithms:
python ./Experiments/comparison.py

2. To plot the results of the ablation study:

python ./Experiments/ablation-study.py

3. To plot the results of the novelty and contribution rewards through the training process:

python ./Experiments/rewards.py

Episode returns

Episode returns

Episode returns

Episode returns

Episode returns

Episode returns

Freeway Frogger Solaris BeamRider DefendLine
150 40 "
o0
s
% s \
00 \
” M .
50 4
"
25 2 4
0.0 o 0
R A TR P T A T m @ w0 ww
SaveCenter CollectKit SlayGhosts ThreeRooms TMaze
20 10 10
15 o8 o
06 06
"
» os
s . 0
0 0.0 o
A A e A T T A T M
Steps X103
m=—= DuRND === ExploRS === RND === #Explo === Relara ==== ROSA === SORS
Figure 2: The learning performance of DuRND compared with baselines.
Freeway Frogger Solaris BeamRider DefendLine
150 0 *
"
- 125
» ,
100
75 20 6
50 0 4
2 :
00 o 0
R A AT P M T P M Y P M T
SaveCenter CollectKit SlayGhosts ThreeRooms TMaze
Y » w0 0
” 15 08 08
® 06
20 10 06
s o o
0 , " 0
s
0 o 00 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Steps X103 === DuRND complete ~ === DuRND with only R"®Y === DuRND with only R "
Figure 3: Ablation study: the learning performance of DuRND with a single type of reward.
Freeway Frogger Solaris BeamRider DefendLine
" " " "
w0 " " w0
08 08 08 08
0o 06 06 06
o " » 0
02 0 02 02
00 00 oo
P . W W @ I R TR
SaveCenter CollectKit SlayGhosts ThreeRooms TMaze
" " " "
0 " " w0
08 08 o8 o
06 06 06 e
04 04
o
os . 0
0
02 00 00
R T e TR S " T A e "
3 . .
Steps X10 s nOVelty rewards RNV s contribution rewards w/o R <"

Figure 4: The novelty and contribution rewards learned in DuRND framework.

	Requirements
	Run DuRND Algorithm
	Plot Experimental Results

