
Dynamic influence maximization

Binghui Peng
Columbia University

bp2601@columbia.edu

Abstract

We initiate a systematic study on dynamic influence maximization (DIM). In the
DIM problem, one maintains a seed set S of at most k nodes in a dynamically
involving social network, with the goal of maximizing the expected influence
spread while minimizing the amortized updating cost. We consider two evolution
models. In the incremental model, the social network gets enlarged over time
and one only introduces new users and establishes new social links, we design an
algorithm that achieves (1−1/e−ε)-approximation to the optimal solution and has
k · poly(log n, ε−1) amortized running time, which matches the state-of-art offline
algorithm with only poly-logarithmic overhead. In the fully dynamic model, users
join in and leave, influence propagation gets strengthened or weakened in real time,
we prove that under the Strong Exponential Time Hypothesis (SETH), no algorithm
can achieve 2−(logn)1−o(1)

-approximation unless the amortized running time is
n1−o(1). On the technical side, we exploit novel adaptive sampling approaches
that reduce DIM to the dynamic MAX-k coverage problem, and design an efficient
(1−1/e− ε)-approximation algorithm for it. Our lower bound leverages the recent
developed distributed PCP framework.

1 Introduction

Influence maximization (IM) is the algorithmic task of given a social network and a stochastic
diffusion model, finding a seed set of at most k nodes with the largest expected influence spread
over the network [35]. Influence maximization and its variants have been extensively studied in the
literature over past decades [35, 13, 29, 45, 49, 38, 4, 22, 8], and it has applications in viral market,
rumor control, advertising, etc.

Social influence can be highly dynamic and the propagation tendencies between users can alter
dramatically over time. For example, in a Twitter network, new users join in and existing users drop
out in real time, pop stars arise instantly for breaking news and trending topics; in a DBLP network,
scientific co-authorship is built up and expands gradually over time. The classic IM algorithms
make crucial assumptions on a stationary social network and they fail to capture the elastic nature of
social networks. As a consequence, their seeding set could become outdated rapidly in a constantly
involving social network. To mitigate the issue, one designs a dynamic influence maximization
algorithm, which maintains a feasible seed set with high influence impact over time, and at the same
time, saturates low average computation cost per update of the social network.

In this paper, we initiate a systematic study on the dynamic influence maximization (DIM) problem .
Two types of evolution models are of interests to us. In an incremental model1, the social networks
keep growing: new users join in and new social relationship is built up or strengthened over time. The
motivating example is the DBLP network, where co-authorship gets expanded over time. Another
justification is the preferential attachment involving model of social network [12, 41]. In a fully

1These terms are standard notions in the dynamic algorithm literature, e.g., see [30, 1]

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

dynamic model, the social network involves over time, users can join in and leave out, social links
emerge and disappear, influence impacts get strengthened or weakened. The motivating examples are
social media networks like Twitter or Facebook, and the advertising market.

There are some pioneer works on the topic of dynamic influence maximization and various heuristic
algorithms have been proposed in the literature [52, 44, 24]. These algorithms have different kinds of
approximation guarantee on the seed set, but the crucial drawback is that the amortized running time
per update is no better than Ω(n), here n is the total number of nodes in a social network. This is
extremely unsatisfactory from a theoretical view, as it indicates these algorithm do no better than
re-run the state-of-art IM algorithm upon every update. Hence, the central question over the field is
that, can we achieve the optimal approximation guarantee with no significant overhead on amortized
running time?

Our contribution We address the above questions and provide clear resolutions. In the incremental
model, we prove it is possible to maintain a seed set with (1 − 1/e − ε)-approximation ratio in
amortized running time of k · poly(log n, ε−1), which matches the state-of-art offline algorithm up
to poly-logarithmic factors (Theorem 3.1). While in the fully dynamic algorithm, assuming the
Strong Exponential Time Hypothesis (SETH), we prove no algorithm can achieve 2−(logn)1−o(1)

approximation unless the amortized running time is n1−o(1) (Theorem 4.3 and Theorem 4.4). This
computational barrier draws a sharp separation between these two dynamic models and delivers
the following surprising message: There is no hope to achieve any meaningful approximation
guarantee for DIM, even one only aims for a slightly reduced running time than the naive approach
of re-instantiating an IM algorithm upon every update.

On the technical side, our DIM algorithm in the incremental model uses novel adaptive sampling
strategies and reduces the DIM problem to the dynamic MAX-k coverage problem. We provide
an efficient dynamic algorithm to the later problem. Both the adaptive sampling strategy and the
combinatorial algorithm could be of independent interests to the influence maximization community
and the submodular maximization community. For the computaional hardness result, we exploit a
novel application of the recent developed distribution PCP framework for fine grained complexity.

Related work Influence maximization as a discrete optimization task is first proposed in the seminal
work of Kempe et al. [35], who propose the Independent Cascade (IC) model and the Linear Threshold
(LT) model, prove the submodularity property and study the performance of greedy approximation
algorithm. Upon then, influence maximization and its variant has been extensively studied in the
literature, including scalable algorithms [21, 13, 51, 50], adaptive algorithms [29, 28, 45, 19, 49, 6],
learning algorithms [22, 8, 39, 32], etc. For detailed coverage over the area, we refer interested
readers to the survey of [18, 40].

Efficient and scalable influence maximization has been the central focus of the research. Influence
maximization is known to be NP-hard to approximate within (1 − 1/e) under the Independent
Cascade model [35], and APX-hard under the Linear Threshold model [48], while at the same, the
simple greedy algorithm achieves (1− 1/e) approximation under both diffusion models, but with
running time Ω(mnk). The breakthrough comes from Borgs et al. [13], who propose the Reverse
influence sampling (RIS) approach and their algorithm has running time O((m + n)kε−3 log2 n).
The running time has been improved to O((m+ n)kε−2 log n) and made practical in [51, 50].

There are some initial efforts on the problem of dynamic influence maximization [52, 44, 24, 3, 42].
All of them provide heuristics and none of them has rigorous theoretical guarantee on both the ap-
proximation ratio and the amortized running time. Chen et al. [24] propose Upper Bound Interchange
(UBI) method with 1/2-approximation ratio. Ohsaka et al. [44] design a RIS based algorithm that
achieves (1− 1/e)-approximation. Inspired by recent advance on streaming submodular maximiza-
tion, Wang et al. [52] give a practical efficient algorithm that maintains a constant approximated
solution. However, none of the above mentioned algorithm has rigorous guarantees on the amortized
running time, and they can be as worse as Ω(n). The failure on their theoretical guarantees are
not accidental, as our hardness result indicates that Ω(n1−ε) amortized running time is essential
to achieve any meaningful approximation. Meanwhile, our algorithm for incremental model sub-
stantially deviates from these approaches and provides rigorous guarantee on amortized running
time.

2

Influence maximization is closely related to submodular maximization [15, 5, 33, 11, 10, 7, 14, 9,
25, 27, 26, 16, 25, 34, 43, 37, 23], a central area of discrete optimization. Ours is especially related
to the dynamic submodular maximization problem, which has been recently studied in [43, 37, 23].
The work of [43] and [37] gives (1/2 − ε)-approximation to the fully dynamic submodular under
cardinality constraints, with amortized query complexity O(k2 log2 n · ε−3) and O(log8 n · ε−6).
The approximation ratio of 1/2 is known to be tight, as Chen and Peng [23] prove that any dynamic
algorithm achieves

(
1
2 + ε

)
approximation must have amortized query complexity of at least nΩ̃(ε)/k3.

The dynamic submodular maximization is studied under the query model and measured in query
complexity, while we consider time complexity in dynamic influence maximization. These two are
generally incomparable.

2 Preliminary

We consider the well-studied Independent Cascade (IC) model and the Linear Threshold (LT) model.

Independent Cascade model In the IC model, the social network is described by a directed
influence graph G = (V,E, p), where V (|V | = n) is the set of nodes and E ⊆ V × V (|E| = m)
describes the set of directed edges. There is a probability pu,v associated with each directed edge
(u, v) ∈ E. In the information diffusion process, each activated node u has one chance to activate its
out-going neighbor v, with independent success probability pu,v . The live-edge graph L = (V,L(E))
is a random subgraph of G, where each edge (u, v) ∈ E is included in L(E) with an independent
probability pu,v . The diffusion process can also be seen as follow. At time τ = 0, a live-edge graph
L is sampled and nodes in seed set S ⊆ V are activated. At every discrete time τ = 1, 2, . . ., if a
node u was activated at time τ − 1, then its out-going neighbors in L are activated at time τ . The
propagation continues until no more activated nodes appears at a time step.

Linear Threshold model In the LT model, the social network is a directed graph G = (V,E,w),
with V denotes the set of nodes and E denotes the set of edge. There is a weight wu,v > 0 associate
with each edge (u, v) ∈ E and the weight satisfies

∑
u∈Nin(v) wu,v ≤ 1 for every node v, where

Nin(v) contains all incoming neighbors of node v. In the information diffusion process, a threshold tv
is sampled uniformly and independently from [0, 1] for each node v, and a node v becomes active if its
active in-coming neighbors have their weights exceed the threshold tv . In the LT model, the live-edge
graph L = (V,L(E)) can be obtained as follow. Each node v samples an incoming neighbor from
Nin(v), where the node u is sampled with probability wu,v and the edge (u, v) is included in L(E).
With probability 1−

∑
u∈Nin(v) wu,v , no edge is added. The diffusion process can also be described

by the live-edge graph. That is, a live-edge graph L is sampled at the beginning and the influence is
spread along the graph.

Influence maximization Given a seed set S, the influence spread of S, denoted as σ(S), is the
expected number of nodes activated from seed set S, i.e., σ(S) = EL∼G[|Γ(S,L)|], and Γ(S,L)
is the set of nodes reachable from S in graph L. In the influence maximization problem, our
goal is to find a seed set S of size at most k that maximizes the expected influence, i.e., finding
S? ∈ arg maxS⊆V,|S|≤k σ(S).

The reverse reachable set [13] has been the key concept for all near-linear time IM algorithms [13,
51, 50].

Definition 2.1 (Reverse Reachable Set). Under the IC model and the LT model, a reverse reachable
(RR) set with a root node v, denoted Rv , is the random set of nodes that node v reaches in one reverse
propagation. Concretely, Rv can be derived by randomly sampling a live-edge graph L = (V,L(E))
and include all nodes in V that can reach v under the live-edge graph L.

Dynamics of network Social networks are subject to changes and involve over time. We consider
the following dynamic model of a social network. At each time step t, one of the following four types
of changes could happen. (1) Introduction of a new user. This corresponds to insert a new node to
influence graph; (2) Establishment of a new relationship. It is equivalent to insert a new directed edge

3

to the graph2; (3) Diminishing of an old relationship. It is equivalent to remove an existing edge of
the graph; (4) Leave of an old user. This means to remove an existing node in the influence graph.

In the incremental model, we only allow the first two types of changes. That is, we assume the social
network gets enlarged over time and we only consider the introduction of new users and new relations.
In the fully dynamic model, we allow all four types of changes.

The theoretical results developed in this paper also adapts to other forms of change on the social
network, including (a) strengthen of influence, which means the increase of the propagation probability
pe for some edge under IC model or the increase of the weight we under LT model; (b) weaken the
influence. which means the decrease of propagation probability pe under IC model or the decrease of
the weight we under LT model.

Dynamic influence maximization Let Gt = (Vt, St) be the social network at time t. Define the
expected influence to be σt(S) = EL∼Gt

[|Γ(S,L)|]. The goal of the dynamic influence maximization
problem is to maintain a seed set St of size at most k that maximizes the expected influence at every
time step t. That is to say, we aim to find S?t ∈ arg maxSt⊆Vt,|St|≤k σ(St) for all t. The (expected)
amortized running time of an algorithm is defined as the (expected) average running time per update.

Dynamic MAX-k coverage The (dynamic) influence maximization problem is closely related
to the (dynamic) MAX-k coverage problem. In a MAX-k coverage problem, there is a collection
of n sets A defined on the ground element [m]. The goal is to find k sets A1, · · · , Ak such that
their coverage is maximized, i.e. finding arg maxA1,...,Ak∈A | ∪i∈[k] Ai|. The problem can also
be formulated in terms of a bipartite graph G = (VL, VR, E), named coverage graph, where VL
(|VL| = n) corresponds to set in A and VR (|VR| = m) corresponds to element in [m], for any
i ∈ [n], j ∈ [m], there is an edge between VL,i and VR,j if and only if j ∈ Ai, here VL,i is the i-th
node in VL and VR,j is the j-th node in VR. In the dynamic MAX-k coverage problem, nodes and
edges arrive or leave one after another. Let V ⊆ VL. At any time step t, we use ft(S) to denote the
number of neighbors of nodes in S. Our goal is to maintain a set of node S∗t ⊆ VL that maximizes
the coverage for every time step t. That is, finding S∗t = arg maxSt⊆VL,|St|≤k ft(St).

Submodular functions Let V be a finite ground set and f : 2V → R be a set function. Given two
sets X,Y ⊆ V , the marginal gain of Y with respect to X is defined as fX(Y) := f(X ∪ Y)− f(X)
The function f is monotone, if for any element e ∈ V and any set X ⊆ V , it holds that fX(e) ≥ 0.
The function f is submodular, if for any two sets X,Y satisfy X ⊆ Y ⊆ V and any element
e ∈ V \Y , one has fX(e) ≥ fY (e). The influence spread function σ is proved to be monotone and
submodular under both the IC model and the LT model in the seminar work of [35].

3 Dynamic influence maximization on a growing social network

We study the dynamic influence maximization problem in the incremental model. Our main result is
to show that it is possible to maintain an (1− 1/e− ε)-approximate solution in k · poly(ε−1, log n)
amortized time. The amortized running time is near optimal and matches the state-of-art offline
algorithm up to poly-logarithmic factors.

Theorem 3.1. In the incremental model, there is a randomized algorithm for the dynamic influence
maximization under both Independent Cascade model and the Linear Threshold model. With proba-
bility 1 − δ, the algorithm maintains an (1 − 1/e − ε)-approximately optimal solution in all time
steps, with amortized running time O(kε−3 log4(n/δ)).

Technique overview We provide a streamlined technique overview over our approach. All
existing near-linear time IM algorithms [13, 51, 50] make use of the reverse influence sampling (RIS)
technique and adopt the following two-stage framework. In the first stage, the algorithm uniformly
samples a few RR sets, with the guarantee that the total time steps is below some threshold. In the
second stage, the algorithm solves a MAX-k coverage problem on the coverage graph induced by the
RR sets. Both steps are challenging to be applied in the dynamic setting and require new ideas.

2In order to adding a new directed edge (u, v), one also specifies the probability pu,v under IC model or the
weight wu,v under LT model.

4

Following the RIS framework, we first reduce the dynamic influence maximization problem to a
dynamic MAX-k coverage problem (see Section 3.1). The first obstacle in dynamic setting is that it
is hard to dynamically maintain an uniform distribution over nodes, and hence, one can not uniformly
sample the RR sets. We circumvent it with a simple yet elegant idea, instead of uniformly sampling
RR sets, we include and sample each node’s RR set independently with a uniformly fixed probability
p. This step is easy to implement in a dynamic stream, but to make the idea work, it needs some
extra technique machinery. First of all, it is not obvious how to set the sampling probability p, as
if p is too large, it brings large overhead on the running time; and if it is too small, the sampled
coverage graph won’t yield a good approximation to the influence spread function. We use a simple
trick. We first uniformly sample RR sets within some suitable amount of steps (the ESTIMATE
procedure), and by doing so, we have an accurate estimate on the sampling probability (Lemma 3.3).
Note that we only execute this step at beginning and it is an one-time cost. Independently sampling
is friendly to dynamic algorithm, but we still need to control the total number of steps to execute
it. More importantly, the sampling probability should not be a fixed one throughout the dynamic
stream, since the average cost to sample a RR set could go up and down, and if the cost is too
large, we need to decrease the sample probability. A simple rescue is to restart the above procedure
once the coverage graph induced by independently sampling is too large, but this brings along two
additional issues. First, the stopping time is highly correlated with the realization of RR sets, and this
is especially problematic for independent sampling, as each incremental update on RR sets does not
follow identical distribution. Second, we certainly don’t want to restart the procedure for too many
times. After all, if we need to restart upon every few updates, we gain nothing than the naive approach.
We circumvent the first issue by maintaining two pieces of coverage graphHest andHcv. Especially,
we use Hest to estimate the average cost for sampling a RR set, and use Hcv to approximate the
influence spread function. This decouples the correlation. By Martingale concentration, we can prove
that (1)Hest yields good estimation on the cost of sampling RR sets (Lemma 3.5), (2)Hcv gives good
approximation on the influence spread function (Lemma 3.9), and at the same time, (3) conditioning
on the first event, the computation cost forHcv won’t be too large (Lemma 3.6). We circumvent the
second issue by setting suitable threshold for constructingHest (see Line 9 in INSERT-EDGE), and we
periodically restart the algorithm each time the number of nodes or edges get doubled. The later step
could lead to an extra O(log n) overhead, but it guarantees that each time the construction time of
Hest goes above the threshold, the average steps for sampling a RR set increase by a factor of 2 (see
Lemma 3.11). Hence, we restart the entire procedure no more than O(log n) times.

We next give an efficient dynamic algorithm for dynamic MAX-k coverage (Section 3.2). The offline
problem can be solved in linear time via greedy algorithm, but it requires several new ideas to make
the dynamic variant have low amortized cost. The major issue with offline greedy algorithm is that
we don’t know which element has the maximum marginal contribution until we see all elements, and
in the dynamic setting, we can’t afford to wait till the end. We get around it with two adaptations.
First, we divide the algorithm into O(ε−1 log n) threads3 and for each thread, we make a guess on the
optimal value (the i-th guess is (1 + ε)i−1). Second, instead of selecting element with the maximum
margin, we maintain a threshold (OPTi−f(Si))/k and add any element whose marginal lies above
the threshold, where Si is the current solution set maintained in the i-th thread. We prove this still
gives (1− 1/e)-approximation (Lemma 3.13). The key challenge is that once we add a new element
to the solution set, the threshold changes and we need to go over all existing element again. We
carefully maintain a dynamic data structure and prove the amortized running time for each thread is
O(1) by a potential function based argument (Lemma 3.14).

3.1 Reducing DIM to dynamic MAX-k coverage

Lemma 3.2. In the incremental model, suppose there is an algorithm that maintains an α-
approximate solution to the dynamic MAX-k coverage, with amortized running time of Tmc. Then
there is an algorithm, with probability at least 1− δ, maintains an (α− 2ε)-approximate solution for
dynamic influence maximization and has amortized running time at most O(Tmckε

−2 log3(n/δ)).

The reduction is described in Algorithm 1-5, we provide some explanations here. From a high level,
the execution of the algorithm is divided into phases. It restarts whenever the number of edges or
the number of nodes gets doubled from the previous phase. Since the total number of steps is at
most (m+ n), there are at most O(log n) phases. Within each phase, the algorithm is divided into

3We remark this approach has been used for submodular maximization under various setting [5, 10, 37].

5

iterations. At the beginning of each iteration, the algorithm runs the ESTIMATE procedure in order to
estimate the total number of RR set it needs to sample. It then fixes a sampling probability p and
samples two graphs, Hcv and Hest, dynamically. As explained before, Hest is used to measure the
number of steps one takes for sampling RR sets, andHcv is used to approximate the influence spread
function. We stop samplingHest andHcv and start a new iteration whenever the number of step for
constructingHest exceeds 16Rm0.

Due to space limits, we defer detailed proof to the full version of this paper and outline a sketch
below.

Algorithm 1 INITIALIZE

1: m← 0,m0 ← 0, n← 0, n0 ← 0.
2: V ← ∅, E ← ∅,Hcv ← ∅,Hest ← ∅ .
3: R← 0, p← 0.

Algorithm 2 ESTIMATE

1: K ← 0.
2: repeat
3: Sample a RR set uniformly over V .
4: K ← K + 1.
5: until Rm0 steps have been taken
6: return K

Algorithm 3 BUILDGRAPH

1: Hcv ← (V, ∅, ∅),Hest ← (V, ∅, ∅),
2: R← cε−2k log(n0/δ) .
3: K ← ESTIMATE().
4: p← K

n0
.

5: for node v ∈ V do
6: Sample the RR set Rv,est with prob p.
7: Sample the RR set Rv,cv with prob p.
8: for node u ∈ Rv,cv do
9: INSERT-EDGE-COV(u, v) toHcv.

10: end for
11: end for

Algorithm 4 INSERT-NODE(u)

1: V ← V ∪ {u}, n← n+ 1.
2: if n ≥ 2n0 then
3: m0 ← m, n0 ← n.
4: BUILDGRAPH().
5: else
6: VL,est ← VL,est ∪ {u} .
7: VL,cv ← VL,cv ∪ {u}.
8: VR,est ← VR,est ∪ {u} with prob p.
9: VR,cv ← VR,cv ∪ {u} with prob p.

10: end if

Algorithm 5 INSERT-EDGE(u, v)

1: E ← E ∪ {(u, v)}, m← m+ 1
2: if m ≥ 2m0 then
3: m0 ← m, n0 ← n.
4: BUILDGRAPH().
5: else
6: for node v′ ∈ VR,est do
7: Augment the RR set Rv′,est to
Rnew
v′,est.

8: Rv′,est ← Rnew
v′,est.

9: if the total steps of buildingHest

exceed 16Rm0 then
10: m0 ← m, n0 ← n.
11: Restart and BUILDGRAPH().
12: end if
13: end for
14: for node v′ ∈ VR,cv do
15: Augment the RR set Rv′,cv to Rnew

v′,cv.
16: INSERT-EDGE-COV(u′, v′) toHcv

for all u′ ∈ Rnew
v′,cv\Rv′,cv.

17: Rv′,cv ← Rnew
v′,cv.

18: end for
19: end if

We first focus on one single iteration of the algorithm. Recall that in each iteration, the number of
nodes satisfies n ∈ [n0, 2n0) and the number of edge satisfies m ∈ [m0, 2m0), and the number of
steps for samplingHest never exceeds 16Rm0.

Bounds at initialization We prove the ESTIMATE procedure makes a good estimate on the sampling
probability at the beginning of each iteration. Let AVG ·m0 be the expected number of steps taken of
sampling a uniformly random RR set, and recall K is the number of RR sets ESTIMATE samples.

Lemma 3.3. With probability at least 1− 2δ
nck/8 , the number of RR sets ESTIMATE samples satisfies

(1− ε) · R
AVG ≤ K ≤ (1 + ε) · R

AVG .

The initial steps to builtHest andHcv are within [(1− ε)2Rm0, (1 + ε)Rm0] with high probability.

6

Lemma 3.4. Conditioning on the event of Lemma 3.3, with probability at least 1− 4δ
nck/8 , the total

number of initial steps for buildingHest andHest are within [(1− ε)2R, (1 + ε)2R], .

Bounds on adaptive sampling We dynamically sample and augment RR sets after we initiate
Hest and Hcv. Consider the t-th edge to arrive, let Zt,i · 2m0 be the number of edges checked by
INSERT-EDGE when it augments the RR set of the i-th node. Note if INSERT-NODE and BUILDGRAPH
did not sample the i-th node and its RR set, then we simply take Zt,i = 0. Slightly abuse of notation,
we write Zj to denote the j-th random variable in the sequence Z0,1, . . . , Z0,n0 , Z1,1, . . ., and we
know {Zj}j≥1 forms a martingale. Let J be the number of steps executed by INSERT-EDGE forHest,
our next Lemma asserts that the total number of steps is around its expectation.

Lemma 3.5. Let J1 be the smallest number such that
∑J1
i=1 E[Zi] ≥ (1−ε)8R, and J2 be the largest

number that
∑J2
i=1 E[Zi] ≤ (1 + ε)8R. With probability at least 1− 2δ

nck/3 , we have J1 ≤ J ≤ J2.

With high probability, the total number of edge checked forHcv is bounded by 16(1 + ε)2Rm0.

Lemma 3.6. Conditioning on the event of Lemma 3.5, with probability at least 1 − δ
nck , the total

number of edges checked by INSERT-EDGE forHcv is at most 16(1 + ε)2Rm0.

Approximation guarantee We prove that the coverage function induced on Hcv yields a good
approximation on the influence spread function. At any time step t, let Vt be the set of node at time
step t. For any node v ∈ Vt and node set S ⊆ Vt, let xt,v,S = 1 if S ∩ Rv,cv 6= ∅, and xt,v,S = 0
otherwise. That is, xt,v,S = 1 iff S has non-zero intersection with the RR set of node v at time step t.
We note that if a node v was not sampled by INSERT-NODE and BUILDGRAPH, and hence does not
appear in VR,cv, we set xt,v,S = 0.

Definition 3.7 (Normalized coverage function). Define fcv,t : 2Vt → R+ to be the normalized
coverage function. fcv,t(S) = n0

K

∑
v∈Vt

xt,v,S .

The normalized coverage function fcv,t is an unbiased estimator on the influence spread function and
it achieves good approximation with high probability.

Lemma 3.8. At any time step t and S ⊆ Vt, we have E[fcv,t(S)] = σt(S), where σt is the influence
spread function at time t.

Lemma 3.9. After initializing Hest and Hcv, at any time step t. Let S ⊆ Vt, |S| ≤ k. Assume the
condition in Lemma 3.3 holds, then we have

Pr [fcv,t(S) > E[fcv,t(S)] + εOPTt] ≤
δ

nck/6
, and, (1)

Pr [fcv,t(S) < E[fcv,t(S)]− εOPTt] ≤
δ

nck
. (2)

The expectation is taken over the randomness of the construction ofHcv, and OPTt is defined as the
maximum (expected) influence spread of a set of size k at time t.

The following Lemma indicates pointwise approximation carries over the approximation ratio.

Lemma 3.10. Let c ≥ 2 and let f : 2V → R+ be an arbitrary set function. Let D be a distribution
over functions g such that for all S ⊆ V , Prg∼D[|f(S) − g(S)| − γ] ≤ δ

nck . Let Sg be an
α-approximate solution for function g, i.e. g(Sg) ≥ αmaxS⊆V,|S|≤k g(S), then we have

Pr
g∼D

[
f(Sg) ≤ α max

S⊆V,|S|≤k
f(S)− 2γ

]
≤ δ

nck/2
.

Bounds for amortized running time We next bound the total number of iterations within each
phase. The key observation is that each time the algorithm restarts, the average steps of sampling a
random RR set increases at least by a factor of 2, with high probability.

Lemma 3.11. With probability at least 1− 4δ
nck/16 , there are at most O(log n) iterations in a phase.

Proof Sketch of Lemma 3.2. For correctness, by Lemma 3.8 and Lemma 3.9, the normalized coverage
function fcv,t (defined onHcv) guarantees |fcv,t(S)− E[fcv,t(S)]| = |fcv,t(S)− σt(S)| ≤ εOPTt

7

Algorithm 6 INITIALIZE

1: OPTi ← (1 + ε)i, Si = ∅, ∀i ∈ I

Algorithm 7 REVOKE(i)

1: if there exists a node u such that fSi
(u) ≥

OPTi−f(Si)
k and |S| < k then

2: Si ← Si ∪ {u}.
3: REVOKE(i).
4: end if

Algorithm 8 INSERT-EDGE-COV(u, v)

1: for i ∈ I do
2: if fSi

(u) ≥ OPTi−f(Si)
k and |S| < k

then
3: Si ← Si ∪ {u}.
4: REVOKE(i).
5: end if
6: end for

for every time step t. Combining with Lemma 3.10, an α-approximate solution to the dynamic
MAX-k coverage problem translates to a solution set St that satisfies f(S) ≥ (α− 2ε) OPTt.

For amortized running time. There are O(log n) phases, and by Lemma 3.11, there are at most
O(log n) iterations in each phase. Within each iteration, the ESTIMATE procedure and the construc-
tion ofHest takes O(m0ckε

−2 log n) steps in total and O(kε−2 log n) per update. By Lemma 3.4 and
Lemma 3.6, with high probability, the construction ofHcv takes 16(1 + ε)2Rm0 steps in total and
O(kε−2 log n) steps per updates. Hence, there are O(km0ε

−2 log n) updates to the dynamic MAX-k
coverage problem onHcv. Taking an union bound, the overall amortized running time per update is
bounded by log n · log n · (kε−2 log n+ kε−2 log n+ kε−2 log n · Tmc) ≤ O(Tmckε

−2 log3 n).

3.2 Solving dynamic MAX-k coverage in near linear time

For ease of presentation, we assume an upper bound on the value of n is known and we set I =
{0, 1, . . . , dε−1 log ne}. The algorithm maintains |I| threads and for the i-th thread, INSERT-EDGE-
COV and REVOKE augments the solution set Si only when the marginal value of a node u exceeds
the threshold, i.e. fSi

(u) ≥ OPTi−f(Si)
k . In particular, the threshold decreases over time and each

time it decreases, REVOKE scans over all existing nodes in VL. The algorithm returns the solution set
with maximum value at each time step, i.e., return arg maxSi

ft(Si).
Theorem 3.12. In the incremental model, there is an algorithm for dynamic MAX-k coverage that
maintains a solution set with (1 − 1/e − ε)-approximation at every time step and the amortized
running time of the algorithm is at most O(ε−1 log n).

The approximation guarantee and the amortized running time of Algorithm 6-8 are analysed separately.
We defer detailed proof to the full version of this paper and outline a sketch below.
Lemma 3.13. The solution set is (1− 1/e− ε)-approximate to the optimal one.

Proof Sketch. Let the current optimum satisfies (1 + ε)i < OPT ≤ (1 + ε)i+1 for some i ∈ I . For
the i-th thread, if |Si| < k, then one can prove f(Si) ≥ (1+ε)−1 OPT. On the otherside, if |Si| = k.
Let si,j be the j-th element added to the set Si, and denote Si,j = {si,1, . . . , si,j}. Our algorithm
guarantees f(Si,j+1)− f(Si,j) ≥ 1

k (OPTi−f(Si,j)) for all j ∈ [k]. Unravel the recursion, one has
f(Si) ≥

(
1− 1

e − ε
)

OPT.

Lemma 3.14. The algorithm 6-8 has amortized running time O(ε−1 log k).

Proof Sketch. We prove that for each thread i ∈ I , the amortized running time is O(1). Let V iR ⊆ VR
be nodes covered by Si. Let P (t) denote the number of operations performed on the i-th thread up to
time t. For each edge e = (u, v), let Xe denote whether the edge e is covered by V iR, i.e. Xe = 1 if
v ∈ V iR and Xe = 0 otherwise. Similarly, for each node v ∈ VR, let Yv denote whether node v is
included in V iR, i.e., Yv = 1 if v ∈ V iR and Yv = 0 otherwise. For each node u ∈ VL, let Zu denote
whether node u is included in Si, i.e., Yv = 1 if v ∈ Si and Yv = 0 otherwise. Define the potential
function Φ : t→ R+:

Φ(t) := 2|Vt|+ 2|Et|+ 2
∑
e∈Et

Xe +
∑
v∈VR

Yv + 2
∑
v∈VL

Zu.

8

We prove P (t) ≤ Φ(t) always holds. This suffices for our purpose as one can easily show Φ(t) ≤ 5t.
The claim is executed by an induction showing P (t)− P (t− 1) ≤ Φ(t)−Φ(t− 1) holds for t.

Taking α = 1− 1/e and Tmc = O(ε−1 log n), we wrap up the proof of Theorem 3.1.

4 Fully dynamic influence maximization

In the fully dynamic model, the social network involves over time and all four types of change exhibit.
Our main delivery is a sharp computational hardness result. We prove that under the SETH, unless
the amortized running time is n1−o(1), the approximation ratio can not even be 2−(logn)1−o(1)

. We
first provide some background on fine-grain complexity. We reduce from the Strong Exponential
Time Hypothesis (SETH), which is a pessimistic version of P 6= NP that postulates that much better
algorithms for k-SAT do not exist. The SETH is first proposed in the seminal work of [31] and it is
widely believed in the computational complexity, see [53, 47] for detailed survey.

Conjecture 4.1 (Strong Exponential Time Hypothesis (SETH), [31]). For any ε > 0, there exists
k ≥ 3 such that k-SAT on variables can not be solved in time O(2(1−ε)n).

Our starting point is the following SETH-based hardness of approximation result. The result is proven
in [2, 17] using the distributed PCP framework [2, 46] for hardness of approximation results in P.

Theorem 4.2 ([2, 17, 1]). Let ε > 0, m = no(1) and t = 2(logn)1−o(1)

. Given two collections of n
sets A and B over universe [m]. Unless SETH is false, no algorithm can distinguish the following
two cases in O(n2−ε) :

YES instance. There exists two sets A ∈ A, B ∈ B such that B ⊆ A;

NO instance. For every A ∈ A, B ∈ B we have |A ∩B| < |B|/t.

Figure 1: The hard instance for fully dynamic influence maximization.

Theorem 4.3. Assuming SETH, in the fully dynamic influence maximization problem under IC model,
no algorithm can achieve 2−(logn)1−o(1)

approximation unless the amortized running time is n1−o(1).

Proof Sketch. Let m = no(1), t = 2(logn)1−o(1)

, k = 1. Given an instance A, B of the problem
in Theorem 4.2, we reduce it to DIM. We assume |Bτ | ≥ t for all τ ∈ [n] as we can duplicate
the ground element for t times. Consider the following influence graph G = (V,E, p), where the
influence probability on all edges are 1. The node set V is partitioned into V = V1 ∪ V2 ∪ V3,
|V1| = n, |V2| = m, |V3| = m2t. Intuitively, the i-th node v1,i of V1 corresponds to the set Ai ∈ A,
and the j-th node v2,j in V1 correspond to the j-th element of ground set [m]. There is a directed

9

edge from v1,i to v2,j , iff the j-th element is contained in the set A1. We write nodes in V3 as
{V3,j,`}j∈[m],`∈[mt], and there is a directed edge node v2,j to v3,j,`, j ∈ [m], ` ∈ [mt].

Consider the following update sequence of the DIM problem. The graph G is loaded first and then
followed by n consecutive epochs. In the τ -th epoch, all edges between V2 and V3 are deleted, and
for each j ∈ Bτ , we add back the edge between v2,j and v3,j,` for all ` ∈ [mt].

One can show the total number of updates is at most n1+o(1). We prove by contrary and suppose there
is an algorithm for DIM that achieves 2/t-approximation in n1−ε time. Under the above reduction,
we output YES, if for some epoch τ ∈ [n], the DIM algorithm outputs a solution with influence
spread greater than 2m|Bτ |. We output NO otherwise. One can prove (1) if there exists Ai ∈ A,
Bτ ∈ B such that Bτ ⊆ Ai, then we output YES, and, (2) if |Ai ∩Bτ | < |Bτ |/t for any i, τ ∈ [n],
the algorithm outputx NO. Hence, we conclude under SETH, there is no 2/t-approximation algorithm
unless the amortized running time is O(n1−ε).

The lower bound can be extended to the LT model, under the additional constraints that the algo-
rithm only selects seeds from a prescribed set V ′ ⊆ V . This a natural assumption that has been
made/discussed in previous work [20, 36, 48] for the LT model. The construction is similar to
Theorem 4.4, with the exception that (1) the weight on edges between V1 and V2 are 1/n and all other
edges have weight 1, (2) the node set V is partitioned into four parts V1 ∪V2 ∪V3 ∪V4. |V4| = nm2t
and each node in V3 is connected to n nodes in V4. Detailed proof can be found in the full version of
this paper.
Theorem 4.4. Assuming SETH, for the fully dynamic influence maximization problem under LT
model, if the algorithm is only allowed to select seed from a prescribed set, then no algorithm can
achieve 2−(logn)1−o(1)

approximation unless the amortized running time is n1−o(1).

5 Discussion

We study the dynamic influence maximization problem and provide sharp computational results on
the incremental update model and the fully dynamic model. In the incremental model, we provide an
algorithm that maintains a seed set with (1− 1/e− ε)-approximation and has amortized running time
k · poly(log n, ε−1), which matches the state of art offline IM algorithm up to poly-logarithmic factor.
For the fully dynamic model, we prove that under SETH, no algorithm can achieve 2−(logn)1−o(1)

approximation unless the amortized running time is n1−o(1). There are a few interesting questions
for future investigation: (1) Further improve the amortized running time in the incremental model.
In particular, is it possible to reduce the amortized running time of the dynamic MAX-k coverage
procedure to O(1)? (2) Investigate fully dynamic influence maximization problem under mild
assumptions, e.g. what if the graph is bipartite?

10

Acknowledgement

Binghui Peng wishes to thank Xi Chen for useful discussions on dynamic submodular maximization,
and thank Matthew Fahrbach for useful comments. Binghui Peng is supported in part by Christos
Papadimitriou’s NSF grants CCF-1763970 AF, CCF-1910700 AF and a softbank grant, and by Xi
Chen’s NSF grants NSF CCF-1703925.

Broader Impact

Our work is mainly theoretical with no foreseeable ethical issues.

References
[1] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna Saha.

Dynamic set cover: improved algorithms and lower bounds. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 114–125, 2019.

[2] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness
of approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 25–36. IEEE, 2017.

[3] Charu C Aggarwal, Shuyang Lin, and Philip S Yu. On influential node discovery in dynamic
social networks. In Proceedings of the 2012 SIAM International Conference on Data Mining,
pages 636–647. SIAM, 2012.

[4] Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing budget allocation among
channels and influencers. In Proceedings of the 21st international conference on World Wide
Web, pages 381–388, 2012.

[5] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: Massive data summarization on the fly. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 671–680, 2014.

[6] Ashwinkumar Badanidiyuru, Christos Papadimitriou, Aviad Rubinstein, Lior Seeman, and
Yaron Singer. Locally adaptive optimization: Adaptive seeding for monotone submodular
functions. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 414–429. SIAM, 2016.

[7] Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization in
exponentially fewer iterations. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 2359–2370, 2018.

[8] Eric Balkanski, Nicole Immorlica, and Yaron Singer. The importance of communities for
learning to influence. Advances in Neural Information Processing Systems, 30:5862–5871,
2017.

[9] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel
running time for submodular maximization without loss in approximation. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 283–302. SIAM,
2019.

[10] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An optimal approximation for submodular
maximization under a matroid constraint in the adaptive complexity model. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 66–77, 2019.

[11] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular
function. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1138–1151, 2018.

11

[12] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ravasz, Andras Schubert,
and Tamas Vicsek. Evolution of the social network of scientific collaborations. Physica A:
Statistical mechanics and its applications, 311(3-4):590–614, 2002.

[13] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social in-
fluence in nearly optimal time. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pages 946–957. SIAM, 2014.

[14] Adam Breuer, Eric Balkanski, and Yaron Singer. The fast algorithm for submodular maximiza-
tion. In International Conference on Machine Learning, pages 1134–1143. PMLR, 2020.

[15] Niv Buchbinder and Moran Feldman. Submodular functions maximization problems., 2018.

[16] Chandra Chekuri and Kent Quanrud. Parallelizing greedy for submodular set function maxi-
mization in matroids and beyond. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 78–89, 2019.

[17] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

[18] Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. Information and influence propagation
in social networks. Synthesis Lectures on Data Management, 5(4):1–177, 2013.

[19] Wei Chen and Binghui Peng. On adaptivity gaps of influence maximization under the in-
dependent cascade model with full-adoption feedback. In 30th International Symposium on
Algorithms and Computation (ISAAC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[20] Wei Chen, Binghui Peng, Grant Schoenebeck, and Biaoshuai Tao. Adaptive greedy versus
non-adaptive greedy for influence maximization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 590–597, 2020.

[21] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 199–208, 2009.

[22] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. The Journal of Machine Learning Research,
17(1):1746–1778, 2016.

[23] Xi Chen and Binghui Peng. On the complexity of dynamic submodular maximization. arXiv
preprint arXiv:2111.03198, 2021.

[24] Xiaodong Chen, Guojie Song, Xinran He, and Kunqing Xie. On influential nodes tracking in
dynamic social networks. In Proceedings of the 2015 SIAM International Conference on Data
Mining, pages 613–621. SIAM, 2015.

[25] Alina Ene and Huy L Nguyen. Submodular maximization with nearly-optimal approximation
and adaptivity in nearly-linear time. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 274–282. SIAM, 2019.

[26] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. In International Conference
on Machine Learning, pages 1833–1842. PMLR, 2019.

[27] Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Submodular maximization
with nearly optimal approximation, adaptivity and query complexity. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 255–273. SIAM, 2019.

[28] Kaito Fujii and Shinsaku Sakaue. Beyond adaptive submodularity: Approximation guarantees
of greedy policy with adaptive submodularity ratio. In International Conference on Machine
Learning, pages 2042–2051. PMLR, 2019.

12

[29] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486,
2011.

[30] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate
all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. SIAM Journal on
Computing, 45(3):947–1006, 2016.

[31] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

[32] Dimitris Kalimeris, Gal Kaplun, and Yaron Singer. Robust influence maximization for hy-
perparametric models. In International Conference on Machine Learning, pages 3192–3200.
PMLR, 2019.

[33] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi.
Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive
complexity. In International Conference on Machine Learning, pages 3311–3320. PMLR, 2019.

[34] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-robust submod-
ular maximization: Data summarization with privacy and fairness constraints. In International
conference on machine learning, pages 2544–2553. PMLR, 2018.

[35] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

[36] Sanjeev Khanna and Brendan Lucier. Influence maximization in undirected networks. In
Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1482–1496. SIAM, 2014.

[37] Silvio Lattanzi, Slobodan Mitrović, Ashkan NorouziFard, Jakub Tarnawski, and Morteza
Zadimoghaddam. Fully dynamic algorithm for constrained submodular optimization. Advances
in Neural Information Processing Systems, 2020.

[38] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and
Natalie Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 420–429,
2007.

[39] Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, and Wei Chen. Online influence maximization
under linear threshold model. Advances in Neural Information Processing Systems, 33, 2020.

[40] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on social graphs:
A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10):1852–1872, 2018.

[41] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–1031,
2007.

[42] Xiaodong Liu, Xiangke Liao, Shanshan Li, Si Zheng, Bin Lin, Jingying Zhang, Lisong Shao,
Chenlin Huang, and Liquan Xiao. On the shoulders of giants: incremental influence maximiza-
tion in evolving social networks. Complexity, 2017, 2017.

[43] Morteza Monemizadeh. Dynamic submodular maximization. Advances in Neural Information
Processing Systems, 33, 2020.

[44] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. Dynamic influence
analysis in evolving networks. Proceedings of the VLDB Endowment, 9(12):1077–1088, 2016.

[45] Binghui Peng and Wei Chen. adaptive influence maximization with myopic feedback. Advances
in Neural Information Processing Systems 32 pre-proceedings (NeurIPS 2019), 2019.

13

[46] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1260–1268, 2018.

[47] Aviad Rubinstein and Virginia Vassilevska Williams. Seth vs approximation. ACM SIGACT
News, 50(4):57–76, 2019.

[48] Grant Schoenebeck and Biaoshuai Tao. Influence maximization on undirected graphs: Toward
closing the (1-1/e) gap. ACM Transactions on Economics and Computation (TEAC), 8(4):1–36,
2020.

[49] Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 459–468. IEEE, 2013.

[50] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1539–1554, 2015.

[51] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-optimal time
complexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 75–86, 2014.

[52] Yanhao Wang, Qi Fan, and Yuchen Li. Tan, kian-lee. real-time influence maximization on
dynamic social streams.(2017). In Proceedings of the VLDB Endowment: 43rd International
Conference on Very Large Data Bases, Munich, Germany, 2017 August 28-September, volume 1,
pages 805–816, 2017.

[53] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018.

14

A Probabilistic tools

Lemma A.1 (Chernoff bound, the multiplicative form). Let X =
∑n
i=1Xi, where Xi ∈ [0, 1] are

independent random variables. Let µ = E[X] =
∑n
i=1 E[Xi]. Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ)), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.
Lemma A.2 (Hoeffding bound). LetX1, · · · , Xn denote n independent bounded variables in [ai, bi].
Let X =

∑n
i=1Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma A.3 (Azuma bound, the multiplicative form). Let X1, · · · , Xn ∈ [0, 1] be real valued
random variable. Suppose

E[Xi|X1, · · · , Xn] = µi

holds for all i ∈ [n] and let µ =
∑n
i=1 µi. Then, we have

Pr[
n∑
i=1

Xi ≥ (1 + δ)µ] ≤ exp
(
−δ2µ/(2 + δ)

)
Pr[

n∑
i=1

Xi ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

Lemma A.4 (Azuma-Hoeffding bound). Let X0, · · · , Xn be a martingale sequence with respect
to the filter F0 ⊆ F2 · · · ⊆ Fn such that for Yi = Xi − Xi−1, i ∈ [n], we have that |Yi| =
|Xi −Xi−1| ≤ ci. Then

Pr[|Xt − Y0| ≥ t] ≤ 2 exp

(
− t2

2
∑n
i=1 c

2
i

)
.

B Missing proof from Section 3.1

We first provide a proof of Lemma 3.3, which states the ESTIMATE procedure gives a good estimate
on sampling probability.

Proof of Lemma 3.3. Let Xt be the fraction of edges that are checked in the t-th iteration of ESTI-
MATE (i.e., Line 3 of ESTIMATE). By definition, we have that E[Xt] = AVG and Xt ∈ [0, 1] for all
t. Note that K is precisely the minimum value K ′ such that

∑K′

t=1X1 ≥ R.

Let K1 = (1 − ε) · R
AVG and K2 = (1 + ε) · R

AVG . We want to show that with high probability
K ∈ [K1,K2], Note that this event is exactly the intersection of the event

∑K1

t=1Xt < R and the∑K2

t=1Xt > R. For the first one, notice that

E

[
K1∑
t=1

Xt

]
= K1 ·AVG = (1− ε)R.

By the multiplicative form Chernoff bound, we have

Pr

[
K1∑
t=1

Xt ≥ R

]
≤ Pr

[
K1∑
t=1

Xt ≥ (1− ε)
K1∑
t=1

E[Xt]

]
≤ exp

(
−ε2

K1∑
t=1

E[Xt]/3

)
≤ exp(−ε2(1− ε)ckε−2 log(n/δ)/3) ≤ δ/nck/6.

For the second event, notice that

E

[
K2∑
t=1

Xt

]
= K2 ·AVG = (1 + ε)R,

15

and by the multiplicative form Chernoff bound, we have

Pr

[
K2∑
t=1

Xt ≤ R

]
< Pr

[
K2∑
t=1

Xt ≤ (1− ε/2)

K2∑
t=1

E[Xt]

]
≤ exp

(
−ε2

K2∑
t=1

E[Xt]/8

)
≤ exp(−ε2(1 + ε)ckε−2 log(n/δ)/8) ≤ δ/nck/8.

Taking an union bound, we conclude that with probability at least 1− 2δ
nck/8 , K ∈ [K1,K2].

We next prove Lemma 3.4, which states the initial steps for buildingHest andHcv is not large.

Proof of Lemma 3.4. We prove that with 1− 2δ
nck/8 , the total number of steps for buildingHest are

within [(1 − ε)2R, (1 + ε)2R], the Lemma then follows by an union bound. Let Yi (i ∈ [n0]) be
the fraction of edges checked when sampling the RR set Ri of the i-th node. Notice that if with
probability 1 − p, the algorithm won’t sample Ri, and we take Yi = 0 for this case. We have that
Yi ∈ [0, 1] and

E

[
n0∑
i=1

Yt

]
=
K

n0
· n0 AVG = K ·AVG ∈ [(1− ε)R, (1 + ε)R]. (3)

The last step holds due to Lemma 3.3.

Consequently, by the multiplicative form Chernoff bound, we have

Pr

[
n0∑
i=1

Yi ≥ (1 + ε)2R

]
≤ Pr

[
n0∑
i=1

Yi ≥ (1 + ε)

n0∑
i=1

E[Yi]

]
≤ exp

(
−ε2

n0∑
i=1

E[Yi]/3

)
≤ e−ε

2(1−ε)cε−2k log(n/δ)/3 ≤ δ/nck/6.
The first step and third follows from Eq. (3). We assume ε < 1/2 in the last step.

Similarly, one has

Pr

[
n0∑
i=1

Yi ≤ (1− ε)2R

]
≤ Pr

[
n0∑
i=1

Yi ≤ (1− ε)
n0∑
i=1

E[Yi]

]
≤ exp

(
−ε2

n0∑
i=1

E[Yi]/2

)
≤ e−ε

2(1−ε)cε−2k log(n/δ)/2 ≤ δ/nck/8.
We conclude the proof here.

We next provide a proof for Lemma 3.5, which states that the total number of steps of constructing
Hest is around its expectation.

Proof of Lemma 3.5. We know that the random variable Zj ∈ [0, 1] since the total number edge
checked for one RR set is at most m ≤ 2m0. Moreover, {Zj}j≥1 forms a martingale. Since J is the
first number such that

∑J
j=1 2m0Zj ≥ 16Rm0, i.e,

∑J
j=1 Zj ≥ 8Rm0, the event J ∈ [J1, J2] is

equivalent to the intersection of event
∑J1
j=1 Zj > 8R and

∑J2
j=1 Zj < 8R. We bound the probability

separately.

For the first event, we have

(1− ε)8R ≤
J1∑
j=1

E[Zj] ≤ (1− ε)8R+ 1.

By the multiplicative form Azuma bound, we have

Pr

 J1∑
j=1

Zj > 8R

 ≤ Pr

 J1∑
j=1

Zj ≥ (1 + ε/2)

J1∑
j=1

E[Zj]

 ≤ exp

−ε2 J1∑
j=1

E[Zj]/12


≤ exp(−ε2(1− ε)8cε−2k log(n/δ)/12) ≤ δ

nck/3
. (4)

16

Similarly, for the second event, we have that

(1 + ε)8R− 1 ≤
J2∑
j=1

E[Zj] ≤ (1 + ε)8R.

By the multiplicative form Azuma bound, we have

Pr

 J2∑
j=1

Zj < 8R

 ≤ Pr

 J2∑
j=1

Zj ≤ (1− ε/2)

J2∑
j=1

E[Zj]

 ≤ exp

−ε2 J2∑
j=1

E[Zj]/8


≤ exp(−ε28cε−2k log(n/δ)/8) ≤ δ

nck
(5)

Combine the Eq. (4) and Eq. (5) with union bound, we conclude that probability at least 1− 2δ
nck/3 ,

the total number step forHest satisfies J1 ≤ J ≤ J2.

The total number of edge checked forHcv is bounded by 16(1 + ε)2Rm0 with high probability, as
stated in Lemma 3.6

Proof of Lemma 3.6. Similar as Lemma 3.5, consider the t-th edge to arrive, let Wt,i · 2m0 be
the number of edges checked by INSERT-EDGE when it augments the RR set of the i-th node on
Hcv. Again, if INSERT-NODE and BUILDGRAPH did not sample the i-th node and its RR set, we
simply have Wt,i = 0. We also write Wj to denote the j-th random variable in the sequence
W0,1, . . . ,W0,n0

,W1,1, . . ., and it also forms a martingale. Recall J is the total number of steps
executed by INSERT EDGE on constructingHest, and it is also the time where we stop augmenting
Hcv.

We know Wj ∈ [0, 1] since m ≤ 2m0 and {Wj}j≥1 forms a martingale. Since we sampleHest and
Hcv separately, the stopping time is irrelevant to the realization of Wj . Condition on the event of
Lemma 3.5, i.e. J ∈ [J1, J2], we know that

(1− ε)8R ≤
J1∑
j=1

E[Wj] ≤
J∑
j=1

E[Wj] ≤
J2∑
j=1

E[Wj] ≤ (1 + ε)8R.

Hence, by Azuma bound, we have

Pr

 J∑
j=1

Wj · 2m0 ≥ 16(1 + ε)2Rm0

 = Pr

 J∑
j=1

Wj ≥ (1 + ε)28R


= Pr

[
J∑
i=1

Wj ≥ (1 + ε)
J∑
i=1

E[Zj]

]

≤ exp

−ε2 J∑
j=1

E[Wj]/3


≤ exp(−ε28(1− ε)cε−2k log(δ/n)/3)

≤ δ

nck
.

This concludes the proof.

We provide the proof of Lemma 3.8, which asserts that the normalized coverage function fcv,t is an
unbiased estimator on the influence spread function.

Proof of Lemma 3.8. The expected influence spread of a set S at time step t satisfies

σt(S) =
∑
v∈Vt

E[|S ∩Rv,t|] =
∑
v∈Vt

n0

K
E[xt,v,S] = E[fcv,t(S)].

17

The first step follows from the definition of influence spread function σt, the second step follows
from our sampling process, the definition of xt,v,S and the fact that we sample the RR set of node v
with probability p = K

n0
.

Next, we prove Lemma 3.9.

Proof of Lemma 3.9. Fix a fixed time step t. For any node set S ⊆ Vt, |S| ≤ k, by Lemma 3.8,
we have E[fcv,t(S)] = σt(S) ≤ OPTt . For convenience, we write E[fcv,t(S)] = λOPTt, and
λ ∈ [0, 1]. Hence, we have

Pr [fcv,t(S) > E[fcv,t(S)] + εOPTt] = Pr
[
fcv,t(S) > (1 +

ε

λ
)E[fcv,t(S)]

]
= Pr

[∑
v∈Vt

xt,v,S > (1 +
ε

λ
)
∑
v∈Vt

E[xt,v,S]

]
. (6)

We divide into two cases. First, suppose λ > ε. Since xt,v,S ∈ {0, 1} and they are indepedent, by the
multiplicative form Chernoff bound, we have

Pr

[∑
v∈Vt

xt,v,S > (1 +
ε

λ
)
∑
v∈Vt

E[xt,v,S]

]
≤ exp

(
−ε2 E[

∑
v∈Vt

xt,v,S]/3λ2

)
.

The exponent obeys

ε2
∑
v∈Vt

E[xt,v,S]/3λ2 = ε2
K

n0
λOPTt /3λ

2 ≥ ε2 K

3n0
OPTt ≥ ε2(1− ε) R

3n0 AVG
OPTt

≥ ε2(1− ε)R/3 ≥ ck log(n/δ)/6. (7)

where the first step follows from
n0

K

∑
v∈Vt

E[xt,v,S] = E[fcv,t(S)] = λOPTt, (8)

the second step follows from λ < 1, the third comes from the condition of Lemma 3.3, i.e.,
K ∈ [(1− ε) · R

AVG , (1 + ε) · R
AVG]. The fourth step follows from Lemma B.1 and the monotonicity

of OPT, i.e.,

AVG ≤ OPT0

n0
≤ OPTt

n0
. (9)

Hence, when ε < λ, one has

Pr [fcv,t(S) > E[fcv,t(S)] + εOPTt] ≤
δ

nck/6
.

Next, suppose λ ≤ ε, then ε/λ ≥ 1. The multiplicative form Chernoff bound

Pr

[∑
v∈Vt

xt,v,S > (1 +
ε

λ
)
∑
v∈Vt

E[xt,v,S]]

]
≤ exp

(
−ε
∑
v∈Vt

E[xt,v,S]/3λ

)
The exponent satisfies

ε
∑
v∈Vt

E[xt,v,S]/3λ = ε · K
3n0

OPTt ≥ ε(1− ε)
R

3n0 AVG
OPTt ≥ ε(1− ε)R/3 ≥ ck log(n/δ)/6.

where the first step follows from Eq. (8), the second step follows from the condition of Lemma 3.3,
i.e., K ∈ [(1− ε) · R

AVG , (1 + ε) · R
AVG]. The third step follows Eq. (9). Hence, when λ ≥ ε, one also

has

Pr [fcv,t(S) > E[fcv,t(S)] + εOPTt] ≤
δ

nck/6
.

18

This proves the Eq. (1). The proof of Eq. (2) is similar. In particular, we have

Pr [fcv,t(S) < E[fcv,t(S)]− εOPTt] = Pr
[
fcv,t(S) < (1− ε

λ
)E[fcv,t(S)]

]
= Pr

[∑
v∈Vt

xt,v,S < (1− ε

λ
)
∑
v∈Vt

E[xt,v,S]

]
.

It suffices to consider the case ε < λ. The multiplicative form Chernoff bound implies

Pr

[∑
v∈Vt

xt,v,S < (1− ε

λ
)
∑
v∈Vt

E[xt,v,S]]

]
≤ exp

(
−ε2

∑
v∈Vt

E[xt,v,S]/2λ2

)

≤ exp(ε2(1− ε)R/2) ≤ δ

nck/4
.

The second step follows from Eq. (7). We conclude the proof here.

Lemma 3.10 indicates pointwise approximation is sufficient to carry over the approximation ratio
between two problems. We provide a proof here.

Proof of Lemma 3.10. By an union bound over all sets of size at most k, we know that

Pr
g∼D

[∃S, |S| ≤ k, |f(S)− g(S)| − γ] ≤ nk δ

nck
≤ δ

nck/2
.

Under the above event, we know that

f(Sg) ≥ g(Sg)− δ ≥ α max
S⊆V,|S|≤k

g(S)− γ ≥ α max
S⊆V,|S|≤k

f(S)− 2γ.

This concludes the proof.

Given an influence graph, let AVG ·m be the expected number of steps taken by random sampling a
RR set, and let OPT be the maximum (expected) influence spread of a seed set of size at most k,
then one has

Lemma B.1 (Claim 3.3 in [13]). AVG ≤ OPT
n .

We provide a proof for completeness.

Proof. Given a node v and an edge (u,w), let xv,e = 1 if the edge e is checked when one samples
the RR set of node v. Then we have

AVG ·m =
1

n

∑
v∈V

∑
e∈E

E[xv,e] =
1

n

∑
e=(u,w)∈E

E[|v : w ∈ Rv|].

Hence, we have

AVG ·m =
1

n

∑
e=(u,w)∈E

E[|v : w ∈ Rv|] =
1

n

∑
e=(u,v)∈E

σ(v) ≤ 1

n

∑
e=(u,v)∈E

OPT =
m

n
OPT .

We conclude the proof.

We provide proof for Lemma 3.11, which asserts with high probability, there are at most O(log n)
iterations within a phase.

Proof of Lemma 3.11. For any t ≥ 0, let nt, mt be the number of nodes and edges at the beginning
the t-th iteration, and let AVGt ·mt be the average steps of sampling a random RR set. We can
assume there is at least one edge in the graph, and therefore, AVG0 ≥ 1

n0m0
. Inside the phase, we

must have n0 ≤ nt ≤ 2n0 and m0 ≤ mt ≤ 2m0 holds for any t. We prove that AVGt+1 ≥ 2 AVGt

19

holds with high probability. Notice that AVGt ≤ 1, this means the algorithm restarts for at most
O(log n) times. By Lemma 3.3, the sample size Kt at the beginning of t-th iteration obeys

(1− ε) · R

AVGt
≤ Kt ≤ (1 + ε) · R

AVGt
. (10)

with probability at least 1− 2δ
nck/8 .

On the other side, for the t-th iteration, define Jt, Jt,1, Jt,2 similarly as Lemma 3.5. With probability
at least 1− 2δ

nck/8 , we have Jt ∈ [Jt,1, Jt,2], and this indicates

8(1− ε)R ≤
Jt,1∑
j=1

E[Zj] ≤
Jt∑
j=1

E[Zj] ≤
Jt,2∑
j=1

E[Zj] ≤ 8(1 + ε)R. (11)

The first and last step follow from the definition of Jt,1 and Jt,2, the second and third step follow
from Jt ∈ [Jt,1, Jt,2]. Moreover, we also know that

Jt∑
j=1

E[Zj] =
Kt

nt
nt+1 AVGt+1 . (12)

as we include the RR set of each nt node with probability Kt

nt
. Therefore, we have

2Kt AVGt+1 ≥
Kt

nt
nt+1 AVGt+1 ≥ 8(1− ε)R ≥ 8(1− ε)

1 + ε
Kt AVGt ≥ 4Kt AVGt

The first step follows from nt+1 ≤ 2n0 ≤ 2nt. The second step follows from Eq. (11) and Eq. (12).
The third step comes from Eq. (10), and we assume ε < 1/3 in the last step. Hence, we have proved
with probability at least 1− 4δ

nck/8 , AVGt+1 ≥ 2 AVGt. Taking an union bound over t and combining
the fact that AVG0 ≥ 1

n0m0
and AVGt ≤ 1, we conclude with probability 1− 4δ

nck/16 , the algorithm
restarts at most O(log n) times within each phase.

We wrap up the proof of Lemma 3.2

Proof of Lemma 3.2. We first prove the correctness of the algorithm. By Lemma 3.8 and Lemma 3.9,
we know that at any time step t, the normalized coverage function fcv,t defined onHcv gives a good
approximation on the influence spread function. In particular, we have that with probability at least
1− 4δ

nck/8 , one has

|fcv,t(S)− E[fcv,t(S)]| = |fcv,t(S)− σt(S)| ≤ εOPTt

Combining with Lemma 3.10, suppose we can solve the dynamic MAX-k coverage with approxima-
tion α, then our algorithm maintains a solution set St that satisfies

f(S) ≥ (α− 2ε) OPTt .

We next focus on the amortized running time. Since the number of edges and nodes can only doubled
for most O(log n) times, there are O(log n) phases. While within one phase, by Lemma 3.11, with
probability 1− 4δ

nck/16 , our algorithm restarts for at most O(log n) times. Each time our algorithm
restarts, it invokes the ESTIMATE procedure for once. This steps takes Rm0 = m0ckε

−2 log n
steps in total and has O(kε−2 log n) amortized time per update. The algorithm constructs Hest

and Hcv, we calculate their cost separately. For constructing Hest, our algorithm takes at most
16R0 = 16m0ckε

−2 log n steps in total and has O(kε−2 log n) amortized time per update. For the
construction of Hcv, by Lemma 3.4 and Lemma 3.6, with probability at least 1 − 9δ

nck/8 , it takes
less than 16(1 + ε)2Rm0 ≤ 64m0ckε

−2 log n steps in total and O(kε−2 log n) amortized time per
updates. Note that our algorithm not only needs to constructHcv, but also needs to maintains a set
that has the (approximately) maximum coverage onHcv. This reduces to a dynamic MAX-k coverage
problem, which by our assumption, can be solved in amortized running time of Tmk. Taking an union
bound over all steps and fix the constant c to be greater than 24, we conclude with probability at least
1− δ, the overall amortized running time per update is bounded by

log n · log n · (kε−2 log n+ kε−2 log n+ kε−2 log n · Tmk) ≤ O(Tmkkε
−2(log n)3).

This concludes the proof.

20

C Missing proof from Section 3.2

Lemma 3.13 ensures the approximation guarantee of the algorithm, we provide a detailed proof here.

Proof of Lemma 3.13. Fix a time step t, let OPT denote the value of the optimal solution, i.e.
OPT = maxS,|S|≤k ft(S). For ease of notation, we drop the subscript t in the rest of the proof
There exists an index i ∈ I such that

(1 + ε)i = OPTi ≤ OPT < OPTi+1 = (1 + ε)i+1.

We prove the i-th thread outputs a good solution set Si.

First, suppose |Si| = k. Let si,j be the j-th element added to the set Si, and denote Si,j =
{si,1, . . . , si,j}, j ∈ [k]. Our algorithm guarantees that

f(Si,j+1)− f(Si,j) ≥
1

k
(OPTi−f(Si,j))

Then, we have that

OPTi−f(Si,k) = OPTi−f(Si,k−1) + f(Si,k−1)− f(Si,k)

≤ OPTi−f(Si,k−1)− 1

k
(OPTi−f(Si,k−1))

≤
(

1− 1

k

)
(OPTi−f(Si,k−1))

...

≤
(

1− 1

k

)k
(OPTi−f(∅))

=

(
1− 1

k

)k
OPTi,

and therefore,

f(Si) ≥

(
1−

(
1− 1

k

)k)
OPTi ≥

(
1− 1

e

)
OPTi

≥
(

1− 1

e

)
(1 + ε)−1 OPT ≥

(
1− 1

e
− ε
)

OPT .

On the otherside, if |Si| < k, then we prove f(Si) ≥ OPTi ≥ (1 + ε)−1 OPT. We prove by
contradiction and assume f(Si) < OPTi for now. Let the optimal solution be O = {o1, . . . , ok}.
Then we claim that

fSi
(o) <

1

k
(OPTi−f(Si)) (13)

holds for all o ∈ O. The reason is that (i) if o ∈ Si, then fSi
(o) = 0 < 1

k (OPTi−f(Si)). If o /∈ O,
since |S| < k, the above is guaranteed by our algorithm. Hence, we have

OPT = f(O) ≤ f(Si)+fSi
(O) ≤ f(Si)+

k∑
j=1

fSi
(oj) < f(Si)+k · 1

k
(OPTi−f(Si)) = OPTi .

The second step holds by monotonicity, the third step holds by submodularity and the fourth step
holds by Eq. (13). This comes to a contradiction. Hence, we proved f(Si) ≥ (1− 1/e− ε) OPT in
both cases.

We next prove Lemma 3.14, which analyses the amortized running time

21

Proof of Lemma 3.14. It suffices to prove that for each thread i ∈ I , the amortized running time is
O(1). We specify some implementation details. For any set S, let N(S) denote the all neighbors
of S. We maintain a set V iR that includes all nodes covered by the current set Si, i.e. V iR = N(Si)
We also maintain a set V iu for each node u, which contains all element covered by node u in VR\V iR,
i.e., V iu = |N(u)\V iR|. Finally, we also maintain an order (on cardinality) over the set V iu . This is
used in the REVOKE procedure, where we retrieve the node u with the maximum |V iu| and compare it
with OPTi−|V i

R|
k , We are going to prove that we can maintain these data structures and perform all

necessary operations in O(1) amortized time.

Let P (t) denote the number of operations performed on the i-th thread up to time t. For each edge
e = (u, v), let Xe denote whether the edge e is covered by V iR, i.e. Xe = 1 if v ∈ V iR and Xe = 0
otherwise. Similarly, for each node v ∈ VR, let Yv denote whether node v is included in V iR, i.e.,
Yv = 1 if v ∈ V iR and Yv = 0 otherwise. For each node u ∈ VL, let Zu denote whether node
u is included in Si, i.e., Yv = 1 if v ∈ Si and Yv = 0 otherwise. Define the potential function
Φ : t→ R+:

Φ(t) = 2|Vt|+ 2|Et|+ 2
∑
e∈Et

Xe +
∑
v∈VR

Yv + 2
∑
v∈VL

Zu.

Our goal is to show P (t) ≤ Φ(t). This is sufficient for our purpose as one can easily show Φ(t) ≤ 5t.
We prove the claim by induction. The claim holds trivially for the base case t = 0. We next assume
t > 0 and consider the time step t. If a new node arrives, then we have that P (t) = P (t− 1) + 1.
Since |Vt| = |Vt−1| + 1 and other terms of Φ won’t decrease, we have Φ(t) ≤ Φ(t − 1) + 1.
Suppose a new edge e = (u, v) arrives. (1) If v ∈ V iR, that is, the node v has already been
covered. Then P (t) = P (t − 1) + 2 since we don’t perform any additional operations. We also
have Φ(t) = Φ(t − 1) + 2 as |Et| = |Et−1| + 2 and the other term remains unchanged. (2.1) If
v /∈ V iR and u ∈ Si, then we need to expand the set Vt ← Vt−1 ∪ {v} (one unit operation), delete
node v from V iu if v ∈ V iu (

∑
v∈VR

|V iu ∩ {u}| operations) and maintains the order of {V iv′}v′∈VR

(at most
∑
v∈VR

|V iv ∩ {u}| operations). Meanwhile, we have |Et| = |Et−1| + 1 and the term
2
∑
e∈Et

(1−Xe) would increase for 2
∑
v∈VR

|V iv ∩ {u}|, as these edges change from uncovered to
covered. Hence, we still have P (t)−P (t− 1) ≤ Φ(t)−Φ(t− 1). (2.2) If v /∈ V iR and u /∈ Si. This

may only cause two unit operations if there is no node u satisfies |V iu| ≥
OPTi−|V i

R|
k . This time, we

have Pt = Pt + 2 Φ(t) = Φ(t− 1) + 2 as |Et| = |Et−1|+ 1. On the other side, if there exists some
node u with large marginal. We need to add u to V iR (1 unit operation), add nodes in V iu to V iR (|V iu|
operations) and removes nodes in V iu from all other set V iu′ (

∑
v∈Vr

|V iu ∩ V iv | operations in total).
We also want to maintain an order on {V iv′}v′∈VR

, and this takes less than
∑
v∈V |V iu∩V iv | operations

in total. Meanwhile, for the potential function, the term 2
∑
e∈Et

Xt increases for 2
∑
v∈V |V iu ∩V iv |,

as this the number of edges change from uncovered to covered. The term
∑
v∈VR

Yv increases for
(|V iu| and term 2

∑
u∈VL

Zu will also increase by 2, as we augment the set Si by 1. Hence, we still
have P (t)− P (t− 1) ≤ Φ(t)− Φ(t− 1) in this case. Finally, we note the that algorithm may call
REVOKE multiple times upon the arrival of a new edge, and for each call, we call do perform similary
analysis as (2.2). Hence, we conclude that P (t+ 1)− P (t) ≤ Φ(t)− Φ(t− 1) holds for all t. We
conclude the proof here.

D Missing proof from Section 4

Proof of Theorem 4.3. We assume k = 1 in our reduction. Let m = no(1), t = 2(logn)1−o(1)

. Given
an instance A, B of the problem in Theorem 4.2, we reduce it to the dynamic influence maximization
problem. We assume |Bτ | ≥ t for all τ ∈ [n] as we can duplicate the ground element for t times.
Consider the following influence graph G = (V,E, p), where the node set V are partitioned into
V = V1 ∪ V2 ∪ V3. There are n nodes in V1, denoted as v1,1, . . . , v1,n. Intuitively, the i-th node
corresponds to the set Ai ∈ A. The set V2 contains m nodes, denoted as v2,1, . . . , v2,m. Intuitively,
they correspond to the ground set [m]. For any node v1,i ∈ V1 and node v2,j ∈ V2, there is a
directed edge from v1,i to v2,j , iff the j-th element is contained in the set A1. We associate the
influence probability 1 to every edge between V1 and V2. The set V3 contains m2t nodes, denoted as
{V3,j,`}j∈[m],`∈[mt]. There is a directed edge with influence probability 1 from node v2,j to v3,j,`,
for each j ∈ [m], ` ∈ [mt].

22

Consider the following update sequence of the DIM problem. The graph G is loaded first and then
followed by n consecutive epochs. In the τ -th epoch, all edges between V2 and V3 are deleted, and
for each j ∈ Bτ , we add back the edge between v2,j and v3,j,` for all ` ∈ [mt].

We first calculate the total number of updates. It takes n + m + mt = n1+o(1) steps to insert all
nodes in V and takes at most mn+mt = n1+o(1) to insert all edges in E. We delete/insert at most
m2t edges in each epoch, and since there are n epochs, the total number operations are bounded by
nm2t = n1−o(1). Hence, the total number of updates is at most n1+o(1).

Suppose on the contrary, there exists an algorithm for DIM problem that achieves 2/t-approximation
in n1−ε time, we then derive a contradiction to SETH. Under the above reduction, we output YES,
if for some epoch τ ∈ [n], the DIM algorithm outputs a solution with influence spread greater than
2m|Bτ |. We output NO otherwise. Note the influence of a node can be computed in m = no(1)

times.

Completeness. Suppose there exists Ai ∈ A, Bτ ∈ B such that Bτ ⊆ Ai. Then in the τ -th epoch,
by taking node v1,i in the seed set, the influence spread at least (mt+ 1)|Bτ |+ 1. Since the DIM
algorithm gives 2/t-approximation, the influence is greater than 2m|Bτ | in this case. Hence, we
indeed output YES.

Soundness. Suppose |Ai ∩Bτ | < |Bτ |/t for any i, τ ∈ [n], then we prove the influence spread is no
more than 2m|Bτ | for any epoch. This is clearly true for nodes in V2 and V3, as their influence is no
more mt+ 1 < 2|Bτ |m. Here, we use the fact that |Bτ | ≥ t. For nodes in V1, since the intersection
of Ai and Bτ is less than |Bτ |/t, and a node v2,j ∈ V2 has influence 1 + mt if j ∈ Bτ and it has
influence 1 otherwise. We conclude for any node v1,i, its influence is at most

1 +m+
1

t
|Bτ |mt = 1 +m+ |Bτ |m ≤ 2|Bτ |m.

Hence, we output NO in this case.

In summary, the reduced DIM requires n1+o(1) updates and queries and it gives an answer for the
problem in Theorem 4.2. Hence, we conclude under SETH, there is no 2/t-approximation algorithm
unless the amortized running time is n1−ε.

Proof of Theorem 4.4. The reduction is similar to the one in Theorem 4.4. Let m = no(1), t =

2(logn)1−o(1)

, k = 1. Given an instance A, B of the problem in Theorem 4.2, we assume |Bτ | ≥ t
for all τ ∈ [n] Consider the following influence graph G = (V,E,w), where the node set V are
partitioned into V = V1 ∪ V2 ∪ V3 ∪ V4. There are n nodes in V1, denoted as v1,1, . . . , v1,n and
there are m nodes in V2, denoted as v2,1, . . . , v2,m. For any node v1,i ∈ V1 and node v2,j ∈ V2,
there is a directed edge from v1,i to v2,j , iff the j-th element is contained in the set A1. We associate
the weight to be 1/n to every edge between V1 and V2. The set V3 contains m2t nodes, denoted
as {V3,j,`}j∈[m],`∈[mt]. There is a directed edge with weight 1 from node v2,j to v3,j,`, for each
j ∈ [m], ` ∈ [mt]. The set V4 contains nm2t nodes, denoted as {V4,j,`,b}j∈[m],`∈[mt],b∈[n]. There
is a directed edge with weight 1 from node v3,j,` to v3,j,`,b, for each j ∈ [m], ` ∈ [mt], b ∈ [n]. We
assume the prescribed set is V1, that is, we are only allowed to select seeds from V1.

We use the same update sequence of the DIM problem. The graph G is loaded first and then followed
by n consecutive epochs. In the τ -th epoch, all edges between V2 and V3 are deleted, and for each
j ∈ Bτ , we add back the edge between v2,j and v3,j,` for all ` ∈ [mt].

The total number of updates is still at most n1+o(1), as the total number of edges between V3 and
V4 is at most nmt2 = n1+o(1) and we only insert them once. Suppose on the contrary, there exists
an algorithm for DIM problem that achieves 2/t-approximation in n1−ε time, we then derive a
contradiction to SETH. Under the above reduction, we output YES, if for some epoch τ ∈ [n],
the DIM algorithm outputs a solution with influence spread greater than 2m|Bτ |. We output NO
otherwise. Again, the influence of a node can be computed in m = no(1) times.

Completeness. Suppose there exists Ai ∈ A, Bτ ∈ B such that Bτ ⊆ Ai. Then in the τ -th epoch,
by taking node v1,i in the seed set, the influence spread at least 1

n |Bτ | · nmt + 1 = |Bτ |mt + 1.
Since the DIM algorithm gives 2/t-approximation, the influence is greater than 2m|Bτ | in this case.
Hence, we indeed output YES.

23

Soundness. Suppose |Ai ∩ Bτ | < |Bτ |/t for any i, τ ∈ [n], then we prove that no node in V1 has
influence spread more than 2m|Bτ |, in any epoch. Since the intersection of Ai and Bτ is less than
|Bτ |/t, and a node v2,j ∈ V2 has influence 1 +mt+mtn if j ∈ Bτ and it has influence 1 otherwise.
We conclude for any node v1,i, its influence is at most

1 +m+
1

t
|Bτ | ·

1

n
(1 +mt+ nmt) < 2|Bτ |m.

Hence, we output NO in this case.

In summary, the reduced DIM requires n1+o(1) updates and queries, and it gives an answer for the
problem in Theorem 4.2. Hence, we conclude under SETH, there is no 2/t-approximation algorithm
unless the amortized running time is n1−ε.

24

	Introduction
	Preliminary
	Dynamic influence maximization on a growing social network
	Reducing DIM to dynamic MAX-k coverage
	Solving dynamic MAX-k coverage in near linear time

	Fully dynamic influence maximization
	Discussion
	Probabilistic tools
	Missing proof from Section 3.1
	Missing proof from Section 3.2
	Missing proof from Section 4

