
SLAP: Spatial-Language Attention Policies

Anonymous Author(s)
Affiliation
Address
email

Abstract: Despite great strides in language-guided manipulation, existing work1

has been constrained to table-top settings. Table-tops allow for perfect and consis-2

tent camera angles, properties are that do not hold in mobile manipulation. Task3

plans that involve moving around the environment must be robust to egocentric4

views and changes in the plane and angle of grasp. A further challenge is ensur-5

ing this is all true while still being able to learn skills efficiently from limited data.6

We propose Spatial-Language Attention Policies (SLAP) as a solution. SLAP uses7

three-dimensional tokens as the input representation to train a single multi-task,8

language-conditioned action prediction policy. Our method shows an 80% success9

rate in the real world across eight tasks with a single model, and a 47.5% success10

rate when unseen clutter and unseen object configurations are introduced, even11

with only a handful of examples per task. This represents an improvement of 30%12

over prior work (20% given unseen distractors and configurations). In addition, we13

show how SLAPs robustness enables allows us to execute Task Plans from open-14

vocabulary instructions using a large language model for multi-step mobile ma-15

nipulation. For videos, see the website: https://robotslap.github.io16

1 Introduction17

Transformers have demonstrated impressive results on natural language processing tasks by be-18

ing able to contextualize large numbers of tokens over long sequences, and even show substantial19

promise for robotics in a variety of manipulation tasks [1, 2, 3]. However, when it comes to using20

transformers for mobile robots performing long-horizon tasks, we face the challenge of representing21

spatial information in a useful way. In other words, we need a fundamental unit of representation -22

an equivalent of a “word” or “token” - that can handle spatial awareness in a way that is independent23

of the robot’s exact embodiment. We argue this is essential for enabling robots to perform manipula-24

tion tasks in diverse human environments, where they need to be able to generalize to new positions,25

handle changes in the visual appearance of objects and be robust to irrelevant clutter. In this work,26

we propose Spatial-Language Attention Policies (SLAP), that use a point-cloud based tokenization27

which can scale to a number of viewpoints, and has a number of advantages over prior work.28

SLAP tokenizes the world into a varying-length stream of multi-resolution spatial embeddings,29

which capture a local context based on PointNet++ [4] features. Unlike ViT-style [1], object-30

centric [5, 3], or static 3D grid features [2], our PointNet++-based [4] tokens capture free-form31

relations between observed points in space. This means that we can combine multiple camera views32

from a moving camera when making decisions and still process arbitrary-length sequences.33

Our approach leverages a powerful skill representation we refer to as “attention-driven robot poli-34

cies” [6, 7, 8, 2, 9] operating on an input-space combining language with spatial information. Unlike35

other methods that directly predict robot motor controls [10, 1], these techniques predict goal poses36

in Cartesian space and integrate them with a motion planner [6, 8, 2] or conditional low-level pol-37

icy [9] to execute goal-driven motion. This approach requires less data, but it still has limitations38

such as making assumptions about the input scene’s size and camera position and long training39

times [7, 6, 2]. However, these methods fall into a different trap: they make strong assumptions40

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://robotslap.github.io

Figure 1: We propose SLAP, which allows us to learn skills for mobile manipulators to accomplish
multi-step tasks given natural language goals. Our system works by training a language-conditioned
interaction prediction module, which will determine which areas of a scene should be interacted
with, in addition to an action policy which operates on predicted interaction points. This allows us
to scale to more complex scenes, while predicting continuous actions.

about how big the input scene is [2], where the camera is [7, 6], and generally take a very long time41

to train [7, 6], meaning they could not be used too quickly teach policies in a new environment.42

SLAP uses a hybrid policy architecture. The interaction prediction module determines which parts43

of the tokenized environment the robot focuses on, and a relative action module predicts parameters44

of continuous motion with respect to the interaction features in the world. SLAP generalizes better45

to unseen positions and orientations, as well as distractors, while being unrestricted by workspace46

size, and camera placement assumption, using fewer demonstrations and training in roughly a day.47

We evaluate SLAP on two robot platforms. First, on a Franka Panda we can perform a direct skills48

comparison to the current state-of-the-art, PerAct, [2], where we demonstrate better performance49

with 80% success rate on 8 static real-world tasks on held-out scene configurations and a 47.5%50

success rate tested with out-of-distribution objects. Second, unlike prior work, we move beyond51

the stationary camera views and robot arms of a table-top setting, and demonstrate SLAP on the52

Hello Robot Stretch RE-2 mobile manipulator with an ego-centric camera and 6-DoF end-effector53

configuration. In this setting, we also include task planning to successfully execute natural language54

task instructions with 10 demonstrations over 5 learnt skills and 3 heuristic skills (Fig. 1).55

2 Related Work56

Attention-Based Policies. Attention-based policies have been widely studied in prior research and57

have been found to have superior data efficiency, generalization, and the ability to solve previously58

unsolvable problems [11, 9, 6, 12, 2, 13]. However, these approaches often rely on strong assump-59

tions about the robot’s workspace, such as modeling the entire workspace as a 2D image [12, 6, 7, 8]60

or a 3D voxel cube with predetermined scene bounds [2, 9]. This restricts their applicability and61

may lead to issues related to camera positioning, workspace location, and discretization size. Ad-62

ditionally, these works can be seen, at least partly, as applications of object detection systems like63

Detic [14] or 3DETR [15], but they lack the manipulation component.64

2

“P
ic

k
up

 le
m

on

fr
om

 b
as

ke
t”

“C
lo

se
 t

he

d
ra

w
er

”

2) Predict Actions
Given location from interaction

prediction module

“P
ic

k
up

th
e

b
ot

tle
”

Input Approach Interact RetreatDemonstrations

1) Predict Interaction Point
Given language command, noisy

observations

Roll-out

Figure 2: Spatial Language Attention Policies (SLAP) learn language-conditioned skills from few
demonstrations in a wide variety of cluttered scenes. SLAP has two components: an “interaction
prediction” module which localizes relevant features in a scene, and an “action prediction” module
which uses local context to predict an executable action.

Compared to previous works, some recent studies focus on unstructured point clouds [11, 16]. These65

approaches demonstrate improved data efficiency and performance compared to traditional behav-66

ior cloning. For instance, Where2Act [11] and VAT-Mart [16] predict interaction trajectories, while67

UMPNet [17] supports closed-loop 6DoF trajectories. They share a common framework: a general-68

izable method to predict the interaction location and then predict local motion for the robot.69

Training Quickly with Attention-Based Policies. CLIPort [7] and PerAct [2] are attention-based70

policies similar to Transporter Nets [6]. While fitting our definition of attention-based policies,71

they confine their workspace, use a rigid grid-like structure and treat action prediction as a dis-72

crete classification. While still a limited workspace, SPOT [12], demonstrated the usefulness of 2D73

attention-based policies for fast RL training, including sim-to-real transfer, and Zeng et al. [6] have74

shown these policies are valuable for certain real-world tabletop tasks like kitting.75

Manipulation of Unknown Objects. Manipulation of unknown objects includes segmentation [18,76

19], grasping [20, 21], placement [22], and multi-object rearrangement either from a goal image [23,77

24] or from language instructions [25, 26]. These approaches rely, generally, on first segmenting78

relevant objects out, and then predicting how to grasp them and where to move them using separate79

purpose-built models, including for complex task and motion planning [27].80

Language and Robotics. Language is a natural and powerful way to specify goals for multi-task81

robot systems. Several recent works [10, 1, 28] use a large-language model for task planning to com-82

bine sequential low-level skills and assume to learn the low-level skills with IL or RL. To realistically83

handle language task diversity, we need to learn these skills quickly. SLAP is more sample-efficient84

than prior IL or RL approaches. In PaLM-E [3], textual and multi-modal tokens are interleaved as85

inputs to the Transformer for handling language and multimodal data to generate high-level plans86

for robotics tasks. Our approach is a spatial extension of this strategy.87

Language for Low-Level Skills. A number of works have shown how to learn low-level language-88

conditioned skills, e.g. [7, 2, 1, 29]. Like our work, Mees et al. [29] predicts 6DoF end effector goal89

positions end-to-end and sequences them with large language models. They predict a 2D affordance90

heatmap and depth from RGB; We do not predict depth, but specifically look at robustness and91

generalization, where theirs is trained from play data in mostly-fixed scenes. Shridhar et al. [2]92

predict a 3D voxelized grid and show strong real-word performance with relatively few examples,93

but don’t look at out-of-domain generalization and are limited to a coarse voxelization of the world.94

3 Approach95

Most manipulation tasks necessarily involve interacting with environment objects [11]. We define an96

‘atomic skill’ as a task that can be specified by an interaction point, and a sequence of relative offsets97

from this interaction point. For example, pick(’mug’) is an atomic skill as it can be defined in98

3

terms of an interaction point on the ‘mug’ and subsequent relative waypoints for approach, grasp,99

and lift actions. Similarly, open(’drawer’) is an atomic skill for which the interaction point is100

on the drawer handle, and relative waypoints from it can be defined for approach, grasp, and pull.101

We train a two-phase language-conditioned policy π(x, l), which takes visual observation x and102

a language command l as inputs and predicts an interaction point pI , as well as a set of relative103

motions, which are offsets from this point, instead of absolute coordinates.However, any realistic104

task given to a home robot by a user typically involves more than one atomic skill. Our system breaks105

down a high-level natural language task description (T) into a sequence of atomic skill descriptions106

{lj} and uses them to condition the atomic skill motion policies. Our full paradigm is as follows:107

T → {l0, ..., ln} → {πj(xj , lj)}n
∀j ∈ n, πj := (πI , πR), where:

πI(xj , lj) → pI (3D interaction point)
πR(xj , lj , pI) → {a}m (sequence of actions)

The interaction point pI is predicted by an Interaction Prediction Module πI , and the continuous108

component of the action by a Relative Action Module πR. The Interaction Prediction Module πI109

predicts where the robot should attend to; it is a specific location in the world, where the robot will110

be interacting with the object as a part of its skill, as shown in Fig. 2. πR predicts a relative action111

sequence with respect to this contact point in the Cartesian space. These actions are then provided112

as input to a low-level controller to execute the trajectory. These models are trained using labeled113

expert demonstrations; a complete overview of the training process is shown in Fig. 4. Overall, the114

system outputs a sequence of end-effector actions a.115

3.1 Scene Representation116

The input observation x is a structured point-cloud (PCD) in the robot’s base-frame, constructed117

by combining the inputs from a sequence of pre-defined scanning actions. This point cloud is then118

preprocessed by voxelizing at a 1mm resolution to remove duplicate points from overlapping camera119

views. The pointcloud is then used as input into both πI and πR.120

For πI , we perform a second voxelization, this time at 5mm resolution. This creates the down-121

sampled set of points P , such that the interaction point p̂I ∈ P . This means πI has a consistently122

high-dimensional input and action space - for a robot looking at its environment with a set of N123

aggregated observations, this can be 5000-8000 input “tokens” representing the scene.124

While SLAP discretizes the world similar to prior work [30, 31, 2], we can do so selectively, at a125

higher resolution, and capture fine local details even in large scenes. We couple this with a set-based126

learning formulation which allows us to attend to fine details in a data-efficient manner.127

3.2 Interaction Prediction Module128

We use our insight about tasks being shaped around an interaction point to make learning more129

robust and more efficient: instead of predicting the agent’s motion directly, we formulate our πI130

to solely focus on predicting a specific point pI ∈ P , representing a single 5mm voxel that is131

referred to as the “interaction point”. This formulation is akin to learning object affordance and132

can be thought of as similar to prior work like Transporter Nets in 2D [6]. We hypothesize that133

predicting attention directly on visual features, even for manipulation actions, will make SLAP134

more general. We use a PerceiverIO [32] backbone to process the data, based on prior work on135

language-conditioned real-world policies [2].136

We first pass our input point cloud through two modified set abstraction layers [4] which result in a137

sub-sampled point-cloud with each point’s feature capturing the local spatial structure around it at138

two different resolutions. This encourages the classifier to pay attention to local structures rather139

than a specific point that may not be visible in real-world settings. We concatenate the CLIP [33]140

tokenized natural language command with the encoded point cloud to create an input sequence.141

4

Language: Close the
drawer

77x128 Pe
rc
ei
ve

rIO

Nx64 Nx64

Nx1

Modified
SA Layer

Language
Encoder

Proprio
Encoder

ReLU
(Linear)

Uniformly voxelized PCD (𝑃)

PCD with duplicates removed
(𝑥)

Top 5%: S(𝑘 ∈ 𝑃 = 𝑝!)

Interaction Point

Additional state:
gripper-state, g-width, time-step

Figure 3: An overview of the architecture of the interaction prediction module. The point cloud is
downsampled to remove duplicates and encoded using two modified set-abstraction layers. The SA
layers generate a local spatial embedding which is concatenated with proprioceptive features - in our
case, the current gripper state. Both spatial and language features are concatenated and input into a
PerceiverIO transformer backbone. We then predict an interaction score per spatial feature and the
argmax is chosen as the interaction site for command l.

Each point i ∈ P in the point cloud is assigned a score with respect to task τj which results in the142

interaction point for that task, pjI := argmax
x,y,z

(S(i = pjI |l, x, P,Dj)), where Dj is the set of expert143

demonstrations provided for task τj . The IPM architecture overview is provided in Fig. 3. Note we144

also use semantic features from Detic in the Stretch experiment for training SLAP as an additional145

feature channel apart from the color-channels.146

Modified Set Abstraction Layer. The default SA layer as introduced by Qi et al. [4] uses farthest147

point sampling (FPS) to determine which locations feature vectors are created. FPS ensures that148

subsampled point-cloud is a good representation of a given scene, without any guarantees about the149

granularity. However, it’s very sensitive to the number of points selected - in most PointNet++-based150

policies, a fixed number of points are chosen using FPS [4]. However, SLAP must adapt to scenes151

of varying sizes, possibly with multiple views, and still not miss small details.152

We propose an alternative PointNet++ set abstraction layer, which computes embeddings based on153

the original and an evenly downsampled version of the point-cloud, P . This results in a denser154

spatial embedding by considering a subset of all points within a certain radius of each-point in the155

downsampled point-cloud. This downsampled set of points guarantees we can attend to even small156

features, and allows us to predict an interaction point pI from the PointNet++ aggregated features.157

3.3 Relative Action Module158

The relative action module relies on the interaction point predicted by the classifier and operates on159

a cropped point cloud, xR, around this point to predict the actions associated with this sequence.160

As in the interaction prediction module, the model uses a cascade of modified set abstraction layers161

as the backbone to compute a multi-resolution encoding feature over the cropped point cloud. We162

train three multi-head regressors (described further below) over these features to predict the actions163

for the overall task. Specifically, πR has three heads, one for each component of the relative action164

space: gripper activation g, position offset δp, and orientation q. Our LSTM-based architecture165

(details in B.1) can predict skills with variable number of actions (3,4 in our experiments).166

Positions and orientations associated with the interaction action generally tend to be much closer to167

the crop-center thus we train one model per action to encourage each action to be learned according168

to its own distribution. Also note that the cropped input point-cloud is not perfectly centered at the169

ground truth interaction point p̂I , but rather with some noise added: p̂I
′ = p̂I + N (0, σ). This is170

done to force the action predictor to be robust to sub-optimal interaction point predictions by the171

interaction predictor module during real-world roll-outs. Thus, for each part of the action sequence,172

the keyframe position is calculated as: p = pI + δp. When acting, the robot will move to (p, q) via173

a motion planner, and then will send a command to the gripper to set its state to g.174

5

“Open top drawer”

Interaction Prediction Action Prediction

Training

Testing

Input Scene

“O
pe

n
to

p
dr

aw
er

”
Data Collection

Interaction points and keyframes, localized in observed point clouds:

“Open bottom drawer” “Place in the drawer” “Pick up bottle”

Figure 4: Illustration of the complete process for training SLAP. Demonstrations are collected and
used to train the Interaction Prediction module and the Action Prediction Module separately.

3.4 Training SLAP175

To collect data, an expert operator guides the robot through a trajectory, pressing a button to record176

keyframes representing crucial parts of a task. At each keyframe, we record the associated expert177

action â = (δ̂p, q̂, ĝ). We assume that low-level controllers exist - in our case, we use Polymetis [34]178

for the Franka arm and Hello Robot’s controllers1 for Stretch. Example tasks are shown in Fig. 6.179

Interaction Prediction Module. We train πI with a cross-entropy loss, predicting the interaction180

point pI from the downsampled set of coarse voxels P . We additionally apply what we call a181

locality loss (Lloc), as per prior work [35]. Conceptually, we want to penalize points the further they182

are from the contact point, both to encourage learning relevant features as well as to aid in ignoring183

distractors. To achieve this, we define the locality loss as: Lloc =
∑

k∈P softmax(fk)∥p̂I , k∥2,184

where fk is the output of the transformer for point k ∈ P . The softmax turns fk into attention185

over the points, meaning that Lloc can be interpreted as a weighted average of the square distances.186

Points further from p̂I are therefore encouraged to have lower classification scores. Combining our187

two losses, we obtain LI = CE(P, p̂I) +
w
|P |Lloc, where w is a scaling constant that implicitly188

defines how much spread to allow in our points.189

Relative Action Module. To train πR, we use the weighted sum of three different losses. We train190

a = (p, q, g) = πR(xR) with an L2 loss over the δp, a quaternion distance metric for the loss on q191

based on prior work [36] and binary cross-entropy loss for gripper action classification (Sec. A.3).192

3.5 Task Planning193

Consider a natural language instruction from a user such as ‘put away the bottle on a table’. We194

decompose it to a sequence of atomic skills as: goto(’bottle’), pick up(’bottle’),195

goto(’table’), and place on(’table’). We programmatically create natural language196

and code templates for 16 task families and generated a dataset of 500k samples. We use197

LLaMA [37] models for in-context learning [38, 39] and adapter fine-tuning [40] to learn the map-198

ping between natural language task instructions to the corresponding sequence of atomic skills.199

4 Experiments200

We report the success rate of our model for 8 real-world manipulation tasks in Table 2, and compare201

it against prior baselines trained using the same labeling scheme. Overall, we see an improvement of202

1.6x over our best comparative baseline, PerAct [2]. We test each model under two different condi-203

tions: Seen setting assumption; i.e. those with seen distractor objects and objects placed roughly in204

1https://github.com/hello-robot/stretch_ros

6

https://github.com/hello-robot/stretch_ros

Seen Unseen
Skill Name PerAct SLAP PerAct SLAP
Open bottom drawer 00% 80% 00% 60%
Open top drawer 60% 80% 40% 40%
Close drawer 100% 100% 40% 40%
Pick lemon from basket 60% 80% 10% 40%
Pick bottle 60% 60% 60% 40%
Place into the drawer 60% 80% 40% 60%
Place into the basket 40% 100% 10% 60%
Place into the bowl 40% 60% 00% 40%
Average Success Rate 50% 80% 27.5% 47.5%
Improvement 1.6x 1.7x

Table 2: SLAP and PerAct [2] performance on real world
Franka manipulation tasks. We evaluate both seen scenes (seen
object positions and distractors), but in different arrangements,
and unseen scenes with previously-unseen object positions and
distractors. SLAP is notably better overall in both conditions.

Skill Name SLAP (5 tries)
Open Drawer 60%
Close Drawer 100%
Take bottle 80%
Pour into bowl 80%
Table 3: SLAP on a mobile
manipulator using a multi-
task model across 4 skills.
With semantic predictions
added to our feature space,
we see the model perform
better on unseen scenes with
new distractors and unseen
relative position of the robot
with respect to the scene

the same range of positions and orientations as in the training data in any relative arrangement (inl-205

cuding unseen). Second, we test under unseen setting assumptions; i.e. those with unseen distractor206

objects and the implicated object placed significantly out of the range of positions and orientations207

already seen. We run 5 tests per scene setting per skill per model and report the percentage suc-208

cess numbers in Table 2. We compare our model against Perceiver-Actor (PerAct) [2]. We train209

each model for the same number of training steps and choose the SLAP model based on the best210

validation loss. For PerAct, we use the last checkpoint, per their testing practices [2].211

We also run a per-skill evaluation of SLAP on Stretch under the unseen setting assumption (see212

Fig. 3) accomplished by adding unseen distractor objects to the scene and moving the robot base213

position within reachable distance of the object. Note demonstrations were taken on a different214

robot than the one policies were deployed on.215

4.1 Longitudinal Task Execution on Stretch216

Success

Total 68.5
Heuristic 66.0
Learned 80.0

Table 1: End-to-
end performance.
Learned skills out-
perform heuristics
except due to Detic
failures.

We trained a multi-task model for the Stretch robot for five skills using 10217

demonstrations each. This model was deployed in an end-to-end system218

which operates over code-list generated by a task-planner (as in Sec. 3.5).219

We ran 5 prompts end-to-end with 4 to 8 skills each, using ground truth plans220

- we verify the viability of generating these task plans in §4.2. These exper-221

iments are done under the unseen setting with the robot spawning anywhere222

with respect to the objects. For fair evaluation in low-data regime, we add223

some structure by specifying orthogonal viewing direction for objects. Once224

the agent finds the object of interest it fires an initial prediction using SLAP225

to find most promising interaction point. This prediction happens under any226

dynamic viewing angle of the object (we assume the robot can see the object). This dynamic pre-227

diction and pre-programmed viewing angle is used to approach the object at an orthogonal viewing228

angle where the model fires an actionable prediction for the full skill execution. We observe adding229

semantic features from Detic significantly improves IPM performance with unseen distractors (80%230

against 47.5% in Table 2) however we see failures when relative position is significantly perturbed.231

4.2 Task planning with in-context learning and fine-tuning LLaMa232

Previous work has shown the strength of language models as zero-shot planners [41], a result233

strengthened by improved techniques for “in-context learning” or prompting [42]. To verify that234

models can produce task plans with the skills we defined, we experiment with both in-context learn-235

ing (IC) [43] of LLaMA [37] and adapter fine-tuning (FT) [40].236

7

Figure 6: Examples of tasks executed on a Franka arm through our trained model in a clean setting.
We trained numerous tasks (left) and tested on both seen and unseen objects (right).

Task Lat.
LLaMa Verb Noun Acc. Corr. (sec.)
IC 7B 83 81 76 61 16.4
IC 30B 81 81 76 62 27.6

FT 7B 100 98 99 91 19.5

Figure 5: Fine-tuning (FT) outperforms in-
context learning (IC) for same latency.

Table 5 presents the models’ verb, noun, and combined237

accuracies. Task Correctness is a binary score if the en-238

tire prediction was correct, and finally, latency is mea-239

sured in seconds on a single A6000 with 16 GB RAM.2240

High Task Correctness from a small model verifies the241

compatibility of our skills with LLM task planning.242

4.3 Ablations243

Hybrid vs Monolithic Architecture (Table-top). For the same number of epochs, SLAP does244

better than PerAct on 6 of 8 tasks when tested in in-distribution setting and 5 of 8 tasks when tested245

in out-of-distribution settings. PerAct performs equally well as our model for 2 of 8 tasks on our246

in-distribution scenes. Similarly, for our “hard” generalization scenes, PerAct performed equally247

well in two cases, and actually outperformed SLAP when picking up a bottle. In failure cases, πR248

predicted the correct trajectory, but not with respect to the right part of the object.249

Unseen Scene Generalization. We see a drop in the success rate for both PerAct and SLAP when250

tested on out-of-distribution settings. PerAct would often predict the correct approach actions, but251

then it would fail to grasp accurately. With SLAP, however, we saw that pI was predicted fairly252

accurately, but the regressor would fail for out-of-distribution object placements specifically because253

of bad orientation prediction. When πI failed, it was because the position and orientation of the254

target object was dramatically different, and unseen distractors confused it. We see better results for255

SLAP under Stretch setting due to the addition of semantic features from Detic.256

5 Conclusion257

We proposed a method for learning visual-language policies for decision making in complex envi-258

ronments. SLAP is a novel architecture which combines the structure of a point-cloud based input259

with semantics from language and accompanying demonstrations to predict continuous end-effector260

actions for manipulation tasks. We demonstrate SLAP on two hardware platforms, including an261

end-to-end evaluation on a mobile manipulator, something not present in prior work.262

5.1 Limitations263

SLAP has high variance in out-of-distribution situations, resulting in complete failure if πI fails to264

correctly identify the context. For πR, multimodal or noisy data still poses issues; replacing πR265

with a policy which can better handle this data, e.g. Diffusion Policies [45]. Overall system has266

multiple points-of-failure due to heuristic policies, unaligned language and vision models; end-to-267

end trainable architectures and cross-modal alignment could help.268

2Adaptor fine-tuning increases the model size by ∼6%, which accounts for the additional latency compared
to IC. We use standard inference libraries so results are comparable, but not optimized for runtime [44].

8

References269

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-270

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv271

preprint arXiv:2212.06817, 2022.272

[2] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic273

manipulation. arXiv preprint arXiv:2209.05451, 2022.274

[3] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,275

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint276

arXiv:2303.03378, 2023.277

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on278

point sets in a metric space. Advances in neural information processing systems, 30, 2017.279

[5] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations for280

sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR, 2022.281

[6] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,282

D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic283

manipulation. In Conference on Robot Learning, pages 726–747. PMLRG, 2021.284

[7] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-285

lation. In Conference on Robot Learning, pages 894–906. PMLR, 2022.286

[8] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual language maps for robot navigation.287

arXiv preprint arXiv:2210.05714, 2022.288

[9] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic289

manipulation. IEEE Robotics and Automation Letters, 7(2):1612–1619, 2022.290

[10] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,291

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic292

affordances. arXiv preprint arXiv:2204.01691, 2022.293

[11] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From pixels to294

actions for articulated 3d objects. In Proceedings of the IEEE/CVF International Conference295

on Computer Vision, pages 6813–6823, 2021.296

[12] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. ““Good297

robot!”: Efficient reinforcement learning for multi-step visual tasks with sim to real transfer.298

IEEE Robotics and Automation Letters, 5(4):6724–6731, 2020.299

[13] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven300

history-aware policies for robotic manipulations. arXiv preprint arXiv:2209.04899, 2022.301

[14] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes302

using image-level supervision. In ECCV, 2022.303

[15] I. Misra, R. Girdhar, and A. Joulin. An end-to-end transformer model for 3d object detection.304

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2906–305

2917, 2021.306

[16] R. Wu, Y. Zhao, K. Mo, Z. Guo, Y. Wang, T. Wu, Q. Fan, X. Chen, L. Guibas, and H. Dong.307

Vat-mart: Learning visual action trajectory proposals for manipulating 3d articulated objects.308

arXiv preprint arXiv:2106.14440, 2021.309

[17] Z. Xu, Z. He, and S. Song. Umpnet: Universal manipulation policy network for articulated310

objects. arXiv preprint arXiv:2109.05668, 2021.311

9

[18] C. Xie, Y. Xiang, A. Mousavian, and D. Fox. Unseen object instance segmentation for robotic312

environments. IEEE Transactions on Robotics, 37(5):1343–1359, 2021.313

[19] Y. Xiang, C. Xie, A. Mousavian, and D. Fox. Learning rgb-d feature embeddings for unseen314

object instance segmentation. In Conference on Robot Learning, pages 461–470. PMLR, 2021.315

[20] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-dof grasping for target-driven316

object manipulation in clutter. In 2020 IEEE International Conference on Robotics and Au-317

tomation (ICRA), pages 6232–6238. IEEE, 2020.318

[21] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof319

grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and320

Automation (ICRA), pages 13438–13444. IEEE, 2021.321

[22] C. Paxton, C. Xie, T. Hermans, and D. Fox. Predicting stable configurations for semantic322

placement of novel objects. In Conference on Robot Learning, pages 806–815. PMLR, 2022.323

[23] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement324

planning for unknown objects. arXiv preprint arXiv:2106.01352, 2021.325

[24] A. Goyal, A. Mousavian, C. Paxton, Y.-W. Chao, B. Okorn, J. Deng, and D. Fox. Ifor: Iter-326

ative flow minimization for robotic object rearrangement. In Proceedings of the IEEE/CVF327

Conference on Computer Vision and Pattern Recognition, pages 14787–14797, 2022.328

[25] W. Liu, C. Paxton, T. Hermans, and D. Fox. Structformer: Learning spatial structure for329

language-guided semantic rearrangement of novel objects. In 2022 International Conference330

on Robotics and Automation (ICRA), pages 6322–6329. IEEE, 2022.331

[26] W. Liu, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Object-centric diffusion for332

semantic rearrangement of novel objects. arXiv preprint arXiv:2211.04604, 2022.333

[27] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manip-334

ulation of unknown objects via task and motion planning with estimated affordances. In 2022335

International Conference on Robotics and Automation (ICRA), pages 1940–1946. IEEE, 2022.336

[28] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language337

instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.338

[29] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over339

unstructured data. arXiv preprint arXiv:2210.01911, 2022.340

[30] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representation341

for high-level natural language instruction execution. In Conference on Robot Learning, pages342

706–717. PMLR, 2022.343

[31] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov. Film: Following344

instructions in language with modular methods. arXiv preprint arXiv:2110.07342, 2021.345

[32] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,346

A. Brock, E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs &347

outputs. arXiv preprint arXiv:2107.14795, 2021.348

[33] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,349

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-350

sion. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.351

[34] Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier. Polymetis. https://352

facebookresearch.github.io/fairo/polymetis/, 2021.353

[35] S. Powers, A. Gupta, and C. Paxton. Evaluating continual learning on a home robot, 2023.354

10

https://facebookresearch.github.io/fairo/polymetis/
https://facebookresearch.github.io/fairo/polymetis/
https://facebookresearch.github.io/fairo/polymetis/

[36] C. Paxton, Y. Bisk, J. Thomason, A. Byravan, and D. Foxl. Prospection: Interpretable plans355

from language by predicting the future. In 2019 International Conference on Robotics and356

Automation (ICRA), pages 6942–6948. IEEE, 2019.357

[37] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,358

N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama:359

Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.360

[38] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,361

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,362

R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,363

M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,364

and D. Amodei. Language models are few-shot learners. ArXiv, 2020.365

[39] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is366

in-context learning? investigations with linear models, 2023.367

[40] E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and W. Chen. Lora: Low-rank368

adaptation of large language models, 2021.369

[41] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-370

tracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.371

[42] O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham.372

In-Context Retrieval-Augmented Language Models, Jan. 2023. URL http://arxiv.org/373

abs/2302.00083. arXiv:2302.00083 [cs].374

[43] J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang, D. Zhou, and375

T. Ma. Larger language models do in-context learning differently, Mar. 2023. URL http:376

//arxiv.org/abs/2303.03846. arXiv:2303.03846 [cs].377

[44] J. Fernandez, J. Kahn, C. Na, Y. Bisk, and E. Strubell. The Framework Tax: Disparities378

Between Inference Efficiency in Research and Deployment. ArXiv, 2023. URL https:379

//arxiv.org/abs/2302.06117.380

[45] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:381

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.382

[46] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The design of stretch: A com-383

pact, lightweight mobile manipulator for indoor human environments. In 2022 International384

Conference on Robotics and Automation (ICRA), pages 3150–3157. IEEE, 2022.385

[47] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kines-386

thetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual387

ACM/IEEE international conference on Human-Robot Interaction, pages 391–398, 2012.388

[48] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,389

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand390

manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.391

[49] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-392

net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp393

metrics. arXiv preprint arXiv:1703.09312, 2017.394

[50] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam. Clip-fields: Weakly395

supervised semantic fields for robotic memory. arXiv preprint arXiv:2210.05663, 2022.396

[51] B. Bolte, A. Wang, J. Yang, M. Mukadam, M. Kalakrishnan, and C. Paxton. Usa-net: Unified397

semantic and affordance representations for robot memory. arXiv preprint arXiv:2304.12164,398

2023.399

11

http://arxiv.org/abs/2302.00083
http://arxiv.org/abs/2302.00083
http://arxiv.org/abs/2302.00083
http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2302.06117
https://arxiv.org/abs/2302.06117
https://arxiv.org/abs/2302.06117

400

Appendix401

Table of Contents402
403

A Training 12404

A.1 Data Collection and Annotation . 12405

A.2 Data Processing . 12406

A.3 Action Prediction Losses . 13407

A.4 Skill Weighting . 13408

B Relative Action Module 14409

B.1 Relative Action Model: MLP Implementation 14410

C Tasks 15411

D Skills 15412

D.1 In vs. Out Of Distribution . 15413

D.2 Language Annotations . 17414

D.3 Out of distribution Results from SLAP . 17415

D.4 Motion Planning Failures . 17416

E Additional Analysis 19417

E.1 Visualizing the Learned Attention . 19418

E.2 Language Generalization . 19419

F Additional Related Work 19420
421
422
423

A Training424

Below is expanded information on our training, algorithm, and data processing to improve repro-425

ducibility.426

A.1 Data Collection and Annotation427

When collecting an episode with the Franka arm, we first scan the scene with a pre-defined list of428

scanning positions to collect an aggregated x. In our case, we make no assumption as to what or how429

many these are, or how large the resulting input point cloud x is. With the Hello Robot Stretch [46],430

we collect data based on exactly where the robot is looking.431

Then, we collect demonstration data using kinesthetic teaching for the Franka arm (demonstrator432

physically moves the robot) and via controller teleoperation for the Stretch robot. The demonstrator433

moves the arm through the trajectory associated with each task, explicitly recording the keyframes434

[47] associated with action execution. These represent the salient moments within a task – the435

bottlenecks in the tasks’ state space, which can be connected by our low-level controller.436

A.2 Data Processing437

We execute each individual skill open-loop based on an initial observation. We use data augmenta-438

tion to make sure even with relatively few examples, we still see good generalization performance.439

Data Augmentation. Prior work in RGB-D perception for robotic manipulation (e.g. [18, 48]) has440

extensively used a variety of data augmentation tricks to improve real-world performance. In this441

12

work, we use three different data augmentation techniques to randomize the input scene x used to442

train pI = πI(x, l):443

• Elliptical dropout: Random ellipses are dropped out from the depth channel to emulate444

occlusions and random noise, as per prior work [49, 18]. Number of ellipses are sampled445

from a Poisson distribution with mean of 10.446

• Multiplicative Noise: Again as per prior work [49, 18, 22], we add multiplicative noise447

from a gamma process to the depth channel.448

• Additive Noise: Gaussian process noise is added to the points in the point-cloud. Param-449

eters for the Gaussian distribution are sampled uniformly from given ranges. This is to450

emulate the natural frame-to-frame point-cloud noise that occurs in the real-world.451

• Rotational Randomization: Similar to prior work [2, 22, 25], we rotate our entire scene452

around the z-axis within a range of ±45 degrees to help force the model to learn rotational453

invariance.454

• Random cropping: with p = 0.75, we randomly crop to a radius around p̂I + δ, where δ is455

a random translation sampled from a Gaussian distribution. The radius to crop is randomly456

sampled in (1, 2) meters.457

Data Augmentation for πR. We crop the relational input xR ⊂ x around the ground-truth pI , using458

a fixed radius r = 0.1m. We implement an additional augmentation for learning our action model.459

Since pI is chosen from the discretized set of downsampled points P , we might in principle be460

limited to this granularity of response. Instead, we randomly shift both pI and the positional action461

δp by some uniformly-sampled offset δr ∈ R3, with up to 0.025m of noise. This lets πR adapt to462

interaction prediction errors of up to several centimeters.463

A.3 Action Prediction Losses464

Following [36] for the orientation, we can compute the angle between two quaternions θ as:465

θ = cos−1(2⟨q̂1, q̂2⟩2). (1)

We can remove the cosine component and use it as a squared distance metric between 0 and 1. We466

then compute the position and orientation loss as:467

LR = λp∥δp− δ̂p∥22 + λq(1− ⟨q̂, q⟩) (2)

where λp and λq are weights on the positional and orientation components of the loss, set to 1 and468

1e− 2 respectively.469

Predicting gripper action is a classification problem trained with a cross-entropy loss. For input we470

use the task’s language description embedding and proprioceptive information about the robot as471

input, i.e. s = (l, gact, gw, ts) where gact is 1 if gripper is closed and 0 otherwise, gw is the distance472

between fingers of the gripper and ts is the time-step. The gripper action loss is then:473

Lg = λgCE(g, ĝ) (3)

where λg is the weight on cross-entropy loss set to 0.0001. The batch-size is set at 1 for this474

implementation.475

We train πI and πR separately for n = 85 epochs. At each epoch, we compare validation per-476

formance to the current best - if validation did not improve, we reset performance to the last best477

model.478

A.4 Skill Weighting479

In Stretch experiments, we used a wide range of skills with different error tolerances and corre-480

sponding variances. As a result,481

13

𝛿𝑝

𝑞

SA Layer
MLP
MLP + ReLU
Linear

6DOF Keyframe (for training)

𝑝!
Language + Proprio

Embeddings

+

𝑔𝜎

Figure 7: Regression model architecture with separate heads for each output. The point-cloud is
cropped around the interaction point with some perturbation and passed to a cascade of set ab-
straction layers. Encoded spatial features are then concatenated with language and proprioception
embeddings to predict position offset of action from interaction point, absolute orientation and grip-
per action as a boolean.

𝛿𝑝

𝑞

PointNet++ SA

Language CLIP
embedding +

𝑔
Time one-hot
 embedding

Proprioception
embedding

Regression
Head

MLP +
LSTM +

MLP

In
cr

em
en

ts

Figure 8: LSTM-based regression model architecture based on the regression head and PointNet++
embeddings introduced in Fig. 7. LSTM-based architecture shows higher stability in learning action
distribution with wider distribution due to the conditioning effect.

B Relative Action Module482

In our work, the Relative Action Module πR is assumed to be some local policy which predicts483

end-effector poses. In our case, we implement two different versions of this policy, one which was484

used on the static Franka manipulator and one which was implemented on the Stretch. In both cases:485

• The policy predicts an end effector pose relative to the predicted interaction point from πI486

• The policy is conditioned on a local crop around this interaction point.487

B.1 Relative Action Model: MLP Implementation488

Fig. 7 gives an overview of the MLP version of the regression model. The model takes in the489

cropped point cloud (augmented during training as discussed in Sec. A.2. We saw that injecting490

random noise to the interation point during training allowed the policy to, at test time, recover from491

failures (because it predicted an interaction point near the correct area, instead of at the correct492

position). However, we observed this architecture suffered when positional distribution of actions493

varied widely with respect to the interaction point position across tasks. Thus we implemented a494

LSTM version based on the MLP version which exhibited better performance in learning wider495

action distribution, based on our initial experiments.496

14

In-distribution Out of distribution
Figure 9: Within distribution objects used at training time and out-of-distribution objects introduced
during testing in our experiments.

C Tasks497

We generate a dataset with more than 500k samples using natural language descriptions and corre-498

sponding atomic skill templates. We consider the following task families:499

‘bring x from y articulated’500

‘bring x from y articulated to pour in z’501

‘bring x from y articulated to wipe z’502

‘bring x from y surface’503

‘bring x from y surface to pour in z’504

‘bring x from y surface to pour in z then place on w surface’505

‘bring x from y surface to wipe z’506

‘move x from y articulated to z articulated’507

‘move x from y articulated to z surface’508

‘move x from y surface to z articulated’509

‘move x from y surface to z surface’510

‘take x from human to pour in z and place on y surface’511

‘take x from human to pour in z’512

‘take x from human to wipe z’513

‘take x from human to z articulated’514

‘take x from human to z surface’515

For each task family, we define a corresponding template containing the sequence of atomic skills.516

To populate these templates and generate the data, we create a list of more than 150 movable objects517

kitchen objects, surfaces like table, kitchen counter and articulated objects like drawer,518

cabinets. For pour skill, we create a list of “spillable” items such as cup of coffee, or519

bowl of jelly beans. Similarly, for wipe skill, we have a list of items to wipe with such as520

sponge, or brush.521

D Skills522

Here we refer to atomic skills learned by SLAP as simple tasks or “tasks”. This allows us to discuss523

corresponding “actions” that are defined in terms of the relative offset from the interaction point.524

D.1 In vs. Out Of Distribution525

We used a number of objects for our Franka manipulation experiments, which included both in- and526

out-of-distribution objects. One goal of SLAP is to show that our methods generalize much better527

than others to different types of scenes and different levels of clutter.528

15

Unseen Distractors Seen Objects

Figure 10: Seen objects and unseen distractors used in longitudinal experiments with Stretch.

Every real-world task scene had a sub-sample of all within-distribution objects.529

1. Open the top drawer530

• Task: Grab the small loop and pull the drawer open. Drawer configuration within531

training data is face-first with slight orientation changes532

• Action labeling: Approach the loop, grab the loop, pull the drawer out533

• Success metric: When the drawer is open by 50% or more534

2. Open the bottom drawer535

• Task: Grab the cylindrical handle and pull the drawer open. Drawer configuration536

within training data is face-first with slight orientation changes. Note significantly537

different grasp is required than for top drawer538

• Action labeling: Approach the handle, grab it, pull the drawer out539

• Success metric: When the drawer is open by 50% or more540

3. Close the drawer541

• Task: This task is unqualified, i.e. the instructor does not say whether to close the top542

or bottom drawer instead the agent must determine which drawer needs closing from543

its state and close it. Align the gripper with the front of whichever drawer is open544

and push it closed. The training set always has only one of the drawers open, in a545

front-facing configuration with small orientation changes546

• Action labeling: Approach drawer from the front, make contact, push until closed547

• Success metric: When the drawer is closed to within 10% of its limit or when arm is548

maximally stretched out to its limit (when the drawer is kept far back)549

4. Place inside the drawer550

• Task: Approach an empty spot inside the drawer and place whatever is in hand inside551

it552

• Action labeling: Top-down approach pose on top of the drawer, move to make contact553

with the surface and release the object, move up for retreat554

• Success metric: Object should be inside the drawer555

5. Pick lemon from the basket556

• Task: Reach into the basket where lemon is placed and pick up the lemon557

• Action labeling:558

• Success metric: Lemon should be in robot’s gripper559

• Considerations: Since the roll-out is open-loop and a lemon is spherical in nature, a560

trial was assigned success if the lemon rolled out of hand upon contact after the 2nd561

action. This was done consistently for both PerAct and SLAP.562

16

6. Place in the bowl563

• Task: Place whatever is in robot’s hand into the bowl receptacle564

• Action labeling: Approach action on top of the bowl, interaction action inside the565

bowl with gripper open, retreat action on top of the bowl566

• Success metric: The object in hand should be inside the bowl now567

7. Place in the basket568

• Task: Place the object in robot’s hand into the basket569

• Action labeling: Approach action on top of the free space in basket, interaction action570

inside the basket with gripper open, retreat action on top of the basket571

• Success metric: The object is inside the basket572

8. Pick up the bottle573

• Task: Pick up the bottle from the table574

• Action labeling: Approach pose in front of the robot with open gripper, grasp pose575

with gripper enclosing the bottle and gripper closed, retreat action at some height576

from previous action with grippers closed577

• Success metric: The bottle should be in robot’s gripper off the table578

Notably, success for opening drawers is if the drawer is 50% open after execution; this is because579

sometimes the drawer is too close to the robot’s base for it to open fully with a fixed-base Franka580

arm.581

D.2 Language Annotations582

Below we include the list of language annotations used in our experiments. Table 4 shows the583

language that was used to train the model; we’re able to show some robustness to different language584

expressions. We performed a set of experiments on held-out, out-of-distribution language despite585

this not being the focus of our work; this test language is shown in Table 5.586

D.3 Out of distribution Results from SLAP587

We show more results for attention point predicted by πI in Fig. 11. For the placing task, the agent588

has never seen a heavily cluttered drawer inside before, but it is able to find flat space which indicates589

placing affordance. For the bottle picking task, this sample has a lemon right next to the bottle which590

changes the shape of the point-cloud around the bottle. We see that πI is able to find an interaction591

point albeit with placement different from expert and lower down on the bottle. Similarly the open592

top drawer sample has more heavy clutter on and around the drawer to test robustness.593

Fig. 12 shows the prediction and generated trajectory for picking up a previously unseen bottle Note594

that while the models are able to detect the out of distribution bottle, the trajectory actually fails due595

to bottle being much wider and requiring more accuracy in grasping.596

D.4 Motion Planning Failures597

Our evaluation system has a simple motion planner which is not collision aware as a result we saw598

a number of task failures for both the models. However, we note that the frequency of task failures599

due to motion planning problems was higher for PerAct. We think it is because PerAct predicts600

each action of the same task as an entirely separate prediction trial, while SLAP forces continuity on601

the relative motions for the same task by centering them around the interaction point (see Fig. 12).602

That said, we also note with an advanced motion planner PerAct will not run into such issues as603

seen during our evaluations. Authors note in their own paper their heavy reliance on good motion604

planning solutions [2].605

17

Place in drawer Pick up bottle Open top drawer

Figure 11: Examples of out of distribution predictions made by πI . We show that it is able to handle
heavy clutter around the implicated object to predict interaction points. Note that the prediction for
bottle picking is sub-optimal in this example.

time

Figure 12: A generalization example of success for our model. The new bottle has same shape as
the within distribution bottle but is much taller, different in color and wider in girth. The model is
able to predict the interaction site and a feasible trajectory around it. We note though the execution
of this trajectory was a failure; due to wider girth of the bottle the predicted grasp was not accurate
enough to enclose the object.

time

Pl
ac

e
in

 d
ra

w
er

Pl
ac

e
in

 b
ow

l

Figure 13: Examples of failure cases for our baseline, PerAct, for the “place in drawer” and “place
in bowl” tasks. In the top example, the gripper is moved from drawer’s side towards inside, instead
of from the top as demonstrated by expert. The gripper ends up pushing off the drawer to the side
as our motion-planner is not collision-aware. Note that SLAP does not exhibit such behaviors as πR

implicitly learns the collision constraints present in demonstrated data. In the bottom example, each
action prediction is disjointed from previous and semantically wrong.

18

Figure 14: An out-of-distribution SLAP failure example where an extreme sideways configuration
of the drawer is paired with unseen distractors for the “open top drawer” skill. We can see the
attention mask ranking other distractors in its top 5% and failing to choose an optimal interaction
point.

E Additional Analysis606

E.1 Visualizing the Learned Attention607

Since we use scores to choose the final interaction point, our classifier model is naturally inter-608

pretable, being able to highlight points of interest in a scene. We visualize this attention by selecting609

the points with the highest 5% of interaction score given a language command l.610

E.2 Language Generalization611

By using pretrained CLIP language embeddings to learn our spatial attention module πI , our model612

can generalize to unseen language to some extent. We tested this by running an experiment where we613

evaluate performance on in-distribution scene settings, prompted by a held-out list of language ex-614

pressions. We choose three representative tasks for this experiment and run 10 tests with 2 different615

language phrasings.616

F Additional Related Work617

We note some other related work that’s relevant to SLAP, but not as directly relevant.618

Vision-Language Navigation. Similar representations are often used to predict subgoals for explo-619

ration in vision-language navigation [30, 31, 8, 50, 51]. HLSM builds a voxel map [30], whereas620

FiLM builds a 2D representation and learns to predict where to go next [31]. VLMaps proposes an621

object-centric solution, creating a set of candidate objects to move to [8], while CLIP-Fields learns622

an implicit representation which can be used to make predictions about point attentions in responds623

to language queries [50], but does not look at manipulation. Similarly, USA-Net [51] generates a 3d624

representation with a lot of semantic features.625

626

19

Task Name Training Annotations

pick up the bottle pick up a bottle from the table
pick up a bottle
grab my water bottle

pick up a lemon pick the lemon from inside the white basket
grab a lemon from the basket on the table
hand me a lemon from that white basket

place lemon in bowl place the lemon from your gripper into the bowl
add the lemon to a bowl on the table
put the lemon in the bowl

place in the basket place the object in your hand into the basket
put the object into the white basket
place the thing into the basket on the table

open bottom drawer open the bottom drawer of the shelf on the table
pull the second drawer out
open the lowest drawer

close the drawer close the drawers
push in the drawer
close the drawer with your gripper

open top drawer open the top drawer of the shelf on the table
pull the first drawer out
open the highest drawer

place in the drawer put it into the drawer
place the object into the open drawer
add the object to the drawer

Table 4: Examples of language used to train the model.

Task Name Held-Out Test Annotations

Pick up the bottle Grab the bottle from the table
Pick up the water bottle

Open the top drawer Pull top drawer out
Open the first drawer

Place into the drawer Add to the drawer
Put inside the drawer

Table 5: Examples of out-of-distribution language annotations used for evaluation

20

	Introduction
	Related Work
	Approach
	Scene Representation
	Interaction Prediction Module
	Relative Action Module
	Training SLAP
	Task Planning

	Experiments
	Longitudinal Task Execution on Stretch
	Task planning with in-context learning and fine-tuning LLaMa
	Ablations

	Conclusion
	Limitations

	Appendix
	 Appendix
	Training
	Data Collection and Annotation
	Data Processing
	Action Prediction Losses
	Skill Weighting

	Relative Action Module
	Relative Action Model: MLP Implementation

	Tasks
	Skills
	In vs. Out Of Distribution
	Language Annotations
	Out of distribution Results from SLAP
	Motion Planning Failures

	Additional Analysis
	Visualizing the Learned Attention
	Language Generalization

	Additional Related Work

