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A APPENDIX

We add the proof of Theorem 1 and additional numerical experiments here.

A.1 PRELIMINARIES FROM OPTIMAL TRANSPORT THEORY

Definition 2. Suppose X is a metric space equipped with the metric d(x,y), and µ and ⌫ are
two probability measures on X . The Wasserstein distance (as known as the Kantorovich–Rubinstein

metric) dWd(µ, ⌫) between to probability measures µ and ⌫ for the metric function d(x,y) is defined
to be

dWd(µ, ⌫) = inf
⇡2⇧(X⇥X)

Z

X⇥X

d(x,y) d⇡(x,y),

where ⇧(X ⇥X) is the collection of all probability measure on X ⇥X such that

⇡(A⇥X) = µ(A), ⇡(X ⇥B) = ⌫(B)

for all measurable sets A,B ⇢ X .

For the analysis of the adaptive algorithm in this work, we consider the metric dM (x,y) induced by
the Euclidean metric d(x,y) = kx� yk2

dM (x,y) = min{M,d(x,y)}, x,y 2 X.

Then the metric dM (x,y) is always bounded by M (reachable, namely kdMk1 = M ). We denote
the Wasserstein distance for dM (x,y) by dWM (·, ·).
According to the optimal transport theory, the Wasserstein distance can be described by its dual form
(see e.g. Villani (2003), Theorem 1.14 and Remark 1.15 on Page 34).
Theorem 3 (Kantorovich-Rubinstein theorem). Let X be a Polish space and let d be a lower semi-

continuous metric on X . Let k · kLip denote the Lipschitz norm of a function defined as

k�kLip = sup
x 6=y

|�(x)� �(y)|
d(x,y)

.

Then

dWM (µ, ⌫) = sup
nZ

X

�(x) d(µ� ⌫)(x)
��� 0  �(x)  kdMk1 = M, and k�kLip  1

o
.

In this work, we restrict ourselves on a compact domain X = ⌦ ⇢ RD of learning, and without loss
of generality, we assume the Lebesgue measure of ⌦ is 1.

A.2 THE FIRST CONVERGENCE THEOREM AND ITS PROOF

Theorem 4. Let µ be the Lebesgue measure on X , which represents the uniform probability distri-

bution on ⌦. In addition, we assume Assumption A1 holds.

Then the optimal value of the min-max problem equation 5 is 0. Moreover, there is a sequence

{un}1n=1 of functions with r(un) 6= 0 for all n, such that it is an optimization sequence of problem

equation 5, namely,

lim
n!1

J (un, pn) = 0. (15)

for some sequence of functions {pn}1n=1 ⇢ V . Meanwhile, this optimization sequence has the

following two properties:

1. The residual sequence {r(un)}1n=1 of {un}1n=1 converges to 0 in L
2(dµ).

2. The renormalized squared residual distributions

d⌫n , r
2(un)R

⌦ r2(un(x)) dx
dµ (16)

converge to the uniform distribution µ in the Wasserstein distance dWM .
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Proof. Consider a minimizing sequence un, n = 1, 2, . . . of

inf
u

Z

⌦
r
2(u(x)) dx, (17)

where without loss of generality, we can assume that
R
⌦ r

2(un(x)) dx  1
n

.

Now
sup

kpkLip1
0pM

J (un, p)

= sup
kpkLip1
0pM

h Z

⌦
r
2(un(x))p(x) dx�

Z

⌦
r
2(un(x)) dx

Z

⌦
p(x) dx+

Z

⌦
r
2(un(x)) dx

Z

⌦
p(x) dx

i


Z

⌦
r
2(un(x)) dx

⇣
sup

kpkLip1
0pM

h Z

⌦
p(x) d⌫n(x)�

Z

⌦
p(x) dx

i
+ sup

kpkLip1
0pM

Z

⌦
p(x) dx

⌘

= (dWM (⌫n, µ) +M)

Z

⌦
r
2(un(x)) dx. (18)

By the assumption of the theorem, for each n, we can find a function ũn(x) so that the Wasserstein
distance dWM (⌫̃n, µ)  1

n
, where ⌫̃n is the measure defined as in equation 16 by replacing un(x)

with ũn(x). In fact, for each n, we can find, by partition of unity, a sequence of functions in C
1
c
(⌦)

converging to ⌦ in the Sobolev norm of W k,1 (See for example Evans (2010)). So we can find a
function wn in C

1
c
(⌦), such that kwn(x) � ⌦(x)k1  1

n
on ⌦. Since r is a surjection, there is

some ũn(x) so that

r
2(ũn) = wn

Z

⌦
r
2(un(x)) dx,

and Z

⌦
r
2(ũn) dx =

Z

⌦
wn(x) dx

Z

⌦
r
2(un(x)) dx

 (1 +

Z

⌦
⌦(x) dx)

Z

⌦
r
2(un(x)) dx

= 2

Z

⌦
r
2(un(x)) dx.

This means {ũn}1n=1 is also a minimizing sequence of equation 17, and it yields

dWM (⌫̃n, µ) = sup
kpkLip1
0pM

h Z

⌦
p(x) d⌫̃n(x)�

Z

⌦
p(x) dx

i

= sup
kpkLip1
0pM

Z

⌦
p(x)

h
r
2(ũn)(x)R

⌦ r2(ũn(x)) dx
� ⌦(x)

i
dx

= sup
kpkLip1
0pM

Z

⌦
p(x)

⇥
wn(x)� ⌦(x)

⇤
dx

 M

n
.

So we get from equation 18 that

0  lim
n!1

sup
kpkLip1
0pM

J (ũn, p)  lim
n!1

4M

Z

⌦
r
2(un) dx = 0,

which means that {ũn}1n=1 is also a minimizing sequence of equation 5, that is,
lim
n!1

J (ũn, pn) = 0., (15)

for some sequence of functions {pn}1n=1 ⇢ V . Meanwhile, we have the following properties of ũn:
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1. The residual sequence {r(ũn)}1n=1 converges to 0 in L
2(dµ), since

Z

⌦
r
2(ũn) dx  2

Z

⌦
r
2(un) dx  2

n
! 0, as n ! 1

2. The renormalized squared residual distributions

d⌫̃n , r
2(ũn)R

⌦ r2(ũn(x)) dx
dµ

converges to the uniform distribution µ in the Wasserstein distance dWM .

A.3 REPLACEMENT OF THE BOUNDEDNESS CONDITION IN THEOREM 4

For the boundedness constraint for “test function” p in 4, we prove that it can be removed in our
circumstance. And with the following lemma and its following remark, and Theorem 4, we can
obtain our main Theorem 1, which is stated again with its assumption in the following.
Assumption. The operator r in equation 7 is a surjection from a function space E1(RD) to C

1
c
(⌦),

the class of C1 functions that are compactly supported on ⌦.
Theorem. Let µ be the Lebesgue measure on RD

, which represents the uniform probability distri-

bution on ⌦. In addition, we assume Assumption A1 holds. Then the optimal value of the min-max

problem equation 7 is 0. Moreover, there is a sequence {un}1n=1 of functions with r(un) 6= 0 for all

n, such that it is an optimization sequence of equation 7, namely,

lim
n!1

J (un, pn) = 0,

for some sequence of functions {pn}1n=1 satisfying the constraints in equation 7. Meanwhile, this

optimization sequence has the following two properties:

1. The residual sequence {r(un)}1n=1 of {un}1n=1 converges to 0 in L
2(dµ).

2. The renormalized squared residual distributions

d⌫n , r
2(un)R

⌦ r2(un(x)) dx
dµ(x)

converge to the uniform distribution µ in the Wasserstein distance dWM .

Although the residue r2 is renormalized to a probability distribution for the analysis of the algorithm,
itself is not a probability distribution, and not treated as so. Actually, in the implementation of our
algorithm, the “test function” p is seen as sampling distribution density and the residue r2 is just the
PDE operator (or any kind of objective function whose minimum is 0). In the implementation, we
establish p as a generative model, that is, an invertible transform between an unknown distribution
(an adversarial distribution to the residual distribution if we think the algorithm as a similarity to
GANs) and an “easy-to-sample” distribution such as normal or uniform distribution. So we assume p
to be the density function of a probability distribution. Under this assumption, we have the following
result.
Lemma 5. Let ⌦ be a compact subset of RD

. If a positive function f : ⌦ ! R is K-Lipschitz

continuous, and f is the density function of a probability distribution, namely,
R
⌦ f dx = 1, then

there is some constant M = M(⌦,K), so that f  M . In other words,

f  M, 8f 2 S =
�
f � 0

��kfkLip  K, and

Z

⌦
f dx = 1

 
.

Proof. For any x, y 2 ⌦, we have

0  f(x) = f(x)� f(y) + f(y)  K|x� y|+ f(y)  KD(⌦) + f(y),
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where D(⌦) is the diameter of ⌦. Taking integral with respect to y over ⌦ on both sides, we have

0  f(x)µ(⌦)  KD(⌦)µ(⌦) + 1,

where µ(⌦) is the Lebesgue measure (volume) of ⌦, that is,

0  f(x)  KD(⌦) +
1

µ(⌦)
.

So we have
M = M(⌦,K) = KD(⌦) +

1

µ(⌦)
.

e The converse of this lemma is also true in the sense that if f is bounded by some constant M , then
the integral

R
⌦ f dx  Mµ(⌦), and f can be renormalized into a probability density function with

constant Mµ(⌦). And similar to boundedness for the gradient (or Lipschitz constant) discussed in
section 3.3, a constant renormalizer will not affect the training procedure.

A.4 DEVIATION OF EQUATION EQUATION 9 AND IT SOLUTION

For a given r(x;✓), consider the following minimization problem:

min
p↵>0

L(p↵) = �

Z

⌦
|rxp↵|2dx�

Z

⌦
r
2(x;✓)p↵(x)dx+ �

✓Z

⌦
p↵(dx)� 1

◆
,

where the positivity of p↵ is guaranteed by the KRnet and � is the Lagrange multiplier for the mass
conservation of PDF. Assuming that @p↵

@n = 0 on the boundary @⌦, where n is a unit normal vector
on @⌦ pointing outward. We have the first-order variation of L(p↵) for a perturbation function
�p(x)

�L =2�

Z

⌦
rp↵ ·r�pdx�

Z

⌦
r
2
�pdx+ �

Z

⌦
�pdx

=2�

✓Z

@⌦
�prp↵ · nd��

Z

⌦
�pr2

p↵dx

◆
�
Z

⌦
r
2
�pdx+ �

Z

⌦
�p(x)dx

=� 2�

Z

⌦
�pr2

p↵dx�
Z

⌦
r
2
�pdx+ �

Z

⌦
�p(x)dx

=�
Z

⌦
(2�r2

p↵ + r
2 � �)�pdx,

where we applied integration by parts and the homogeneous Neuman boundary conditions. The
optimality condition �L

�p
= 0 yields
⇢

2�r2
p↵(x) + r

2(x;✓)� � = 0, x 2 ⌦,
@p↵

@n = 0, x 2 @⌦.
(19)

From the compatibility condition for Neumann problems, we have
Z

⌦
(r2(x;✓)� �)dx = 0, (20)

which yields that

� =
1

|⌦|

Z

⌦
r
2(x;✓)dx.

Assume that ⌦ is a bounded domain with smooth boundary. It can be shown that if r 2 H
k(⌦) and

@⌦ 2 C
k+2 with k 2 N, the solution of equation equation 9 satisfies Taylor (2011)

kp↵kHk+2(⌦)  CkfkHk(⌦),

where f(x) = (�� r
2)/(2�) and C > 0 is a general constant that does not depend on r. According

to the Sobolev Imbedding Theorem Adams & John Fournier (2003),

W
k,1(⌦) ! C

0,1(⌦),
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when D = k � 1. Thus up to a set of measure zero, we have

kp↵kC0,1(⌦)  C1kp↵kWk,1(⌦)  C2kp↵kHk(⌦),

where C1 and C2 are general constants independent of p↵. So p↵ is Lipschitz continuous when
the boundary and r(x) are sufficiently smooth. However, this also means that the H1 regularization
used in equation equation 8 induces a weaker constraint than the Lipschitz condition in Lemma 5.

A.5 SUPPLEMENTARY EXPERIMENTS

About the setting of s(x) and g(x). The source term s(x) is derived by the exact solution, i.e.,
we can set the source function by plugging the exact solution into the equation to get s(x). We set
g(x) = u(x) since the Dirichlet boundary condition is imposed on @⌦.

Parametric Burgers’ Equation. We also test the proposed AAS method using parametric PDEs
that are commonly used in the design of engineering systems and uncertainty quantification. Specif-
ically, we consider the following parametric Burgers’ equation, which is a benchmark problem stud-
ied in DeepXDE.

@u

@t
+ u

@u

@x
+ v

@u

@y
= ⌫[(

@u

@x
)2 + (

@u

@y
)2]

@v

@t
+ u

@v

@x
+ v

@v

@y
= ⌫[(

@v

@x
)2 + (

@v

@y
)2]

x, y 2 [0, 1], and t 2 [0, 1]

where u and v are the velocities along x and y directions respectively, and ⌫ 2 (0, 1] is a parameter
that represents the kinematic viscosity of fluid. Here, the Dirichlet boundary conditions are imposed
on all boundaries. The exact solution is obtained as follows.

u(x, y, t) =
3

4
� 1

4[1 + exp((�4x+ 4y � t)/(32⌫))]
,

v(x, y, t) =
3

4
+

1

4[1 + exp((�4x+ 4y � t)/(32⌫))]
,

The problem setup space is x = [t, x, y, ⌫], i.e., D = 4. When ⌫ is small, solving this problem is
quite challenging. We use the proposed AAS method to train a neural network u✓(x) to approx-
imate the solution over the entire space x = [t, x, y, ⌫] 2 [0, 1]4. Figure 6 shows the numerical
results, which demonstrate that the proposed AAS method is able to accurately solve this parametric
Burgers’ equation. We can train the models using the strategy as discussed in Remark 2, i.e., we
gradually add the data points to the current training set. AAS with fixed � = 5 means that we use a
similar training strategy as DAS-G presented in Tang et al. (2023) with a fixed �, while AAS with
decay � = 5 means that � has a decay scheme at every 100 stages with decay rate 0.9. Adding the
data points gradually to the current set of random samples is more stable than that of replacing all
data points.

Figure 6: The results of the parametric Burgers’ equation. Left: The error behavior. Right: The
evolution of the variance.
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