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Abstract

We study the problem of regret minimization in Multi-Agent Multi-Armed Bandits
(MAMABs) where the rewards are defined through a factor graph. We derive an
instance-specific regret lower bound and characterize the minimal expected number
of times each global action should be explored. This bound and the corresponding
optimal exploration process are obtained by solving a combinatorial optimization
problem whose set of variables and constraints exponentially grow with the number
of agents, and cannot be exploited in the design of efficient algorithms. Inspired by
Mean Field approximation techniques used in graphical models, we provide simple
upper bounds of the regret lower bound. The corresponding optimization problems
have a reduced number of variables and constraints. By tuning the latter, we may
explore the trade-off between the achievable regret and the complexity of computing
the corresponding exploration process. We devise Efficient Sampling for MAMAB
(ESM), an algorithm whose regret asymptotically matches the approximated lower
bounds. The regret and computational complexity of ESM are assessed numerically,
using both synthetic and real-world experiments in radio communications networks.

1 Introduction

The stochastic Multi-Agent Multi-Armed Bandits (MAMABs) [35, 2, 3] is a combinatorial sequential
decision-making problem that generalizes the classical stochastic MAB problem by assuming that
(i) a global action is defined by actions individually selected by a set of agents, and (ii) the reward
function is defined through a factor graph, which defines inter-dependencies between agents. This
reward structure arises naturally in applications where agents interact in a graph with the need to
coordinate towards a common goal. MAMABs can model a wide range of real-world problems, from
wind farm control [2, 37] to radio communication networks parameters optimization (see Fig. 1).

Despite the wide spectrum of their potential applications, MAMABs are extremely hard to solve,
even when the reward function is known. The main challenge stems from the combinatorial structure
of the action set (there are KN possible global actions, where N is the number of agents and K is
the number of actions per agent). This issue is exacerbated in the learning setting where the reward
function has to be inferred. In this work, we study the regret minimization problem in MAMABs,
and more specifically, the trade-off between statistical efficiency (the learner aims at achieving low
regret), and computational efficiency (she will typically have to solve combinatorial optimization
problems over the set of possible global actions while learning).
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Contributions. We present statistically and computationally efficient algorithms for MAMABs.
Our algorithms enjoy (in the worst case) regret guarantees scaling as ρKd log(T ), where K is the
number of actions per agent, ρ and d are the number of factors and the maximal degree of the graph
defining the reward function. This scaling illustrates the gains one may achieve by exploiting the
factor graph structure: without leveraging it, the regret would scale as KN log(T ). Our algorithms
have controllable computational complexity and can be applied in large-scale MAMABs. More
precisely, our contributions are as follows.

1) Regret lower bound. We derive a regret lower bound satisfied by any algorithm. The bound is
defined through a convex program (the lower bound problem), whose solution provides an optimal
exploration strategy. Unfortunately, because of the factored reward structure, this optimization
problem contains an exponential number of variables and constraints, and is hard to use in practice.

2) Approximations of the lower bound problem. We devise approximations of the lower bound
problem by combining variable and constraint reduction techniques inspired by methods in the
probabilistic graphical model literature [39, 20]. To reduce the number of variables, we propose (i)
locally tree-like approximation, a tight relaxation for MAMAB instances described by acyclic factor
graphs, and (ii) Mean Field (MF) approximation for general graphs. The MF approximation yields
an upper bound of the regret lower bound, scaling as ρKd log(T ) (where T is the time horizon).

Both approximations yield lower bound problems with a polynomial number of variables and
exponential number of constraints (in N ). To reduce the number of constraints, we propose a
technique that leverages an ordering of them smallest gaps and a Factored Constraint Reduction (FCR)
method to represent the exponentially many constraints in a compact manner. The corresponding
optimization problems have a reduced number of variables and constraints. By tuning the latter,
we may explore the trade-off between the achievable regret and the complexity of computing the
corresponding exploration process.

3) The ESM algorithm. Based on this approximation, we devise Efficient Sampling for MAMABs
(ESM), an algorithm whose regret provably matches our approximated regret lower bound. The
algorithm trades off statistical and computational complexity by performing exploration as prescribed
by the solution of the approximated lower bound problem. We test the performance of ESM
numerically on both synthetic experiments and learn to coordinate the antenna tilts in a radio
communication network. In both sets of experiments, ESM can solve problems with a large number
of global actions in a statistical and computationally efficient manner.

2 Related Work

Our work belongs to the framework of structured regret minimization in MABs, which encompasses
a large variety of reward structures such as linear [21], unimodal [9], Lipschitz [11], etc. For general
structured bandits, [8] propose Optimal Sampling for Structured Bandits (OSSB), a statistically
optimal algorithm, i.e., matching the regret lower bound. The algorithm is computationally inefficient
when applied to the MAMABs combinatorial structure. Our algorithm is inspired by OSSB, but relies
on approximated lower bound problems to trade-off statistical and computational complexity.

A few studies investigate MAMABs with the same factored reward structure as ours [35, 2, 37]. These
works focus on devising algorithms with regret guarantees using methods based on, e.g., Upper Confi-
dence Bound (UCB) [35, 2] or Thompson Sampling (TS) [37]. For example, Stranders et al. [35] pro-
pose HEIST, an UCB-type algorithm whose asymptotic regret scales as O(KN∆max/∆min log(T )),
where ∆min and ∆max are the minimal and maximal gaps, respectively. The MAUCE algorithm from
Bargiacchi et al., [2] improves over [35] yielding asymptotic regret O(ρ2Kd∆2

max/∆
2
min log(T )).

Our worst approximation improves of a factor ∆max w.r.t. this bound, a quantity that typically scales
with ρKd (see App. M).

There is a large body of work [24, 10, 12, 13, 38] investigating regret minimization in the (linear)
combinatorial semi-bandit feedback setting. Although our model can be interpreted as a particular
instance of this setting (see App. E for details), the MAMAB combinatorial structure has never
been explicitly considered in this context. The closest related work is [12], in which the authors
study a regret lower bound problem with an exponentially large number of variables and constraints.
They leverage [12, Assumption 6] to compactly represent the lower bound optimization problem and
propose a gradient-based procedure to solve it in polynomial time. Unfortunately, for MAMABs, the

2



above-mentioned assumption only holds for rewards described by acyclic factor graphs (see App.
M). We propose computationally efficient approximations valid for any factor graph while retaining
statistical tightness in the case of acyclic factor graphs.

3 Problem Setting

We consider the generic MAMAB model with factored structure introduced in [2]. The model is
defined by the tuple ⟨S,A, r⟩, where:

1. S = [N ] ≜ {1, . . . , N} is a set of N agents;

2. A = ×i∈[N ]Ai is a set of global actions, which is the Cartesian product over i of the set Ai
of actions available to the agent i. We assume w.l.o.g. that |Ai| = K, for all i ∈ [N ], and
define A ≜ |A| = KN ;

3. r is the reward function mapping the global action to the collected reward.

Rewards and their factor-graph representation. We model the collected rewards. There are ρ
possibly overlapping groups of agents (Se)e∈[ρ], with Se ⊆ S and |Se| = Ne. The local reward
generated by group e depends on group actions ae ≜ (ai)i∈Se ∈ Ae ≜ ×i∈SeAi only. More
precisely, each time ae is selected, the collected local rewards are i.i.d. copies of a random variable
re(ae) ∼ N (θe(ae), 1/2). Rewards collected in various groups are independent. The global reward
for action a is then r(a) =

∑
e∈[ρ] re(ae), a random variable with expectation θ(a) =

∑
e∈[ρ] θe(ae).

The number of possible group actions in group e isAe ≜ |Ae| = KNe , and we define Ã ≜
∑
e∈[ρ]Ae.

The reward function can be represented using a factor graph [39]. Factor graphs are bipartite graphs
with two types of node: N action nodes, one for each agent, and ρ factor nodes, one for each group.
An edge between a factor re and an agent i exists if the action ai selected by the agent i is an
input of re: i ∈ Se. Fig. 1 shows an example of a factor graph modeling interference in a radio
communication network.

1

r2

3

r4

r1

r3

2
r5

4

1

r2

3

r4r1 r3

2 5

r5

4

5

Figure 1: Factor graph in a radio communication network. An agent (represented by a circle)
corresponds to a base-station (BS) whose transmissions cover a cell. The possible actions at a BS
may correspond to different transmission power levels and antenna tilts (the physical angle of the
antennas). The local rewards correspond to the throughput (in bit/s) achieved in a given cell, and
hence each cell is associated with a factor (represented by a square). The throughput in a given
cell depends on the action of the corresponding BS but also on those of neighboring BSs through
interference. In the factor graph, each BS or agent has hence an edge to factors or cells it interferes.

Sequential decision process. The decision maker sequentially selects global actions based on the
history of previous observations and receives a set of samples of the local rewards associated to
the various groups. Specifically, in each round t ≥ 1, the decision maker selects a global action
at = (at,1, . . . , at,N ) and observes the local rewards rt = (rt,1, . . . , rt,ρ) from each group. The
global action at+1 is selected based on the history of observationsHt = (as, rs)s∈[t]. This type of
interaction is known as semi-bandit feedback.

Regret minimization. The goal is to devise an algorithm π = (at)t≥1, i.e., a sequence of global
actions at ∈ A selected in each round t ≥ 1, that minimizes the regret up to time T ≥ 1, defined as

Rπ(T ) = E

[
T∑
t=1

θ(a⋆θ)− θ(at)
]
,
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where a⋆θ ∈ argmaxa∈A θ(a) denotes the best global action. Throughout the paper, we assume that
a⋆θ is unique and we use a⋆ and a⋆θ interchangeably. We define the gap of a sub-optimal global action
a by ∆(a) = θ(a⋆)− θ(a).

4 Regret Lower Bound

To derive instance-specific regret lower bounds, we restrict our attention to the class of uniformly good
algorithms: An algorithm π is uniformly good if for any θ, ∀α > 0, we have that Rπ(T ) = o(Tα).

Theorem 4.1. The regret of any uniformly good algorithm satisfies for any θ, lim inf
T→∞

Rπ(T )
log(T ) ≥ C⋆θ ,

where C⋆θ is the value of the following convex optimization problem

min
v∈RA≥0

∑
a∈A

va∆(a) s.t.
∑

e∈[ρ]:ae ̸=a⋆e

 ∑
b∈A\{a⋆θ}:be=ae

vb

−1

≤ ∆(a)2, ∀a ∈ A. (1)

The proof of this result leverages classical change-of-measure arguments [25] (see App. A.1 for
details). If v⋆ denotes the solution of the lower bound optimization problem, then for a ̸= a⋆θ ,
v⋆a log(T ) can be interpreted as the asymptotic expected number of times the sub-optimal action
a is explored under a uniformly good algorithm minimizing regret. We conclude this section by
reformulating (1) using group variables ṽ. Introduce the marginal cone:

Ṽ =

ṽ ∈ RÃ≥0 : ∃v ∈ RA≥0,∀e ∈ [ρ], ae ∈ Ae, ṽe,ae =
∑

b∈A\{a⋆θ}:be=ae

vb,

 .

The set Ṽ contains group variables ṽ = (ṽe)e∈[ρ] where ṽe = (ṽe,ae)ae∈Ae .
Lemma 4.2. For any θ, C⋆θ is the value of the following convex optimization problem

min
ṽ∈Ṽ

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (2)

Again, if the solution of (2) is ṽ⋆, then for any e ∈ [ρ] and ae ∈ Ae, ṽ⋆e,ae log(T ) can be interpreted as
the asymptotic expected number of times the group action ae is selected under an optimal algorithm
when it explores, i.e., when the global action a ̸= a⋆θ .

5 Lower Bound Approximations

As suggested above, if we are able to solve (1) and hence obtain v⋆, the latter specifies the optimal
exploration process. From there, we could devise an algorithm with minimal regret [8]. Unfortunately,
solving (1) is an extremely hard task, even for relatively small problems. Indeed, the problem has
KN variables and KN constraints, and using general-purpose solvers, e.g., based on the interior-
point method, would require poly(KN ) log(1/ε) floating-point operations [33]. To circumvent this
difficulty, we present approximations of the lower bound problem with a reduced number of variables
and constraints. We will then leverage these approximations to design efficient algorithms.

5.1 Variable reduction

To reduce the number of variables, we apply approximation techniques inspired by methods in
the probabilistic graphical model literature [39]. In Sec. 5.1.1, we first propose a locally tree-like
reduction, yielding an optimization problem whose value CL

θ exactly matches the true lower bound
C⋆θ for MAMABs with acyclic factor graphs (see App. J for a formal definition and examples). For
graphs containing cycles however, we have CL

θ < C⋆θ , and hence for those graphs, it is impossible
to devise an algorithm based on this reduction (such an algorithm would lead to a regret CL

θ log(T ),
which contradicts the lower bound).

Instead, for general graphs, we propose in Sec. 5.1.2 the ψ-mean-field reduction, an approximation
based on a local decomposition inspired by Mean Field (MF) methods [39]. The ψ-mean field
reduction leads to an optimization problem whose value CMF

θ provably upper bounds C⋆θ , and hence
that can be used to devise an algorithm with regret approaching CMF

θ log(T ).
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5.1.1 Locally tree-like reduction

This reduction imposes local consistency constraints between group variables ṽ and local variables
local variables w = (wi)i∈[N ], where wi = (wi,ai)ai∈Ai ∈ RK≥0. Define the local cone as:

ṼL =

{
ṽ ∈ RÃ : ∃w ∈ RKN≥0 : ∀e ∈ [ρ],∀i ∈ Se,∀ai ∈ Ai, wi,ai =

∑
be∈Ae:be∼ai

ṽbe

}
,

where the notation ae ∼ ai means that the ith element of ae equals ai. The locally tree-like
approximation, presented in the next lemma, is obtained by replacing Ṽ by ṼL in (2).
Lemma 5.1. For any θ with rewards described by an acyclic factor graph, we have that C⋆θ = CL

θ ,
where CL

θ is the value of the following convex optimization problem:

min
ṽ∈ṼL

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (3)

The proof is presented in App. A.2. This approximation reduces the number of variables from KN to
Ã+KN . The lemma states that, for acyclic factor graphs, the locally tree-like approximation (3) is
tight, i.e., CL

θ = C⋆θ . Unfortunately, for general graphs, we have that CL
θ < C⋆θ (a direct consequence

of [39, Prop. 4.1]), and hence it is impossible to devise algorithms based on this approximation.

5.1.2 ψ-Mean-Field reduction

Our ψ-MF reduction is loosely inspired by MF approximation methods in graphical models [39].
It consists in decomposing global variables v as a function ψ of the local variables w = (wi)i∈[N ].
Specifically, the ψ-MF reduction introduces the following set of constraints: va = ψa(w), ∀a ̸= a⋆θ ,
where ψa : RKN≥0 → R≥0. Let Vψ =

{
v ∈ RA≥0 : ∃w ∈ RKN≥0 , va = ψa(w),∀a ̸= a⋆θ

}
, and define

the ψ-MF marginal cone as

Ṽψ-MF =

ṽ ∈ RÃ≥0 : ∃v ∈ Vψ,∀e ∈ [ρ], ae ∈ Ae, ṽe,ae =
∑

b∈A\{a⋆θ}:be=ae

vb,

 .

We get the ψ-MF approximation, Cψ-MF
θ by replacing Ṽ by Ṽψ-MF in (2).

Lemma 5.2. For any θ, ψ, we have that C⋆θ ≤ Cψ-MF
θ , where Cψ-MF

θ is the value of the optimization
problem:

min
ṽ∈Ṽψ-MF

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (4)

Clearly, the tractability of the problem Cψ-MF
θ depends on the choice of ψ. A natural choice would

be ψa(w) =
∏
i∈[N ] wi,ai , as proposed, e.g., in approximate inference methods [39]. However, this

choice leads to a non-convex program (see App. B). The following lemma proposes a choice of ψ
which leads to a convex program over local variables w only.

Lemma 5.3. Let ψa(w) =
∑
i∈[N ] wi,ai , ∀a ̸= a⋆. Then Cψ-MF

θ is the value of the following convex
optimization problem:

min
w∈RKN≥0

∑
e∈[ρ],ae∈Ae

fe,ae(w)(θ(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

fe,ae(w)
−1 ≤ ∆(a)2, ∀a ∈ A, (5)

where fe,ae(w) = KN−|Se|
∑
i∈Se,ai∈Ai wi,ai +KN−|Se|−1

∑
i ̸∈Se wi,ai . Furthermore, it holds

that Cψ-MF
θ ≤ ρ∆−2

min

∑
e∈[ρ],ae∈Ae(θ(a

⋆
e)− θe(ae)), where ∆min = mina ̸=a⋆ ∆(a).

The proof is presented in App. A.3. The lemma provides a worst-case scaling of Cψ-MF
θ : it scales

at most as Ã =
∑
e∈[ρ]K

|Se| (remember that if we were considering a MAMAB as a standard
bandit problem, the latter would have KN arm and hence a regret scaling exponentially in N ).
The number of variables involved in (5) is KN . The quantities (fe,ae(w))e∈[ρ],ae∈Ae are group
quantities interpreted as the group variables ṽe,ae , and uniquely determined by local variables w. In
the following, we use the notation CMF

θ to represent Cψ-MF
θ for the function ψ defined in Lemma 5.3.
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5.2 Constraint reduction

The remaining challenge is to reduce the number of constraints in (3), (4) or (5). For each global
action a, the constraint writes

∑
e∈[ρ] ṽ

−1
e,ae ≤ ∆(a)2. The major issue is the non-linearity of the

function appearing in the constraints w.r.t. group actions ae. Upon inspection, it appears that the
heterogeneity in the gaps (generally ∆(a) ̸= ∆(b) for a ̸= b) is causing the non-linearity. To
address this problem, we present, in the following lemma, a family of approximations leveraging an
ordering of the first m smallest gaps. For m ∈ [KN ], let a(m) be the mth best global action and, for
m ∈ [KN − 1], let ∆m = θ(a⋆θ)− θ(a(m+1)) be the mth minimal non-zero gap (with ties breaking
arbitrarily).

Lemma 5.4. Let m ∈ [KN − 1], and ⋄ ∈ {L,MF}. Let C⋄
θ (m) be the value of the convex program:

min
ṽ∈Ṽ⋄

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) (6)

s.t.
∑

e∈[ρ]:a
(j+1)
e ̸=a⋆e

ṽ−1

e,a
(j+1)
e

≤ ∆2
j , ∀j ∈ [m] (7)

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

m, ∀a ∈ A \ ∪j∈[m]{a(j+1)}. (8)

Then, for any ⋄ ∈ {L,MF}, m ∈ [KN − 2], we have C⋄
θ (m+ 1) ≤ C⋄

θ (m), C⋆θ ≤ C⋄
θ (m), and by

definition C⋄
θ (K

N − 1) = C⋄
θ .

The proof is reported in App. F. Clearly, C⋄
θ (m) has still |A| constraints (7)-(8). However, as the

gap ∆m used in (8) is constant, these constraints are now a linear sum of terms depending on group
actions ae. For constraints with this type of structure, there exists an efficient and provably equivalent
representation. The procedure yielding this representation, which we refer to as FCR, is based on
a generalization of the popular Factored LP algorithm described in [19, 20] for Factored Markov
Decision Processes (FMDPs).

For the sake of brevity, we briefly describe the procedure below and postpone its detailed exposition
to App. G. FCR is inspired by the Variable Elimination (VE) procedure in graphical models [14].
It iteratively eliminates constraints from (8), according to an elimination order O. The elimination
procedure induces an elimination graph, which encodes dependencies between constraints as we
perform elimination. As shown in the following lemma, the number of constraints is exponential in
the degree AO of the elimination graph induced by the order of elimination O.

Lemma 5.5. There exists a procedure which, given the constraints in (8) returns a provably equivalent
constraint set of size O(NKAO+1).

Although for general graphs finding an ordering O minimizing AO is an NP-hard problem [14], for
specific graphs there are orderings yielding AO ≪ N . For example, these orderings yield AO = 2
for line or star factor graphs, and AO = 3 for ring factor graphs, independently of the number of
agents N (see Fig. 3 and refer to App. J for details). Solving C⋄

θ (m), requires computing the first
m+ 1 best global actions and the m minimal gaps. To solve this task, the elim-m-opt algorithm [15]
has complexity O((m + 1)NKAO+1) (see App. G). Fig. 2 shows an illustration of the trade-off
between statistical and computational complexity. Note that ESM is meant to be applied when m
does not grow exponentially in N . In practice, we observed that selecting m = Ã yields a good
trade-off between statistical complexity and computational complexity.

6 The ESM algorithm

In this section, we present ESM, an algorithm whose regret matches (asymptotically) our approx-
imated lower bounds. The algorithm is inspired by OSSB [8]. It ensures that sub-optimal actions
are sampled as prescribed by the solution of the approximated optimization problems CMF

θ (m) or
CL
θ (m): each group e must explore each group action ae for ṽe,ae log(T ) times, and selecting the

action yielding the largest estimated reward for the remaining rounds. As the lower bounds depend
on the unknown parameter θ, it has to be estimated.
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Computational complexity

St
at

ist
ic

al
co

m
pl

ex
ity

Figure 2: Left: idealized curve illustrating possible ranges of the trade-off between statistical and
computational complexity for CMF(m), when varying m. Right: an instance of this trade-off for a
line factor graph (darker colors for the points represent higher running times). Selecting m = Ã
yields a good trade-off between computational and statistical complexity for this instance.

Generally, the estimation of θ would require evaluating an exponentially large number of com-
ponents, i.e., θ(a),∀a ∈ A. Instead, by leveraging the factored reward structure, we can sim-
ply focus on estimating group parameters (θe)e∈[ρ]. We define the estimate at time t, group e,
and action ae as θ̂t,e,ae = 1

Nt,e,ae

∑
s∈[t]:as,e=ae

rs,e where Nt,e,ae =
∑
s∈[t] 1{as,e=ae} is the

number of times action ae is selected for group e. We also define θ̂t = (θ̂t,e,ae)e∈[ρ],ae∈Ae , and
Nt = (Nt,e,ae)e∈[ρ],ae∈Ae .

Algorithm 1 ESM(A0, ε, γ, ⋄, m)

Sample each group actions inA0 once and update (NT0
, θ̂T0

); sT0
= 0 ————- ▷ Initialization

for t = T0, . . . , T do(
(ṽt,e)e∈[ρ]

)
← Solve C⋄

θ̂t
(m)

if Nt,e,ae ≥ (1 + γ)ṽt,e,ae log(t), ∀e ∈ [ρ], ae ∈ Ae then ▷ Exploitation
at = a⋆

θ̂t
st = st−1

else
st = st−1 + 1
if mine∈[ρ],ae∈Ae Nt,e,ae ≤ εst then ▷ Estimation

at ∈ A0 : at,e′ = be′ with (e′, be′) ∈ argmine,ae Nt,e,ae
else ▷ Exploration

at ∈ A : at,e′ = be′ with (e′, be′) ∈ argmine,ae
Nt,e,ae
ṽt,e,ae

Update (Nt,e,at,e , θ̂t,e,at,e)e∈[ρ]

The pseudocode of ESM is presented in Alg. 1. It takes as inputs two exploration parameters
ε, γ > 0, an exploration setA0 ⊂ A, the approximation parameter m ∈ [KN − 1], and ⋄ ∈ {MF,L}
depending on the targeted regret lower bound approximation. The parameters ε, γ > 0 impact the
amount of exploration performed by ESM. When decreasing both these parameters the exploration of
ESM also decreases. After an initialization phase, the algorithm alternates between three additional
phases as described below.

Initialization. In the initialization phase, we select actions fromA0 to ensure that each group action is
sampled at least once. The setA0 ⊆ A is chosen in such a way that it covers all possible group actions,
i.e.,A0 is such that ∀e ∈ [ρ],∀ae ∈ Ae,∃b ∈ A0 : be = ae. In App. I, we present an efficient routine
to selectA0. Let T0 = inf {t ≥ 0 : Nt,e,ae > 0,∀e ∈ [ρ], ae ∈ Ae} be the length of the initialization
phase. For t ≤ T0 we select at ∈ A0 : at,e′ = be′ with (e′, be′) ∈ argmine,ae Nt,e,ae (with ties
breaking arbitrarily), i.e., we select a global action containing the most under-explored group action.
This choice ensures that T0 ≤ Ã. For t > T0, the algorithm solves the approximated lower bound
optimization problem C⋄

θ̂t
(m) and alternates between exploitation, exploration, and estimation.
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Exploitation. If Nt,e,ae ≥ (1 + γ)ṽt,e,ae log(t), ESM enters the exploitation phase: it selects the
best empirical action a⋆

θ̂t
= argmaxa∈A

∑
e∈[ρ] θ̂t,e,ae . Generally, computing a⋆

θ̂t
requires a max

operation over an exponential number of actions a ∈ A. Fortunately, due to the factored structure,
we can implement the max operation efficiently through a VE procedure [39] (see App. G).

Estimation. If not enough information has been gathered, ESM enters an estimation phase, where
it selects the least explored group action similarly to the initialization phase. This ensures that the
certainty equivalence holds, i.e., that θ̂t is estimated accurately.

Exploration. Otherwise, the algorithm enters the exploration phase and selects actions as suggested
by the solution of C⋄

θ̂t
(m). More precisely, we select a global action at ∈ A which contains a group

action at,e′ = be′ that minimizes the following ratio where e′ and be′ are the group index and group
action which minimize Nt,e,ae

ṽt,e,ae
.

Upper bound. We establish that the ESM algorithm achieves a regret, matching the approximate
lower bound C⋄

θ (m) log(T ), asymptotically as T →∞. The proof is given in App. D.

Theorem 6.1. Let ε < 1/|A0|. For any m ∈ [KN − 1], we have that

1. lim supT→∞
Rπ(T )
log(T ) ≤ CMF

θ (m)ξ(ε, γ), for π = ESM(A0, ε, γ,MF,m), for any θ,

2. lim supT→∞
Rπ(T )
log(T ) ≤ CL

θ (m)ξ(ε, γ), for π = ESM(A0, ε, γ,L,m), for any θ described
by acyclic factor graphs,

where ξ is a function such that lim(ε,γ)→(0,0) ξ(ε, γ) = 1.

7 Experiments

In this section, we present numerical experiments to assess the performance of our algorithm. We
propose two sets of experiments: (i) a set of synthetic MAMABs with different graph topologies,
and (ii) an industrial use-case from the radio communication domain: antenna tilt optimization. The
code for the synthetic experiments and the additional experiments presented in App. K is available at
this link.

7.1 Synthetic Experiments

Problem instances. We consider the factor graphs depicted in Fig. 3. The expected rewards are
selected uniformly at random in the interval [0, 10]. In our experiments, select N = 5 and K = 3.
We execute our experiments for Nsim = 5 independent runs. Following previous work [8], we select
γ = 0, and ε = 0.01. The elimination order is chosen as O = [N ]. We implement the solver for the
lower bound optimization problems using CVXPY [17] with a MOSEK solver [1].

Figure 3: Factor graphs used in the synthetic experiments: ring (left), line (center), star (right).

Results. The results for the regret (in log scale) are presented in Fig. 4. The performance of ESM is
compared to that of MAUCE [3], HEIST [35], and to a random strategy selecting actions uniformly
at random. The computational complexity results, reported in Fig. 5, measure the running time (in
sec.) to solve an instance of the approximate lower bound optimization problem C⋄

θ (m). We use
m = Ã, and ⋄ = MF for the ring, or ⋄ = L for the star and line graph topologies.
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Figure 4: Regret results for the synthetic instances.
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Figure 5: Running time (in sec.) to solve an instance of Cθ⋄(m), when varying m.

7.2 Antenna tilt optimization

Next, we test our algorithm on a radio network optimization task. The goal is to control the vertical
antenna tilt at different network Base Stations to optimize the network throughput. In the following,
we detail the network model, our simulation setup, and present our experimental results.

Network model. We consider a sectorized radio network consisting of a set of sectors S = [N ].
The set of sectors corresponds to the set of agents in our MAMAB framework. Since each sector is
associated to a unique antenna, we will use the terms sector and antenna interchangeably. We assume
that each sector i ∈ S serves (on the downlink) a fixed set of Users Equipments (UEs) Ui (each UE is
associated with a unique antenna, that from which it receives the strongest signal).

Factor graph. We model the observed reward in the radio network as a factor graph with N = |S|
agent nodes and ρ = |S| factor nodes. Each sector is associated with a unique factor, which models
the rewards observed in that sector. We build the factor graph based on the interference pattern of
the antennas, i.e., antennas that can interfere with each other are connected to common factors. An
example of such a graph and additional experimental details are reported in App. L.

Actions and rewards. The action at,i represents the antenna tilt for sector i ∈ S and at time
t. It is chosen from a discrete set of K tilts, i.e., at,i ∈ {α1, . . . , αK}. The tilt for a group of
sectors e is denoted by ae. Rewards are based on the throughput of UEs in sector i, which depends
on the actions of a group of agents ae: re(ae) =

∑
u∈Ui Ti,u(ae), where Ti,u is the throughput

of an UE u associated to sector i. Hence, the global reward for a tilt configuration a ∈ A is
r(a) =

∑
i∈[N ]

∑
u∈Ui Ti,u(ae). The throughput Ti,u depends on channel conditions (or fading)

between the antenna and the user. These conditions rapidly evolve over time around their mean.

Simulator. We run our experiments in a proprietary mobile network simulator in an urban environ-
ment. The simulation parameters used in our experiments are reported in App. K. Based on the user
positions and network parameters, the simulator computes the path loss in the network environment
using a BEZT propagation model [32] and returns the throughput for each sector by conducting user
association and resource allocation in a full-buffer traffic demand scenario.

Results. We test our algorithm for Ai = {2◦, 7◦, 13◦}, and for |S| = 6 sectors. As the factor graph
contains cycles, we use ⋄ = MF and select m = 3. The results, presented in Fig. 6, are in line with
the experimental findings of the previous section. However, the ESM running time is higher due to
the higher complexity of the factor graph.
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Figure 6: Results for the antenna tilt optimization experiments.

8 Conclusions

In this paper, we investigated the problem of regret minimization in MAMABs: we derived a regret
lower bound, proposed approximations of it, and devised ESM, an algorithm trading off statistical
and computational efficiency. We then assessed the performance of ESM on both synthetic examples
and the antenna tilt optimization problem. Interesting future research directions include proposing
efficient distributed implementations of ESM, quantifying on its communication complexity, and
investigating representation learning problems in MAMABs where the underlying factor graph
defining the reward is unknown and needs to be learned.
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A Lower bound proofs

In this section, we present proofs for the regret lower bound (Th. 4.1) and for the lower bound
variable reduction results (Lemma 5.1, Lemma 5.2, Lemma 5.3). The lower bound proof, presented in
App. A.5, is a direct consequence of an analogous bound in the combinatorial semi-bandit feedback
setting, first given in [10, Th. 1] and leverages general techniques for controlled Markov chains [18].
The approximations leverage methods for approximate inference in probabilistic graphical models
[39, 27]. In addition, we presenting an alternative characterization of the lower bound in App. A.5.

A.1 Proof of Theorem 4.1

Proof. Let Θ = {θ ∈ RA : ∃(θe(ae))e∈[ρ],ae∈A,∀a ∈ A, θ(a) =
∑
e∈[ρ] θe(ae), a

⋆
θ is unique}.

As shown in App. E, the MAMAB problem is a particular case of combinatorial linear bandits
with semi-bandit feedback. By interpreting the MAMAB problem in this setting, and using the
Gaussian reward assumption, the result from [10, Th. 1] implies that C⋆θ is the value of the following
semi-infinite optimization problem:

min
v∈RA≥0

,ṽ∈Ṽ

∑
a∈A

va∆(a) (9)

subject to inf
λ∈B(θ)

∑
e∈[ρ]

∑
ae∈Ae

ṽe,ae(θe(ae)− λe(ae))2
 ≥ 1, (10)

where ṽe,ae =
∑
b∈A:ae=be

vb, and the set of confusing parameters is defined as (here we use a⋆ = a⋆θ
for conciseness)

B(θ) =

λ ∈ Θ : λe(a
⋆
e) = θe(a

⋆
e),∀e ∈ [ρ] and ∃a ̸= a⋆ :

∑
e∈[ρ]

λe(ae)− λe(a⋆e) > 0

 ,

Let us introduce for κ > 0, the set

Bκ(θ) =

λ ∈ Θ : λe(a
⋆
e) = θe(a

⋆
e),∀e ∈ [ρ] and ∃a ̸= a⋆ :

∑
e∈[ρ]

λe(ae)− λe(a⋆e) ≥ κ

 .

The set Bκ can be decomposed as

B(θ) =
⋃
κ>0

⋃
a ̸=a⋆θ

λ ∈ B(θ) :
∑
e∈[ρ]

λe(ae)− θe(a⋆e) ≥ κ

︸ ︷︷ ︸
≜Bκ,a(θ)

, (11)

and we have that The LHS of the optimization problem defining the constraints in (10) can be
rewritten as

inf
λ∈Bκ(θ)

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(ae)−λe(ae))2 = min
κ>0

min
a̸=a⋆

inf
λ∈Bκ,a(θ)

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(ae)−λe(ae))2.

Now, the optimization problem infλ∈Bκ,a(θ)
∑
e∈[ρ],ae∈Ae ṽe,ae(θe(ae) − λe(ae))2 is convex and

satisfies Slater’s conditions [4]. By solving the KKT system, and letting κ→ 0, it is possible to verify
that:

inf
λ∈Bκ,a(θ)

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(ae)− λe(ae))2 −→
κ→0

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
.

The result follows directly by substituting the solution into the constraint on the LHS of 10, and by
noting that the objective (9) can be rewritten, ∀ṽ ∈ Ṽ , as∑

a∈A
va∆(a) =

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)).
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A.2 Proof of Lemma 5.1

Proof. The proof is a consequence of a fundamental result in probabilistic graphical models. More
precisely, it stems from the equivalence between the so-called marginal polytope and local polytope
described in [39, Prop. 4.1], for tree-structured factor graphs, described in the following paragraph.

Let Λ =
{
λ ∈ [0, 1]|A| :

∑
a∈A λa = 1

}
be the |A| − 1-dimensional simplex. Define the marginal

polytope as

Λ̃ =

{
λ̃ ∈ RÃ≥0 : ∃λ ∈ Λ : ∀e ∈ [ρ], ae ∈ Ae, λ̃e,ae =

∑
b∈A:be=ae

λb

}
, (12)

and the local polytope is

Λ̃L =

{
λ̃ ∈ RÃ≥0 : ∃l ∈ [0, 1]KN ,∀e ∈ [ρ], i ∈ Se,∀ai ∈ Ai, li,ai =

∑
be∈Ae:be∼ai

λ̃e,be

}
.

The following lemma states that the marginal polytope is an outer approximation of the local polytope,
and that for acyclic factor graphs (see App. J for a formal definition), these two sets are equivalent.

Lemma A.1 (Prop. 4.1, [39]). The inclusion Λ̃ ⊆ Λ̃L holds for any factor graph. Additionally, for
acyclic factor graphs, we have that Λ̃ = Λ̃L.

The sets Λ̃ and Λ̃L are essentially equivalent to the marginal cone Ṽ and local cone ṼL, respectively,
when including the additional unitary constraint which enforces that the sum of the variables involved
in the sets is 1. Lemma A.1, automatically implies that V = VL, for MAMABs whose underlying
factor graph is acyclic, and hence C⋆θ = CL

θ holds. Instead, for MAMABs with generic factor graphs
Lem A.1 implies that Ṽ ⊆ ṼL and hence:ṽ ∈ Ṽ :

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
≤ 1,∀a ̸= a⋆

 ⊆
ṽ ∈ ṼL :

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
≤ 1,∀a ̸= a⋆

 .

Hence, the bound CLθ ≤ C⋆θ follows by noting that for a function f and a pair of sets (X ,X ′) such
that X ⊆ X ′, we have that minx∈X ′ f(x) ≤ minx∈X f(x) (see e.g. [4]).

A.3 Proof of Lemma 5.2

Proof. Let ψ be any function. Recall the definitions of

Vψ =
{
v ∈ RA≥0 : ∃w ∈ RKN≥0 , va = ψa(w),∀a ̸= a⋆θ

}
.

The ψ-MF cone is then defined as:

Ṽψ-MF =

ṽ ∈ RÃ≥0 : ∃v ∈ Vψ,∀e ∈ [ρ], ae ∈ Ae, ṽe,ae =
∑

b∈A\{a⋆θ}:be=ae

vb,

 .

It is immediate to check that for any ψ, we have that Ṽψ-MF ⊆ Ṽ , and henceṽ ∈ Ṽψ-MF :

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
≤ 1,∀a ̸= a⋆

 ⊆
ṽ ∈ Ṽ :

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
≤ 1,∀a ̸= a⋆

 .

By a similar argument to Lemma 5.1 we conclude that C⋆θ ≤ Cψ-MF
θ .

15



A.4 Proof of Lemma 5.3

Proof. We first show that CMF
θ = Cψ-MF

θ can be written in terms of w only for the choice of ψ such
that ψa(w) =

∑
i∈[N ] wi,ai ,∀a ∈ A. Let us denote Ṽψ-MF = ṼMF. By definition, we can check that

any ṽ ∈ ṼMF satisfies

ṽe,ae =
∑

b∈A:be=ae

wb =
∑

b∈A:be=ae

∑
i∈[N ]

wi,bi = KN−|Se|
∑
i∈Se

wi,ai +KN−|Se|−1
∑

i ̸∈Se,ai∈Ai

wi,ai .

(13)

As ṽ can be uniquely written in terms of local variables (wi)i∈[N ], by substituting (13) it into (5),
note that the resulting optimization problem involves only local variables.

Next, we show that, for any θ and ψ, Cψ-MF
θ ≤ ρ∆−2

min

∑
e∈[ρ],ae∈Ae(θe(a

⋆
e)− θe(ae)). The bound is

obtained by adapting [12, Lemma 9], [10, Corollary 1]. First, note that ṽ ∈ Ṽ such that ṽe,ae =
ρ

∆2
min

,
∀e ∈ [ρ], ae ∈ Ae is a feasible solution to (1), as for this ṽ, it holds that∑

e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae =

∆2
min

ρ

∑
e∈[ρ]

1{ae ̸=a⋆e} ≤ ∆2
min ≤ ∆(a)2.

Hence, by substitution into the objective of (5), we get the result:∑
e∈[ρ],ae∈Ae

ṽae(θe(a
⋆
e)− θe(ae)) ≤

ρ
∑
e∈[ρ],ae∈Ae(θe(a

⋆
e)− θe(ae))

∆2
min

.

A.5 Reformulation of the lower bound

The following lemma provides an alternative characterization of the lower bound (1) in terms of a
min-max optimization problem with variables over the marginal polytope Λ̃ introduced in App. A.2.
The reformulation is similar to the analogous one in the plain-bandit literature [23].
Lemma A.2. For any θ, C⋆θ is the value of the following convex optimization problem

C⋆θ = inf
λ̃∈Λ̃

max
a ̸=a⋆θ

∑
e∈[ρ]:ae ̸=a⋆e

λ̃−1
e,ae

∆(a)2

∑
e∈[ρ],ae∈Ae

λ̃e,ae(θe(a
⋆
e)− θe(ae)). (14)

Proof. The proof follows similar steps to [23, Thm. 1.8], which proves the result in the plain bandit
setting. Define the set of feasible solutions for the lower bound problem (1) as:

F(θ) =
{
ṽ ∈ Ṽ :

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae

∆(a)2
≤ 1,∀a ̸= a⋆

}
,

Note that, if λ̃ ∈ Λ̃, any ṽ such that ∀a ̸= a⋆θ , ṽe,ae =
∑
e∈[ρ]:be ̸=a⋆e

λ̃−1
e,be

λ̃e,ae∆(a)2
, is such that ṽ ∈ F(θ). This,

in turn, implies that

(14) = inf
λ̃∈Λ̃

max
a ̸=a⋆θ

∑
e∈[ρ],ae∈Ae λ̃e,ae(θe(a

⋆
e)− θe(ae))∑

e∈[ρ]:be ̸=a⋆e
λ̃−1
e,be

∆(a)2

≥ inf
ṽ∈F(θ)

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)−θe(ae)).

On the other hand, we have that if ṽ ∈ F(θ), any λ̃, such that for all a ̸= a⋆θ

λ̃e,ae =
ṽe,ae∑

e∈[ρ]:be ̸=a⋆e
ṽe,ae

is such that ṽ ∈ V , which in turn, yields

inf
ṽ∈F(θ)

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) ≥ inf

ṽ∈F(θ)

∑
e∈[ρ],be∈Ae λ̃e,ae(θe(a

⋆
e)− θe(ae))∑

e∈[ρ]:ae ̸=a⋆e
λ̃−1
e,be

∆(a)2

= (14)
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B Non-convexity of the classical mean-field approximation

In this appendix, we establish that leveraging a classical mean-field approximation for Cψ-MF
θ

leads to a non-convex program. The conventional MF approximation [39] consists in selecting
ψ(w) =

∏
i∈[N ] wi,ai , for all a ̸= a⋆. This choice results in a Signomial Program (SP) for Cψ-MF

θ , a
specific type of non-convex optimization problem that is hard to solve efficiently [5]. We summarize
this fact in the following lemma.

Lemma B.1. Let ψ(w) =
∏
i∈[N ] wi,ai ,∀a ̸= a⋆. ThenCψ-MF

θ is the value of the following signomial
program:

min
w∈RKN≥0

∑
e∈[ρ],ae∈Ae

ζe,ae(w)(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ζ−1
e,ae(w) ≤ ∆(a)2,∀a ∈ A, (15)

where ζe,ae(w) =
∏
i∈Se wi,ai

∏
j ̸∈Se

(∑
aj∈Aj wj,aj

)
,∀e ∈ [ρ], ae ∈ Ae.

Proof. Recall that, an SP in standard form (for variables x ∈ RI>0) is described as [5, Sec. 9]:

infx f(x)
s.t. gi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p
(16)

where f , (gi)i∈[m] and (hi)i∈[p] are signomials. Recall that for x ∈ RI>0, a signomial F is a function
of the type F (x) =

∑
j∈[J] ξj

∏
i∈[I] x

βi,j
i , for some β ∈ RI×J and ξ ∈ RJ .

Now, we will show that (16) can be described as an SP in standard form in terms of local variables
w ∈ RKN>0 . By definition any ṽ ∈ Ṽψ-MF can be written as:

ṽe,ae =
∑

b∈A:be=ae

wb =
∑

b∈A:be=ae

∏
i∈[N ]

wi,bi =
∏
i∈Se

wi,bi
∏
j ̸∈Se

 ∑
aj∈Aj

wj,aj

 = ζe,ae(w) (17)

The RHS of (17) is clearly a posynomial, in the local variables w ∈ RKN>0 . Also, as each ṽe,ae is
uniquely determined by w, we denote (17) by ζe,ae(w), and define ζ(w) = (ζe,ae(w))e∈[ρ],ae∈Ae .
Now, the objective of (15) is naturally a signomial in w (note that θe(a⋆e)− θe(ae) can be negative),
as signomials are closed under addition and multiplication. The inequality constraints (15) can be
written also in terms of ζ(w) and yields a posynomial in w.

Remark B.2 (Impossibility of reduction to GP). SPs are a generalization of GPs which are much
harder to solve. Indeed GPs can be transformed into convex optimization programs, while only local
solutions can be found efficiently for SPs [5]. Boyd et al. [5, Sec. 9.1] presents a set of conditions
under which this transformation is possible. Specifically, the SP is first transformed into a Geometric
Program (GP) through a set of relaxations and change of variables, which in turn is equivalent to a
convex optimization problem. Unfortunately, for (15), it is easy to check that these conditions do not
hold when selecting ψ(w) =

∏
i∈[N ] wi,ai in the ψ-MF approximation, which is a natural choice in

approximate inference methods [39]a.
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C Technical lemmas

In this appendix, we state a set of technical lemmas useful to prove the regret upper bound. Specifically,
in Lemma C.1, we state and adaptation of a concentration result first proposed in Lipschitz bandits
[28] (Theorem 2) and then repurposed for combinatorial bandits in [10] (Lemma 1) and for general
structured bandits in [8].
Lemma C.1. There exists a constant M(γ, ρ) > 0 depending only on ρ and γ such that, for any θ,
and for all t ≥ 2 satisfies

∞∑
t=1

P

 ∑
e∈[ρ],ae∈Ae

Nt,e,aekl(θ̂t,e,ae , θe(ae)) ≥ (1 + γ) log(t)

 ≤M(γ, ρ),

where kl(a, b) denotes the kl divergence between two Gaussian distributions with means a and b.

Next, in Lemma C.2 we present a result that allows to bound the size of a set of rounds in which
a group action ae is selected and a group parameter θe(ae) is not estimated accurately. It was first
proposed for unimodal bandits [9] but is a result holding for general structured bandit problems [8].
Lemma C.2. Let a ∈ A and ε > 0. Let Ft be the σ-algebra generated by (rs,a)s∈[t]. Let T ⊂ N be
a random set of rounds. Assume that there exists a sequence of (random) sets (T (s))s≥1 such that
(i) T ⊂ ∪s∈[t]T (s), (ii) for all s ≥ 1 and t ∈ T (s), Nt,e,ae ≥ εs, ∀e ∈ [ρ] (iii) |T (s)| ≤ 1, and (iv)
the event t ∈ T (s) is Ft-measurable. Then, for all δ > 0,

∞∑
t=1

P

t ∈ T ,
∣∣∣∣∣∣
∑
e∈[ρ]

θ̂t,e,ae − θe(ae)

∣∣∣∣∣∣ > δ

 ≤ 1

εδ2
.

Finally, in Lemma C.3, we report a result on the continuity of the functions related to the lower bound
optimization problems and approximations. The result was first derived for the general structured
bandit problem [8] and holds for MAMABs. Define ṽ⋄(m, θ), the variables attaining C⋄

θ (m) for any
θ and m ∈ [KN − 1].

In order to simplify the proofs, and w.l.o.g., in the following we shall assume that ṽ⋄(m, θ) is unique,
i.e., the problem (1) admits a unique solution. Note that if this was not the case, one may reason
in terms of the objective function as in [22] for linear bandits. Furthermore, to simplify notations,
we will omit the dependency of m from ṽ⋄(m, θ) and C⋄

θ (m), implying that the result holds for any
m ∈ [KN − 1].
Lemma C.3. Let ⋄ = {L,MF}. The optimal value of (1), θ → C⋄

θ is continuous. If C⋄
θ admits a

unique solution, ṽ⋄(θ) = (ṽ⋄e,ae(θ))e∈[ρ],ae∈Ae at θ, then θ → ṽ⋄(θ) is continuous at θ.

D Regret upper bound

The proof for the regret upper bound consists in bounding the number of times a sub-optimal global
action a ̸= a⋆θ is selected in the various phases of the algorithm. It is similar to the corresponding
upper bound proof for OSSB [10, Th. 1]. The main difference is that the exploitation condition is
based on group variables ṽ⋄ ∈ Ṽ⋄, instead of global variables v ∈ RA≥0.

For a parameter θ, and ⋄ ∈ {L,MF} let ṽ⋄(θ) = (ṽ⋄e,ae)e∈[ρ],ae∈Ae be the group variable vector
solution of C⋄

θ . We also denote by ṽ⋄t = (ṽ⋄t,e,ae)e∈[ρ],ae∈Ae the group variable vector solution of C⋄
θ̂t

.

Define ψ⋄(θ) = Ã∥ṽ⋄(θ)∥∞
∑
e∈[ρ],ae∈Ae(θe(a

⋆
e)− θe(ae)). In this section, we use the following

definition for the∞ norm for the parameter θ: ∥θ∥∞ = maxe∈[ρ],ae∈Ae |θe(ae)|. Let (κ, δ(κ)) be
such that, for all λ ∈ Θ verifying ∥θ − λ∥∞ ≤ δ(κ), the following holds:

C⋄
λ ≤ (1 + κ)C⋄

θ ,

ψ⋄(λ) ≤ 2ψ⋄(θ),

a⋆θ = a⋆λ.

By Lemma C.3 such δ(κ) exist.
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For any θ and χ > 0, define

Γ(θ, χ) = {λ ∈ Θ : |θ(a⋆θ)− θ(a⋆λ)| ≤ χ, a⋆θ ̸= a⋆λ}. (18)

To prove the upper bound, we further need to state the following assumption:

Assumption D.1. For any θ, ∃χ(θ) > 0 s.t. if λ ∈ Γ(θ, χ(θ)), there exists a parameter π ∈ B(λ),
∀e ∈ [ρ], ∀ae ∈ Ae such that

kl
(
θe(ae), λe(ae)

)
≥ kl

(
πe(ae), λe(ae)

)
− 1

2M⋄Ã
,

where M⋄ is an upper bound of supθ∈Θ ∥ṽ⋄(θ)∥∞.

Exploitation. In this phase, ESM selects the best estimated global action at = a⋆
θ̂t

. Let a ̸= a⋆θ be a
sub-optimal action, and define the event:

Ea(t) =
{
at = a⋆

θ̂t
= a,Nt,e,aekl

(
θ̂t,e,ae , θe(ae)

)
≥ (1 + γ) log(t),∀e ∈ [ρ], ae ∈ Ae

}
.

Let χ > 0 be a constant satisfying Assumption D.1. We decompose this event as

Ea,1(t) = Ea(t) ∩


∣∣∣∣∣∣
∑
e∈[ρ]

θe(ae)− θ̂t,e,ae

∣∣∣∣∣∣ > χ

 ,

Ea,2(t) = Ea(t) ∩


∣∣∣∣∣∣
∑
e∈[ρ]

θe(ae)− θ̂t,e,ae

∣∣∣∣∣∣ ≤ χ
 .

Applying Lemma C.2, we have that

∞∑
t=1

P(Ea,1(t)) ≤
1

χ2
. (19)

Now, assume that Ea,2(t) holds. We can write:∑
e∈[ρ],ae∈Ae

Nt,e,aekl
(
θ̂t,e,ae , θe(ae)

)
(i)

≥(1 + γ) log(t)
∑

e∈[ρ],ae∈Ae

ṽ⋄t,e,aekl
(
θ̂t,e,ae , θe(ae)

)
(ii)

≥ (1 + γ)log(t)
∑

e∈[ρ],ae∈Ae

ṽ⋄t,e,ae

(
kl
(
θ̂t,e,ae , πe(ae)

)
− 1

2M⋄Ã

)
(iii)

≥ (1 + γ)log(t)

1−
∑

e∈[ρ],ae∈Ae

ṽ⋄t,e,ae
1

2M⋄Ã


≥(1 + γ)

log(t)

2
,

where (i) holds as we are in the exploitation phase, and hence the condition Nt,e,ae ≥ ṽ⋄t,e,ae(1 +
γ) log(t), holds for all e ∈ [ρ], ae ∈ Ae; (ii) follows from Assumption D.1 which states that there
exists a parameter π ∈ B(θ̂t) such that kl

(
θe(ae), λe(ae)

)
≥ kl

(
πe(ae), λe(ae)

)
− 1

2M⋄Ã
; (iii)

follows as π ∈ B(θ̂t).

We have hence shown that

Ea,2(t) ⊂
{∑
e,ae

Nt,e,aekl
(
θ̂t,e,ae , θe(ae) ≥ (1 + γ)

log(t)

2

}
.
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From Lemma C.1, we have that:
∞∑
t=1

P(Ea,2(t)) ≤ G(γ, ρ). (20)

Let E(t) = ∪a ̸=a⋆Ea(t). Then, combining (19), (20), we conclude that

∞∑
t=1

P(E(t)) ≤ |A|
(
G(γ, ρ) +

1

χ2

)
. (21)

Certainty equivalence. We now consider the case in which θ is not estimated accurately enough and
a sub-optimal action is selected. Define the event:

F(t) =
{
at ̸= a⋆θ,∃e ∈ [ρ], ae ∈ Ae : Nt,e,ae < (1 + γ)ṽ⋄t,e,ae log(t), ∥θ − θ̂t∥∞ > δ(κ)

}
.

F(t) is the event that a sub-optimal action is selected, that we are not in the exploitation phase, and
that θ is not estimated accurately. Let Fe,ae(t) = F(t) ∩ {|θ̂t,e,ae − θe(ae)| > δ(κ)} so that F(t) =⋃
e,ae
Fe,ae(t). We now show by contradiction that, if F(t) occurs, then mine,ae Nt,e,ae ≥ εst/2,

for ε < 1/|A0|, where we recall that st is the number of times in which ESM is not in the exploitation
phase up to round t.

Assume that this does not hold, then there exist at least p = ⌈s(t)/2⌉ rounds {t1, . . . , tp} where
mine,ae Nti,e,ae ≤ εst, for all i ∈ [p]. After |A0| such rounds mine,ae Nt,e,ae is increased of at least
1. This implies that Nt,e,ae ≥ st

2|A0| , but this is a contradiction for ε < 1/|A0|. Therefore, if F(t)
occurs, then we have both mine∈[ρ],ae∈Ae Nt,e,ae ≥ εst

2 and ∥θ − θ̂t∥∞ > δ(κ). By using a union
bound and Lemma C.2, we have that

∞∑
t=1

P(F(t)) ≤
∞∑
t=1

∑
e∈[ρ],ae∈Ae

P(Fe,ae(t)) ≤
2Ã

εδ(κ)2
. (22)

Estimation and exploration. Now we consider the case in which θ is accurately estimated and we
are not in the exploitation phase. Let

G(t) =
{
∃e ∈ [ρ], ae ∈ Ae : Nt,e,ae < (1 + γ)ṽ⋄t,e,ae log(t), ∥θ − θ̂t∥∞ ≤ δ(κ)

}
.

Hence, if G(t) occurs, then we know that ESM selects action according to the estimation or exploration
phase. Assume that G(t) occurs and that at = a.

We first upper bound st for these two cases.

(i) Estimation: In this case

at = a ∈ A0 : at,e′ = be′ with (e′, be′) ∈ argmin
e,ae

Nt,e,ae .

Then we have that Nt,e,ae ≤ mine,be Nt,e,be . Furthermore, since ESM is not in the exploita-
tion phase, we have that there exist e′, a′e such that

Nt,e′,a′e ≤ ṽ⋄t,e′,a′e(1 + γ) log(t) ≤ ∥ṽ⋄t ∥∞(1 + γ) log(T ).

Hence we have that Nt,e,ae ≤ ∥ṽ⋄t ∥∞(1 + γ) log(T ).

(ii) Exploration: In this case

at ∈ A : at,e′ = be′ with (e′, be′) ∈ argmin
e,ae

Nt,e,ae
ṽt,e,ae

.

Then Nt,e,ae ≤ ṽ⋄t,e,ae(1 + γ) log(t) ≤ ∥ṽ⋄t ∥∞(1 + γ) log(T ).
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Hence in both cases we get Nt,e,ae ≤ ∥ṽ⋄t ∥∞(1 + γ) log(t). Now, since st is incremented each time
G(t) occurs, we conclude that st ≤ Ã∥ṽ⋄t ∥∞(1 + γ) log(T ).

We can now bound the number of times ae is selected in both phases. If ae is selected in the estimation
phase, we have:

Nt,e,ae ≤ εst ≤ εÃ∥ṽ⋄t ∥∞(1 + γ) log(t).

Instead, when ae is selected in the exploration phase, we have that:

Nt,e,ae ≤ ṽ⋄t,e,ae(1 + γ) log(T ),

We deduce that
T∑
t=1

1{at,e=ae,G(t)} ≤ (ṽ⋄τ,e,ae + εÃ∥ṽ⋄τ∥∞)(1 + γ) log(T ),

where τ ≤ T is the last random round such that aτ,e = ae and G(τ) holds. The fact G(τ) occurs,
implies that ∥θ̂τ − θ∥∞ ≤ δ(κ) holds, and we have∑

e∈[ρ],ae∈Ae

ṽ⋄τ,e,ae(θe(a
⋆
e)− θe(ae)) ≤ (1 + κ)C⋄

θ ,

ε|A0|∥ṽ⋄τ∥∞
∑

e∈[ρ],ae∈Ae

(θe(a
⋆
e)− θe(ae)) ≤ 2εψ⋄(θ),

This event yield regret:

Y (T ) =

T∑
t=1

∑
e∈[ρ],ae∈Ae

(θe(a
⋆
e)− θe(ae))1{at,e=ae,G(t)}.

Hence, we conclude that

Y (T ) ≤ ((1 + κ)C⋄
θ + 2εψ⋄(θ))(1 + γ) log(T ). (23)

Regret upper bound. By combining (21)-(22)-(23), we have:

Rπ(T ) ≤ E[Y (T )] + θ(a⋆)

( ∞∑
t=1

P(E(t)) + P(F(t))
)

≤ ((1 + κ)C⋄
θ + 2εψ⋄(θ)(1 + γ)) log(T ) + θ(a⋆)

(
|A|
(
G(γ, ρ) +

1

χ2

)
+

2Ã

εδ(κ)2

)
,

which in turn implies

lim sup
T→∞

Rπ(T )

log(T )
≤ ((1 + κ)C⋄

θ + 2εψ⋄(θ))(1 + γ).

As, the above holds for all κ > 0 we get the result:

lim sup
T→∞

Rπ(T )

log(T )
≤ (C⋄

θ + 2εψ⋄(θ))(1 + γ).
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E Connection to Combinatorial Semi-bandit Feedback Bandits

The MAMAB setting can be regarded as a specific instance of a combinatorial semi-bandit feedback
setting [13, 12, 38]. In the following, we present an equivalent characterization of the MAMAB
problem to clarify its connection to the combinatorial semi-bandit feedback setting.

We first describe the interaction model in the generic (linear) combinatorial semi-bandit feedback
setting. In such a setting, at each round t ≥ 1, the learner selects an action from a combinatorial set
at ∈ {0, 1}d, and, given an unknown parameter θ̃ ∈ Rd, she observes:

rt,i = θ̃i + ηt,i,∀i ∈ [d] : at,i = 1,

where ηt,i ∼ N (0, 1), for all i ∈ [d], are i.i.d. Gaussian noise samples (over rounds).

Since in MAMAB the set of global actions is defined as A = ×i∈[N ]Ai, the problem is not directly
interpretable in the semi-bandit feedback setting. We show that a simple map from actions in A to
binary vectors in the Ã-dimensional space can reduce the MAMAB problem to a problem in the
semi-bandit feedback setting.

Let ϕ(·) : A → {0, 1}Ã be a function mapping global actions to binary vectors in the Ã-
dimensional space. In MAMAB, the vector ϕ has a block structure: it can be decomposed as ϕ(a) =
(ϕe(be))e∈[ρ],be∈Ae , where ϕe(be) ∈ {0, 1}Ae is a group vector ϕe(be) = 1{ae=be}, i.e., containing 1

in correspondence of the activated group action ae. Further define θ̃ = (θe(ae))e∈[ρ],ae∈Ae ∈ RÃ,
i.e., θ̃ is the vector containing the local mean parameters. At round t ≥ 1, a global action at ∈ A is
selected by the learner, and she observes:

rt,e,ae = θ̃e(ae),∀e ∈ [ρ] : ϕe(at,e) = 1.

In other words, in the semi-bandit feedback setting, a (global) action a ∈ A is selected and the
learner observes a vector of rewards [re(ae)]e∈[ρ],ae⊆a, where re(ae) = θe(ae)

⊤ϕe(ae) + ηe, where
ηe ∼ N (0, 1) is i.i.d. Gaussian Noise. Note that the feature vectors satisfy ∥ϕ(a)∥0 = ρ, ∀a ∈ A
and ∥ϕe(ae)∥0 = 1, ∀e ∈ [ρ], ae ∈ Ae. In order to further clarify the connection to the semi-bandit
feedback, we provide a concrete example below.
Example 1. Consider the line factor graph in Fig. 7 with N = 3 agents, ρ = 2 groups,
and K = 2 actions. The reward can be written as r(a1, a2, a3) = r1(a1, a2) + r2(a2, a3).
Let ai ∈ {0, 1}, for all i ∈ [N ]. The average reward can be expressed by the vector θ̃ =(
(θ1(a1, a2))(a1,a2)∈{0,1}2 , (θ2(a2, a3))(a2,a3)∈{0,1}2

)
∈ R8, where

(θ1(a1, a2))(a1,a2)∈{0,1}2 = (θ1(0, 0), θ1(0, 1), θ1(1, 0), θ1(1, 1))

(θ2(a2, a3))(a2,a3)∈{0,1}2 = (θ2(0, 0), θ2(0, 1), θ2(1, 0), θ2(1, 1)).

For example, selecting action a = (0, 0, 0), corresponds to the feature vector ϕ(a) =
(1, 0, 0, 0, 1, 0, 0, 0), while selecting action b = (0, 1, 0) corresponds to the feature vector ϕ(b) =
(0, 1, 0, 0, 0, 0, 1, 0).

r1 r2

1 2 3

Figure 7: Factor graph from Example 1.
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F Constraint reduction

F.1 Proof of Lemma 5.4

Proof. First, we shall prove C⋄
θ (m + 1) ≤ C⋄

θ (m),∀m ∈ [KN − 1], by induction. The base case,
for m = 1, is C⋄

θ (2) ≤ C⋄
θ (1). Note that C⋄

θ (1) can be written as

inf
ṽ∈Ṽ⋄

∑
e∈[ρ],ae∈Ae

ṽae(θe(a
⋆
e)− θe(ae)) (24)

s.t.
∑

e∈[ρ]:a
(2)
e ̸=a⋆e

ṽ−1

a
(2)
e

≤ ∆2
1 (25)

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

1,∀a ∈ A \ {a(1), a(2)}, (26)

while C⋄
θ (2) is defined as

inf
ṽ∈Ṽ⋄

∑
e∈[ρ],ae∈Ae

ṽae(θe(a
⋆
e)− θe(ae)) (27)

s.t.
∑

e∈[ρ]:a
(2)
e ̸=a⋆e

ṽ−1

a
(2)
e

≤ ∆2
1 (28)

∑
e∈[ρ]:a

(3)
e ̸=a⋆e

ṽ−1

a
(3)
e

≤ ∆2
2 (29)

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

2,∀a ∈ A \ {a(1), a(2), a(3)}. (30)

Now, the constraints (25) and (28) are identical. The constraints (29)-(30) can be simply written as∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

2,∀a ∈ A \ {a(1), a(2)}.

The expression is identical to (26) with the exception of the term 1
∆2

1
in place of 1

∆2
2

. As ∆1 ≤ ∆2,
we naturally conclude that C⋄

θ (2) ≤ C⋄
θ (1).

Now, assume that C⋄
θ (m

′ + 1) ≤ C⋄
θ (m

′) holds for m′ = m− 1, to complete the induction we need
to show that C⋄

θ (m
′ + 1) ≤ C⋄

θ (m
′), for m′ = m. By following a similar approach to the base case,

we can show that the only difference in the optimization problems defining C⋄
θ (m

′) and C⋄
θ (m

′ + 1)
is in the last set of constraints: for C⋄

θ (m
′) these constraints are∑

e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

m′ ,∀a ∈ A \ ∪j∈[m′]{a(j+1)},

while for C⋄
θ (m+ 1) they can be written as∑

e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

m′+1,∀a ∈ A \ ∪j∈[m′]{a(j+1)}.

Hence, we can directly conclude that C⋄
θ (m

′ + 1) ≤ C⋄
θ (m

′), as it holds that ∆′
m ≤ ∆m′+1

Now, to complete the proof, we show that C⋆θ ≤ CMF
θ (m), ∀m ∈ [KN − 1]. Since we have that

CMF
θ (m+ 1) ≤ CMF

θ (m), it is sufficient to prove that C⋆θ ≤ CMF
θ (KN − 1). It is easy to check that

CMF
θ (KN − 1) can be written as

inf
ṽ∈ṼMF

∑
e∈[ρ],ae∈Ae

ṽae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
ae ≤ ∆(a)2,∀a ̸= a⋆. (31)

Eq. (31) corresponds to C⋆θ in (1), with the difference that the variables are in ṼMF. As ṼMF ⊆ Ṽ we
conclude that C⋆θ ≤ CMF

θ (KN − 1).

23



G Variable Elimination and Factored Constraint Reduction

First, we present VE (Alg. 2) and FCR (Alg. 3), two important sub-routines used in this paper.
We use VE to select the best global action in the exploitation phase of ESM (Sec. 6), and FCR to
represent in a compact way the exponentially large constraint set of the lower bound problems 8. We
then report known results on the complexity and correctness of these algorithms. To clarify their use,
we present examples of the application of these methods on specific factor graphs to compute the
global best arm. We finally present algorithms to efficiently compute the m-best global actions used
in the constraint reduction C⋄

θ (m)

G.1 Variable Elimination

The VE algorithm [14] is a classical algorithm for probabilistic graphical models used for a variety of
exact inference tasks (e.g., maximum a posteriori, computation of marginals, etc. [27]). It involves
iteratively eliminating variables by combining and marginalizing factors to find the most probable
assignment until only the query variables remain. Specifically, VE takes as input an elimination order
O, where O(i) is the ith variable to be eliminated and a set of factored functions R = {re}e∈[ρ].
Each factor re is a function mapping ae ∈ Ae to real values. For a factor re, we denote its scope by
SC(re) ⊆ [N ], which represents the set of variables involved in the factor.

The algorithm proceeds iteratively for i = 1, . . . , N , by eliminating variable l = O(i) in
each round. In round i, all the factors re containing variable l in their scopes are collected in
the set Rl. Subsequently, the (marginal) best response for agent l is computed as pl(ae\l) =
maxal∈Al

∑
re∈Rl

re(ae\l, al), where ae\l corresponds to the action ae corresponds to the action ae
with the component corresponding to the l-th agent is removed. The set of factors is then updated as
R ← R∪ {p(ae\l)} \ Rl. At this point, every factor containing l in its scope is eliminated. At the
next iteration, the algorithm selects the next variable to be eliminated and repeats this procedure until
i = N . Finally, it returns the optimal value

∑
p∈R pO(N)

.

Algorithm 2 VE

Input: Elimination order O, factorsR
for i = 1, . . . , N do

l = O(i)
Rl = {re ∈ R : l ∈ SC(re)}
pl(ae\l) = maxal∈Al

∑
re∈Rl

re(al, ae\l)

R ← R∪ {pl(ae\l)} \ Rl
return

∑
p∈R pO(N)

Complexity of VE. VE is guaranteed to return the optimal global arm in O(NKAO+1) operations
[27], where AO = maxi∈[N ] |SC(pO(i))| is the size of the largest factor generated when using
elimination order O. The complexity of VE depends on the elimination order O and is linear in the
maximum size of the scope of "best-response functions" introduced in the elimination process. App.
G.4 discuss the scaling of elimination orders for typical factor graphs.

Example of VE application. We now illustrate the use of VE to compute a global optimal arm a⋆θ in
the following example. Note that VE, applied toR = {θe}e∈[ρ] returns the highest global expected
reward θ(a⋆). A backward pass of the VE algorithm recovers the optimal arm a⋆ as shown in the
following example.
Example 2. Consider the factor graph in Fig. 8 with N = ρ = 4. The average reward is described as:

θ(a) = θ1(a1, a2) + θ2(a2, a4) + θ3(a1, a3) + θ4(a3, a4).

The key idea in VE is that, rather than summing all reward functions and then doing the maximization,
we fix an ordering for the variables, and we maximize over variables one at a time, according to the
elimination order O. For example, let O = {a4, a3, a2, a1}. Starting from a4, we get

max
a∈A

θ(a) = max
a1,a2,a3

θ1(a1, a2) + θ3(a1, a3) + max
a4

θ2(a2, a4) + θ4(a3, a4).

Agent 4 can summarize its marginal best response when varying (a2, a3) using a new factor
p4(a2, a3) = maxa4 θ2(a2, a4) + θ4(a3, a4), which represents the best response of agent 4 condi-
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r1 r2 r3 r4

1 2 3 4

Figure 8: Factor graph from example 2.

tioned on the actions played by agents 2, 3. We may also denote a⋆4(a2, a3) = argmaxa4 θ2(a2, a4)+
θ4(a3, a4) as the best action for agent 4 conditioned on the actions of agent 2, 3. Hence, we get

max
a∈A

θ(a) = max
a1,a2,a3

θ1(a1, a2) + θ3(a1, a3) + p4(a2, a3).

Similarly, agent 3, performs its marginal best response p3(a1, a2) = maxa3 θ3(a1, a3) + p4(a2, a3),
and marginal best action a⋆3(a1, a2) = argmaxa3 θ3(a1, a3) + p4(a2, a3). The problem is further
reduced to

max
a∈A

θ(a) = max
a1,a2

θ1(a1, a2) + p3(a1, a2).

Next, agent 2 computes her marginal best response p2(a1) = maxa2 θ1(a1, a2) + p3(a1, a2), and
marginal best action a⋆2(a1) = argmaxa2 θ1(a1, a2) + p3(a1, a2).

Finally, agent 1 selects compute the best response p1 = maxa1 p2(a1), and we have
max
a∈A

θ(a) = max
a1

p2(a1).

We can recover the best global action a⋆ = (a⋆1, a
⋆
2, a

⋆
3, a

⋆
4) by performing the entire process

in reverse order: a⋆1 = argmaxa1 p2(a1), a
⋆
2 = argmaxa2 θ1(a

⋆
1, a2) + p3(a

⋆
1, a2), a

⋆
3 =

argmaxa3 θ3(a
⋆
1, a3) + p4(a

⋆
2, a3), and a⋆4 = argmaxa4 θ2(a

⋆
2, a4) + θ4(a

⋆
3, a4).

Note that the complexity of VE for this example is O(K3) floating point operations, while naively
finding the best global action would require O(K4) operations.

G.2 Factored Constraint Reduction

The FCR algorithm follows a similar idea to VE to represent a set of factorized constraints in a
compact manner and is inspired by the Factored-LP algorithm [20] to reduce constraints in the
Bellman LP for Factored MDPs. FCR considers constraints of the type:

C =

∑
e∈[ρ]

pe(ae) ≤ c,∀a ∈ A

 ,

where pe(·) is a factor function mapping local actions ae ∈ Ae to real values, and c is a constant, and
construct an equivalent set of constraints K of reduced size. We present the pseudo-code of FCR in
Alg. 3 and describe its steps below.

FCR takes as input an initial set of factors F = {pe,∀e ∈ [ρ]}, and an ordered elimination set O. For
a factor p ∈ F , we define its scope SC(p) ⊆ [N ] as the set of agents involved in p. We also associate
a real variable to each factor p ∈ F , upaSC(p)

. After initializing the output constraint set as K = ∅,
the algorithm proceeds in an iterative manner. At each iteration i = 1, . . . , N , we set l = O(i) (the
ith element of O), and define Fl = {p ∈ F : l ∈ SC(p)}. We then introduce a new factor pl having
scope SC(pl) = ∪p∈Fl{SC(p)} \ {l}, and we associate the variable uplaSC(pl)

to pl. We include in K a
new set of constraints

uplaSC(pl)
≥
∑
p∈Fl

upaSC(p)
, ∀aSC(pl), al.

We further include the new factor variable pl in the set of factors F and remove all factors in Fl from
it, i.e., F = F ∪ {pl} \ Fl. At l = O(N), we introduce the constraint upO(N) ≤ c into K, where
pO(N) is the last generated factor and has empty scope.
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Algorithm 3 FCR

Input: Elimination order O, factors F
Initialize K = ∅
for i = 1, . . . , N do

l← O(i)
Fl ← {p ∈ F : l ∈ SC(p)}
K ← K ∪

{
uplaSC(pl)

≥∑p∈Fl u
p
aSC(p)

,∀aSC(pl), al

}
F ← F ∪ {pl} \ Fl

K ← K ∪ {upO(N) ≤ c}
return K

Complexity of FCR. The properties of FCR are directly inherited by the ones of VE. First, FCR
is guaranteed to return a provably equivalent representation of the set of constraints [19, Thm.
4.4]. Specifically, let K = FCR(C). Then C and K are equivalent, that is, an assignment of
variables (u, ṽ) is feasible for K if and only if ṽ is feasible for C. Furthermore, similarly to VE,
the number of constraints and variables to represent C scales linearly in N and exponentially in
AO = maxi∈[N ] |SC(pO(i))|, i.e., the size of the largest scope when using the elimination order O.
Specifically, the number of constraints in K scales as O(NKAO+1). Note that FCR also includes
O(NKAO ) new (scalar) variables in the optimization problem. Note that the proof of Lemma 5.5 is
a direct consequence of this result (see [19, Thm. 4.4] for details).

Example of FCR application. Let m ∈ [KN − 1]. We provide an example of the application of
FCR to reduce the combinatorial number of constraints appearing in (8)1 :∑

e∈[ρ]:ae ̸=a⋆e

ṽ−1
ae ≤ ∆2

m, ∀a ∈ A.

Example 3. Consider the factor graph in Ex. 2. Let fe(ae) = ṽ−1
ae 1{ae ̸=a⋆e}, for all e ∈ [ρ], ae ∈ Ae.

Then the set of constraints can be written as∑
e∈[ρ]

fe(ae) ≤ ∆2
m,∀a ∈ A,

or equivalently as

∆2
m ≥ max

a1,a2,a3,a4
f1(a1, a2) + f2(a2, a4) + f3(a1, a3) + f4(a3, a4).

We introduce a set of variables (ufeae)e∈[ρ],ae∈Ae , and the equality constraints:

ufeae = ṽ−1
ae ,∀e ∈ [ρ], ae ∈ Ae.

Note that we can rewrite fe(ae) = ufeae . Then, we fix an elimination ordering O = {4, 3, 2, 1} and
initialize F = ∅, K = ∅. Now we introduce a new "function" pl into F by eliminating a variable
l = O(i), at each round i = 1, . . . , 4.

For i = 1, we have O(1) = 4 and F1 = {f2(a2, a4), f4(a3, a4)}. We define a new variable up4a2,a3
associated to p4, and introduce the set of constraints:

up4a2,a3 ≥ uf2a4,a2 + uf4a4,a3 ,∀(a2, a3, a4) ∈ A2 ×A3 ×A4.

These in constraints are included in the set K. We further exclude the function f2 and f4 from the set
F , while including p4 in it.

Subsequently, we consider i = 2 and O(2) = 3. Then F3 = {p4(a2, a3), f3(a3, a1)}. We introduce
the new set of constraints:

up3a1,a2 ≥ up4a2,a3 + uf3a3,a1 ,∀(a1, a2, a3) ∈ A1 ×A2 ×A3,

1Note that the original constraints (8) are defined for actions a ∈ A\∪j∈[m]{a(j+1)}. However the redundant
constraints a ∈ ∪j∈[m]{a(j+1)} are inactive since the constraints

∑
e∈[ρ]:a

(j+1)
e ̸=a⋆e

ṽ−1

e,a
(j+1)
e

≤ ∆2
j , ∀j ∈ [m]

appearing in the problem defining C⋄
θ are tighter. Hence these constraints may be included w.l.o.g.
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and we add them to the constraint set K. We proceed to eliminate p4 and f3 from F and include p3.

We then move to i = 3, O(3) = 2 and define F2 = {f1(a1, a2), p3(a1, a2)}. The set of constraints
introduced at this step are:

up2a1 ≥ up3a1,a2 + uf1a1,a2 ,∀(a1, a2) ∈ A1 ×A2,

and similarly to the previous steps we add these constraints to K and eliminate the variables p3 and
f1 from F , while including p2. The last step at O(4) = 1 consists of including in K the constraints

up1 ≥ up2a1 ,∀a1 ∈ A1.

Finally we add to K the constraint up1 ≤ ∆2
m, and output K. The number of constraints in the

transformed set is |K| = 2K3 +K2 +K + 1, while the original set has |C| = K4 − 1 constraints.

G.3 m-BEST algorithm

In this section, we discuss an algorithm to find the m-best global arms. As explained in App. F, a set
of tighter approximations C⋄

θ (m), for m ∈ [KN − 1], can be built by considering an ordering of the
first m smallest gaps and hence requires to compute the m+ 1 global arms with highest expected
rewards. The Lawler and Nilsson’s m-BEST algorithm [26, 30], briefly described in the remainder of
this section, will serve this purpose.

The procedure was originally devised to compute the m most probable configurations in graphical
models. The main idea is the following: At each step, the m-BEST find the best solution to a
re-formulation of the original problem that excludes the solutions already discovered. Specifically,
at each time iteration j < m, the algorithm runs VE excluding the first j most probable configu-
rations. The Lawler’s algorithm [26] starts by computing the best global action a(1) by applying
VE (with elimination order O) over the combinatorial action space A by applying VE N times. To
determine the second best action a(2), the algorithm searches over the set A(2) = A \ {a(1)}. More
generally, at iteration j, the algorithm finds the jth best global action a(j) by running VE over the
sets A(j) = A \ ∪k∈[j]{a(k)}. This procedure provably identifies the m-best global actions with
complexity O(mN2KAO+1). By leveraging similar ideas and using a junction tree representation of
the graph, Nilsson [30] improves over this procedure leading to an m-best algorithm with complexity
O(mNKAO+1).

G.4 Examples of optimal elimination orders

The following lemma presents a few examples of optimal elimination orderings, i.e. orderings O that
minimize AO, for specific factor graph topologies.

(i) Forest factor graph with 3 trees (ii) 3× 4 grid factor graph.

Figure 9: Examples of factor graphs.

Lemma G.1. There exist known optimal orderings for the following factor graph structures. These
orderings yield

1. AO = 2 for any forest factor graph,

2. AO = 1 +min{p, q} for any p× q grid factor graph.
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The lemma implies that there are optimal orderings for a tree (Fig. 9), star, and line (Fig. 3) factor
graphs with AO = 2 (since are particular cases of forests), and for ring factor graphs 3 have AO = 3.
It is easy to verify that the optimal elimination order for trees starts eliminating factors from the
"leaves" of each tree composing the forest and proceeds upwards to the roots, while for grids the
optimal ordering starts from any "corner" of the grid and proceeds inwards [39].

However, note that finding an optimal ordering for general graphs, is an NP-hard problem [14], and
the worst-case runtime of VE is exponential in N . This issue has been mitigated successfully for a
large variety of graph structures in the graphical model community, where there exist a variety of
heuristics for the VE ordering problem (see [27, Sec. 4.3.3] for a comprehensive overview of these
methods).

H Complexity results

We state a set of fundamental complexity results for various problems encountered in this paper.

Lemma H.1. ∃θ ∈M for which the following problems are NP-hard:

- (P1): Determining the best global action: a⋆θ = argmaxa∈A
∑
e∈[ρ] θe(ae).

- (P2): Determining the m-best global actions, for m ∈ [KN ].

- (P3): Given ṽ ∈ RÃ, decide if ṽ ∈ Ṽ .

Proof. (P1) can be reduced to the task of finding a Maximum A Posteriori (MAP) assignment in
probabilistic graphical models, which is known to be NP-hard [27, pag. 142]. Specifically, if θ ∈ V ,
i.e., it is an element of the A− 1 dimensional simplex, then (P1) corresponds to finding the MAP
assignment for the measure θ. If θ ̸∈ W , we can find a mapping f : RA → V s.t. θ′ = f(θ) and
a⋆θ = a⋆θ′ . Alternatively, (P1) can be cast as a Distributed Constraint Optimization Problem (DCOP),
which is known to be NP-hard [29]. Clearly, (P2) is NP-hard since it can be reduced to (P1) for
m = 1. Problem (P3) was shown to be NP-complete by [34].

I An algorithm for selecting A0

We present in Alg. 4, the pseudocode of a simple procedure for selecting A0. It takes as input the set
of global actions A and the set of group actions Ae for all e ∈ [ρ]. Let Ie,ae =

∑
b∈A0

1{ae=be} be
the counter of group actions ae ∈ Ae in A0, and define Ie = (Ie,ae)ae∈Ae ∈ NAe .

To describe the algorithm, we assume w.l.o.g. that A is an ordered set, and denote by A(i) the ith
global action. First, the algorithm initializes A0 ← ∅, and Ie = 0 ∈ NAe ,∀e ∈ [ρ]. Then, the
algorithm iterates over groups e ∈ [ρ] and groups’ actions be ∈ Ae, and iteratively includes arms in
A into the set A0 which are never observed in previous iterates. By construction, Alg. 4, ensures that
A0 contains global action covering every group action.

Algorithm 4 BUILD A0

Input: Global actions A, group actions (Ae)e∈[ρ]

Initialize: A0 ← ∅, Ie = 0 ∈ NAe ,∀e ∈ [ρ],
for e ∈ [ρ] do

i← 1
while minae∈Ae Ie,ae = 0 do

a← A(i)
for be ∈ Ae do

if be = ae and Ie,be = 0 then
A0 ← A0 ∪ {a}
Ie,be ← Ie,be + 1

i← i+ 1
Return A0
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Alg. 4 returns an exploration set that covers all group actions and that satisfies |Ã0| ≤ Ã. Note
that Alg. 4 may be easily improved with more precise search strategies, at the cost of increased
computational complexity. For example, the algorithm could include in A0, at each step, global arms
a ∈ A which maximizes the number of non-observed group actions corresponding to the global
actions in A0. When the set A is large, these refined searches may be computationally expensive.
Example 4 (A0 action choice). Consider the example in Fig. 8 with K = 2 local ac-
tions and N = 4 agents (i.e., A = 16 actions). In such setting, we can select A0 =
{a0000, a0110, a1001, a1111}. Running Alg. 4 on this instance instead produces the set A0 =
{a0000, a0001, a0110, a0111, a1000, a1010, a1100}.

J MAMABs with specific graph structures

In this section, we present different MAMABs with specific graph structures.

J.1 Acycic factor graphs

In this section, we introduce a few definitions and preliminary concepts on graphs from [39], and
report examples of acyclic factor graphs. A hypergraph G = (V,E) is a tuple containing: a vertex
set V = [N ], and a set E of hyperedges, where each hyperedge e ∈ E is a particular subset of V .
The factor graph associated to an hypergraph is a bipartite graph G′ = (V ′, E′) with vertex set
V ′ = V ∪ E and an edge set E′ that includes elements (i, e), where i ∈ V and e ∈ E, if and only if
the hyperedge e include vertex i. A join tree associated to a factor graph G, a.k.a. junction tree, is a
tree T = (V ′′, E′′) such that the vertex set V ′′ corresponds to the factors of G′, and if two factors
e, e′ include in their scope the same variable i in G′, then every factor on the unique path between e
and e′ also include i in T .
Definition J.1 (Acyclic factor graph). A factor graph is said to be acyclic if it has a join tree.

Examples of acyclic factor graphs include the star and line factor graphs presented in Fig. 3, trees,
and forest (i.e., ensembles of trees) depicted in Fig. 9.

J.2 Networked Bandits

1 2

3

4 5

Figure 10: Example of reward graph in networked bandits.

We discuss a relevant particular case of MAMABs which we name Networked Bandits (NBs).
NBs consist of a set of N agents that are associated to an undirected graph G = (N , E), where
N = {1, . . . , N} and E ⊂ N ×N is the set of edges. Each agent i ∈ N , is associated with a local
action ai ∈ Ai. We also denote the global action as a = (a1, . . . , aN ) ∈ A1 × · · · × An. For a node
i ∈ N , denote its neighbors by Ni, and let N+i = Ni ∪ {i}. In our model, each agent is associated
with a local reward function ri(aN+i

) depending on the local action and on the actions of neighbors
aN+i

. The reward experienced by node i ∈ [N ] is expressed as

ri(aN+i
) = θi(ai) +

∑
j∈Ni

θi,j(ai, aj) + ηi, (32)

where ηi ∼ N (0, 1), θi(ai) is the average reward for the distribution of the i-th agent when she pulls
action ai, and θi,j(ai, aj) are the means of the distribution of the neighbor’s terms influencing the
reward by pulling action aj . For a given set S ⊆ [N ], we denote by aS = (as)s∈S . The NBs setting
can be interpreted as a particular case of MAMABs in which ρ = N , and each group corresponds to
a node and its neighbors.
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J.3 Reductions

The general MAMAB model studied in this paper encompasses the following particular cases:

(i) Plain bandit: For ρ = 1 and S1 = [N ], i.e., N agents (each with K local actions) connected
to a single factor, the model reduces to a plain bandit model [25] with an exponentially large
action space, i.e., |A| = KN .

(ii) Uncoordinated bandit: For ρ = N and Se = {e}, for all e ∈ [ρ], i.e., each group reward re
only depends on the action of a single agent ae ∈ Ae : |Ae| = K.

r1

1 2 3 . . . N

(i) Plain bandit.

r1 r2 r3 . . . rN

1 2 3 . . . N

(ii) Uncoordinated bandit.

Figure 11: Factor graphs for specific MAMAB models.

For (i), the global reward can be simply written as θ(a) = θ1(a1, ..., aN ). Furthermore, the group
variables and global variables coincide, i.e., Ṽ = RA≥0. The lower bound constant for the MAMAB
model matches the one in the plain bandit setting [25], i.e., we have

C⋆θ = inf
v∈RA≥0

∑
a∈A

va∆(a) s.t.
v−1
a

∆(a)2
≤ 1,∀a ∈ A.

The uncoordinated setting (ii) corresponds to a game with N independent bandits, each having
observed rewards θi(ai). Note that, as ρ = N , we can use the indices e and i interchangeably (each
group contains a unique agent). We can write the global reward simply as θ(a) =

∑
i∈[N ] θi(ai),

and each agent can determine its best arm independently, i.e., an action a ∈ A is sub-optimal
a ̸= a⋆ ⇐⇒ ∃i ∈ [N ] : ai ̸= a⋆i . Then, the expression for the lower bound constant of (ii) can be
written as C⋆θ =

∑
i∈[N ] C

⋆
θi

, where

C⋆θi = min
wi∈RK≥0

∑
ai∈Ai

wi,ai(θi(a
⋆
i )− θi(ai)) s.t.

w−1
i,ai

(θi(a⋆i )− θi(ai))2
,∀ai ̸= a⋆i

Note that for N = 1 both (i) and (ii) reduce to a standard plain bandit model with |A| = K.

K Experimental settings and additional experiments

K.1 Tightness of locally-tree like approximation

In this section we present experiments which highlight the tightness of the locally-tree like approx-
imation CL

θ . We generate Nsim = 100 MAMABs instances, for a ring and a tree factor graph (see
Fig. 3) with N = 5, K ∈ {3, 4}, when varying the parameters θe(ae), for all e ∈ [ρ], ae ∈ Ae
uniformly at random in the interval [0, 10], and comparing the lower bound and the locally tree-like
approximation constants.

The results are presented in Fig. 12. As expected for the line factor graph the locally tree like
approximation is tight, as this graph topology does not contain cycles. Note that, although the ring
graph contains a cycle and hence C⋆θ ≤ CL

θ , the locally tree like approximation is very close to C⋆θ
for most of the generated instances.
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Figure 12: Comparison ofC⋆θ andCLθ . Each point represent the lower bound constants for a MAMAB
instance with a ring (green) or line (red) factor graph.

K.2 Varying m experiments

We report additional results on the regret of ESM for instances of MAMABs with a line and ring
factor graphs withN = 5, K = 3, and varyingm. As for the other experiments, the group parameters
θe(ae) are generated at random from the interval [0, 10], for all e ∈ [ρ], ae ∈ Ae and results are
averaged over Nsim = 5 independent runs. The results are shown in Fig. 13. We use ⋄ = MF for the
ring graph and ⋄ = L for the line graph.
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Figure 13: Experiments for varying m.

K.3 Antenna tilt experiments simulation setting

The simulation settings used in the antenna tilt experiments are reported in Tab. 1.

Table 1: Simulator parameters.
PARAMETER SYMBOL VALUE
Number of sectors |S| 6
Number of UEs |U| 1000
Antenna tilt values Ai {2◦, 7◦, 13◦}
Carrier frequency f 1800 MHz
Antenna height h 32 m
Network size M 2 km2
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K.4 Local approximation for cyclic factor graphs

In this section, we demonstrate experimentally that using ⋄ = L for ESM in MAMABs with cyclic
factor graphs not attain a better regret than targeting exploration driven by C⋆θ , i.e. the true lower
bound problem, even though C⋆θ > CLθ from the solutions of the lower bound optimization problems.
We consider the cyclic factor graph in Fig. 14 (left) with K = 3 local actions. We compare the
performance of ESM for and ⋄ = {L, ⋄}. In Fig. 14 (center), we show the lower bound as C⋄

θ log(T )
and in Fig. 14 (right), we show the results for the regret of ESM when targeting C⋆θ or CLθ .

Figure 14: Left: cyclic factor graph considered for the experiments. Center: lower bound C⋄
θ log(T ),

for ⋄ = {L, ⋆}. Right: Performance of ESM for ⋄ = {L, ⋆}.

In general, for many instances, we empirically observed that the values of C⋆θ C
L
θ are very close. For

example, in Fig. 12 (App. K), we compare these two quantities for 100 randomly generated instances
(of the group means) for a ring factor graph (see Fig. 3).

K.5 Quantifying the approximation ratio

In this section, we quantify the approximation ratio between the approximation constants C⋄(m)
for ⋄ = {MF,L}, when varying m, and the true lower bound constant C⋆θ . We draw an instance of
θ for a ring, line, and star graph (see Fig. 3) by selecting group means θe(ae) ∼ U(0,M), for all
e ∈ [ρ], ae ∈ Ae.

Figure 15: Approximation ratio C⋄
θ (m)/C⋆θ for ⋄ = {MF,L} and for different graph topologies

(K = 3, N = 5). The dashed line represents C⋄
θ (m)/C⋆θ = 1

.

The results presented in Fig. 15 show that CMF
θ (m) is close to C⋆θ (they are equal up to a small

constant) and decreases withm. ForCL
θ (m), the same hold, and form large enough the approximation

is tight, as predicted by our results.
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L Details on antenna tilt optimization experiments

In this section, we present details on the antenna tilt optimization experiments.

Throughput. The throughput Ti,u, is formally defined in terms of the Signal-to-Interference-plus-
Noise Ratio (SINR), a metric that measures the quality of a signal in the presence of interference and
noise. Let aNi be the group vector containing

Specifically, the SINR of a UE u ∈ U connected to cell c ∈ C is defined as:

SINRi,u(ai) =
PiGi,u(ai)Li,u(ai)∑

k∈Ni PkGk,u(ak)Lk,u(ak) + σ
,

where Pi, Gi,u, and Li,u are the transmitter antenna power, the gain of the transmitter antenna, and
path loss for UE u connected to cell i, respectively. The gain is influenced by antenna parameters
such as tilt and azimuth, and the path loss accounts for the transmission medium and obstacles (e.g.,
buildings, atmospherical conditions, vegetation, etc.). The throughput Ti,u experienced by UE u
connected to the cell i is then expressed as a function of the SINR and available bandwidth:

Ti,u = ωBn
R
i,u log2 (1 + SINRi,u) ,

where nRi,u is the number of Physical Resource Blocks (PRBs) allocated to UE u in cell i and ωB
is the bandwidth per PRB (180 kHz). We use the average throughput of a cell in our group reward
definition, i.e.,

ri(ae) =
1

|Ui|
∑
u∈Ui

Ti,u.

Hence the global reward is expressed as

r(a) =
∑
i∈[N ]

1

|Ui|
∑
u∈Ui

Ti,u(ae).

On the noise independence assumption. In our experiments, each group e ∈ [ρ] corresponds to a
sector: more precisely, it consists of an antenna i ∈ [N ] serving the users u ∈ Ui connected to this
sector, and the set of antennas that can interfere with the transmissions of the antenna i.

Recall that the group reward is defined as re(ae) =
∑
u∈Ui Ti,u(ae), where ae represents the tilts of

antennas in group i. The throughput Ti,u(ae) is the rate at which an user u can decode transmissions
from the antenna u. This rate depends on the random channel conditions (also known as fading)
between each antenna in the group and the user i. Now the fadings between pairs of (antenna, user)
are typically stochastically independent across users and antennas [32].

Since the sets of (Ui)i∈[N ] form a partition, they do not overlap, and the random variables re(ae) are
indeed independent across groups. They can be modeled as independent Gaussian realizations in the
sum-throughput over groups. For details, refer e.g., to [32].

Additional details. The set of UEs in the network is U = ∪i∈SUi as presented in Sec. 7.2. The
number of UEs connected to cell i is affected by tilt variation since we assume UEs connect to the
cell from which they get maximum Reference Signal Received Power (RSRP). In particular, given a
tilt configuration a, the UEs in cell i are defined as

Ui =
{
u ∈ U : argmax

k∈[N ]

PkGk,uLk,u = i

}
.

There exist other methods to determine relations between antennas which rely on automated proce-
dures, domain knowledge, and heuristics. For example, they may be based on the geographic distance
between cells, on Neighbor Relations (ANR) as defined in 3GPP standards, on network planning
tools for coverage prediction, or on cell handover logs [32]. In addition, domain knowledge can
be used to refine the graph topology by pruning or adding edges based on key feature of a city or
knowledge about the terrain (if there is a natural obstacle for example). Analyzing the influence of
the graph structure is not in the scope of this paper and is left as future work.
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M Extended literature review

M.1 MAMABs

As mentioned in Sec. 2, a few papers investigate MAMABs with the same factored reward structure
as ours [2, 35, 37] for regret minimization.

Bargiacchi et al. [2] study a MAMABs setting in which the group rewards are random variables with
finite support: re(ae) ∈ [0, re,max], for all e ∈ [ρ], ae ∈ Ae. They propose MAUCE, an UCB-type
algorithm, in which the bonus term is a non-linear sum of the group UCBs: at time t, MAUCE selects
a global action

at = argmax
a∈A

∑
e∈[ρ]

θ̂t,e,ae +

√√√√1

2

∑
e∈[ρ]

re,max

Nt,e,ae
log(tA).

The non-linearity in the UCB term makes it difficult to use the VE to select the arm maximizing the
UCB. They propose an efficient routine based on Multi-Objective Variable Elimination (MOVE) to
compute the optimal UCB index. However, the computational complexity of the procedure is unclear.
The asymptotic regret of MAUCE satisfies:

lim inf
T→∞

RπMAUCE(T )

log(T )
≤

∆2
min + 2Ã(

∑
e∈[ρ] r

2
e,max)

∆2
min

.

Assume that the means of the MAMABs parameters are bounded as θe(ae) ∈ [0, rmax],∀e ∈
[ρ], ae ∈ Ae, then our worst approximation (CMF

θ (1)), is better than a factor rmax with respect to the
MAUCE bound. To see why, observe that by Lem. 5.4, we can upper bound CMF

θ (1) as:

CMF
θ (1) ≤ ρ∆−2

min

∑
e∈[ρ],ae∈Ae

(θ(a⋆e)− θe(ae)) ≤ 2ρ2∆−2
minÃrmax,

while the leading constant of regret upper bound of MAUCE is 2ρ2∆−2
minÃr

2
max.

Stranders et al. [35] study a similar setting with bounded rewards re(ae) ∈ [umin, umax], for all
e ∈ [ρ], ae ∈ Ae. They propose HEIST, also an UCB-type algorithm. The asymptotic regret of
HEIST satisfies

lim inf
T→∞

RπHEIST(T )

log(T )
≤
∑
a ̸=a⋆

8(umax − umin)

∆(a)
,

which is clearly sub-optimal as it scales with the number of global arms |A|.
Finally, [37] study the MAMAB setting in the Bayesian setting with sub-Gaussian rewards and
propose Multi-Agent Thompson Sampling (MATS), a TS-based algorithm whose regret satisfies

RπMATS(T ) ≤ 2/Ã+

√
64σ2ρÃT log(ÃT ).

Because of the differences in the problem formulations, this bound is not directly comparable to ours.

Finally, there are a few related works in MAMABs investigating the Best Arm Identification (BAI)
problem [36, 3], where the objective is to identify the best global action with a prescribed error
probability. In a closely related work [36], the authors derive a sample complexity lower bound
defined through an optimization problem that is similar in structure to the one we derive for regret
minimization and has exponentially many variables and constraints. Similar to our work, they derive
an MF approximation of the lower bound problem. However, these MF approximations result in a
non-convex optimization problem for the regret minimization setting (see App. B).

M.2 Combinatorial Semi-Bandit Feedback

There is a large body of work [7, 10, 16, 40, 12, 13, 31, 38] investigating regret minimization in the
(linear) combinatorial semi-bandit feedback. Although MAMAB is a more particular instance of
bandits with combinatorial semi-bandit feedback (see App. E), the MAMAB combinatorial structure
has been never considered in this setting to the best of our knowledge.
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Most of these works focused on achieving a good trade-off between computational complexity and
regret rates. None of these works focus explicitly on the MAMAB structure considered in our paper.

There exists algorithm using combinatorial versions of UCB. For example, the Combinatorial UCB
(CUCB) [6] enjoys a O(Ãρ log(T )/∆min) regret guarantee. Combes et al. [10] propose the first
(tight) lower bound in the combinatorial semi-bandit feedback setting and propose ESCB, an UCB-
type algorithm which enjoys a O(Ã

√
ρ log(T )/∆min) regret bound. Subsequently, Degenne et al.

[16] tightens this regret bound toO(Ã log(ρ)2 log(T )/∆min). All of the above-mentioned algorithms
are sub-optimal and postulate the existence of a maximization oracle of the type

max
a∈A

∑
e∈[ρ]

θe(ae) +

√√√√∑
e∈[ρ]

c log(T )

Nae(t)
,

for some c > 0. The oracle is invoked at each time step, and hence, if such an efficient oracle
exists (e.g., can be computed in polynomial time), the resulting algorithm is efficient. For many
structures (e.g., m-sets, spanning trees, matroids, etc.) [13] showed that computing such maximum
is an NP-hard problem. As mentioned in App. M.1, for our MAMAB combinatorial structure, [2,
35] propose algorithms to compute such maximization, but without any computational complexity
guarantee. Furthermore, Cuvelier et al. [13] proposes A-ESCB, which achieves a regret bound
O(Ã log(ρ)2 log(T )/∆min) by solving multiple times a budgeted linear optimization of the type
maxa∈A:

∑
e ceµe(ae)≥s

∑
e∈[ρ] θe(ae). In such case, the existence of an efficient oracle solving

the budgeted linear maximization problem is assumed, which is true only for particular structures
(specifically s-paths and m-sets).

Combinatorial bandit algorithms based on TS techniques [40, 31] usually require, at each time step, a
maximization step of the type

max
a∈A

∑
e∈[ρ]

θe(ae).

We show in Lem. H.1 that, for general factor graphs, performing this operation is NP-hard.

Finally, Cuvelier et al. [12] derive the first asymptotically optimal algorithm for the semi-bandit
feedback problem in polynomial time. We should mention that four our local approximation C⋄

θ ,
[12, Assumption 6] is satisfied: ∃M ∈ Rc×d, b ∈ Rc, with c = O(poly(Ã)): co(A) = {w̃ ∈ RÃ :
Mw̃ = b, w̃ ≥ 0}, i.e., the convex hull of the (global) action set can be represented by a polynomial
number of inequalities. However, this approximation only holds for acyclic factor graphs, while the
case of cyclic factor graphs is, to the best of our knowledge, not considered.
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