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Figure 1: Improving Reflection Removal using Semantic Feature Dictionary. (a) Input (b) ERRNet [51] (c) IBCLN [21] (d) Dong
et.al [4] (e) RAGNet [25] (f) Ours (g) Ground Truth. Ourmethod (f) is able to remove reflections much better than state-of-the-art
methods in challenging scenarios (Red boxes).

Abstract
Single image reflection removal is a severely ill-posed problem and
it is very hard to separate the desirable transmission and undesir-
able reflection layers. Most of the existing single image reflection
removal methods try to recover the transmission layer by exploiting
cues that are extracted only from the given input image. However,
there is abundant unutilized information in the form of millions of
reflection free images available publicly. Even though this informa-
tion is easily available, utilizing the same for effectively removing
reflections is non-trivial. In this paper, we propose a novel method,
termed 𝑅2𝑆𝐹𝐷 , for improving single image reflection removal using
a Semantic Feature Dictionary (SFD) constructed from a database
of reflection-free images. The SFD is constructed using a novel
Reflection Aware Feature Extractor (RAFENet) that extracts features
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invariant to the presence of reflections. The SFD and the input image
are then passed to another novel network termed SFDNet. This net-
work first extracts RAFENet features from the reflection-corrupted
input image, searches for similar features in the SFD, and transfers
the semantic content to generate the final output. To further im-
prove reflection removal, we also introduce a Large Scale Reflection
Removal (LSRR) dataset consisting of 2650 image pairs comprising
of a variety of real world reflection scenarios. The proposed method
achieves superior results both qualitatively and quantitatively com-
pared to the state of the art single image reflection removal methods
on real public datasets as well as our LSRR dataset. We will release
the dataset at https://github.com/ee19d005/r2sfd.
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1 Introduction
Capturing images in the presence of obstructions such as glass
typically results in unwanted reflections. An image I ∈ R𝑚×𝑛 cor-
rupted by reflections can be modeled as a combination of two layers
- the desirable transmission layer B ∈ R𝑚×𝑛 and the undesirable
reflection layer R ∈ R𝑚×𝑛 [41]. This can be represented as follows:

𝐼 = 𝐼𝑡 + 𝛼.𝐼𝑟 (1)

where 𝐼 , 𝐼𝑡 and 𝐼𝑟 denotes the reflection corrupted image, the trans-
mission layer and the reflection layer respectively. The blending
factor 𝛼 denotes the strength of reflection, which is typically de-
pendent on imaging conditions. The restoration of such an image
involves layer separation which is severely ill-posed [54]. There
have been many works in the past addressing the problem of re-
flection removal. Several earlier methods attempt to constrain the
solution space using hand-crafted priors such as natural scene statis-
tics [20], ghosting cues [42] and gradient sharpness [54]. However,
these hand-crafted priors often cater to specific kinds of reflections
and is not generalizable to handle a wider range of in-the-wild re-
flections. More recently, deep learning based approaches have been
observed to produce state-of-the-art results in reflection removal
[3, 6, 8, 9, 12, 21, 25, 26, 34, 56, 58]. Even though deep learning meth-
ods have made significant strides, single image reflection removal
still remains a significantly hard problem due to its ill-posed nature.

The existing deep learning based reflection removal methods
have tried to exploit cues that discriminate between transmission
and reflection layers. These cues are either learned in a multi-stage
pipeline [4, 6, 21, 56] or enforced using sophisticated loss functions
[51, 59]. However, these cues are extracted using only the informa-
tion present in the given input image. The dependence on reflection-
corrupted input images hamper the ability of the neural network
to effectively recover the transmission layer, especially in regions
with high reflections. To alleviate this challenge, we propose to uti-
lize information from external reflection-free images with similar
semantic content as that of the input image. We hypothesize that
the higher level semantic information from reflection-free images
can guide the network to learn a better representation of the under-
lying scene. An earlier method [50] proposed a non-deep learning
based approach using non-local image priors extracted from exter-
nal images. However, this method uses hand-crafted sparsity priors,
which may not generalize well for in-the-wild reflections. To the
best of our knowledge, there exists no deep learning based method
for the extraction and utilization of reflection-free semantic content
from a database of images for improving reflection removal.

In this paper, we propose a novel deep learning based method
that can automatically retrieve and utilize reflection-free semantic
content from a large image database to effectively remove reflec-
tions (see Fig. 2). Given an input image, we first use a light-weight
Coarse Semantic Search (CSS) module to select a set of similar im-
ages from a large database of reflection-free images. These images
are then passed through a novel Reflection Aware Feature Extractor
(RAFENet) to construct a semantic feature dictionary (SFD), con-
sisting of image features. The RAFENet is trained using a novel
Reflection Aware loss function to ensure that the extracted fea-
tures are mostly invariant to reflections. The SFD along with the

reflection-corrupted input image is then passed to a novel archi-
tecture, termed Semantic Feature Dictionary Network (SFDNet),
to generate the final output. The proposed SFDNet is designed
to utilize the information from the semantic feature dictionary to
improve reflection removal from the input image. As shown in
Fig. 1, our method is able to remove reflections much better than
the state-of-the-art methods, especially in regions with very high
reflections.

We also propose a new dataset for advancing the progress in
reflection removal. The existing datasets for reflection removal are
either small-scale (∼ 1000 image pairs) [17, 49] or consists of only
reflection layer information [48]. To the best of our knowledge,
our dataset, termed Large Scale Reflection Removal (LSRR) dataset,
consisting of 2650 image pairs, is the largest dataset containing real
paired data for reflection removal. The major contributions of this
paper are as follows:
(a)We propose a novel method for improving reflection removal
by utilizing reflection-free semantic content from external image
databases. To the best of our knowledge, this is the first deep learn-
ing based method that utilizes reflection-free image databases for
improving single image reflection removal.
(b) We also introduce a new dataset termed Large Scale Reflection
Removal (LSRR) dataset consisting of 2650 image pairs. To the best
of our knowledge, the proposed dataset is the largest paired real
dataset for reflection removal.
(c) The proposed method outperforms state-of-the-art methods in
reflection removal both qualitatively and quantitatively on public
real datasets as well as our LSRR dataset

2 Related Works
In this section, we provide an overview of the existing literature in
reflection removal.
Single Image Reflection Removal: Earlier works in reflection
removal used hand-crafted priors such as natural image statistics
[19, 20], relative smoothness [24], gradient priors [2, 39, 45, 50],
ghosting cues [42] [10] and depth-of-field differences [47] to re-
move reflections from images. However, the hand-crafted priors
used in these methods often fail in several real-life situations, re-
sulting in lack of generalizability for these methods. To address
this issue, several deep learning based methods with novel network
enhancements have been proposed in the recent past, which gen-
erate state-of-the-art results [3, 6, 8, 9, 12, 21, 25, 26, 34, 56, 58].
Several other methods proposed novel loss functions for reflection
removal such as adversarial loss [59], alignment invariant loss [51]
and gradient loss [48]. Another method proposed a self-semantic
segmentation guided approach using a multi-task network [26].
There have also been several works which proposed novel methods
for synthetic data modeling such as [13, 52, 61]. There has also
been methods exploring methods that are not fully supervised such
as [14, 29, 37].
Multi Image Reflection Removal: Earlier works in multi-image
reflection removal explored approaches using gradient sparsity in-
terdependence [7], SIFT flow [23] and video based methods [31, 43].
Lun et.al [27] proposed a deep learning based approach to remove re-
flections using optical-flow based alignment, while Prasad et.al [33]
proposed a deep learning based approach to remove reflections
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Figure 2: Overview of the proposed method. A coarse semantic search is first performed on a database of images to find images
similar to input. These images are then passed through the RAFENet to generate a Semantic Feature Dictionary (SFD). The
input image and the SFD is then passed to SFDNet to generate the reflection-free output.
from a burst of images. A method for reflection removal using a
reference image provided by the user was proposed by [35]. Several
other methods focused on reflection removal using images captured
using multiple modalities such as multi-focal lengths [40], dual-
pixel sensors [36] and different flash or exposure settings [16] [1].
Several other works such as [18] [22] [53] used polarized images
to extract cues that helps in reflection removal.
Reference Based Image Restoration: Reference based image
restoration using deep learning have been studied in domains such
as image super-resolution [11, 28, 32, 55, 60] and image deblur-
ring [15, 38]. These methods try to match the features extracted
from the input and reference images to find relevant semantic con-
tent. These methods mostly use pre-trained VGG features for this
purpose [44]. Further, most of these methods require the user to
explicitly provide a reference image along with the input image.
Our method is different from these approaches in two ways. First,
our method does not require any manual intervention for choosing
any reference image and is fully automatic during inference. Sec-
ond, our method uses a novel feature extraction module to extract
reflection-aware features that are invariant to reflections unlike the
reference based approaches that typically use VGG features for
matching semantic information.

3 Proposed Method
In this section, we describe the proposed methodology in detail,
including the network architecture design and the loss functions
used.

3.1 Overview
The objective of our method is to improve single image reflection
removal using semantic cues from easily sourceable reflection-free
images. We develop our algorithm based on the following design
principles: a) Given an input image, the algorithm should be able
to quickly retrieve a small subset of semantically similar images
from a large database of reflection-free images ; b) The algorithm
should also be capable of extracting features from the reflection-
corrupted input image and search for similar features from this
subset of reflection-free images. Hence, this feature extractor should
be reflection-aware, i.e, the features extracted from semantically

similar images should be similar regardless of the presence of re-
flections ; c) The algorithm should then use these reflection-aware
features to aid removal of reflections from the input image.

An overview of the proposed method is shown in Fig. 2. For a
given input image, a coarse semantic search is first performed on a
reflection-free image database to obtain a set of 𝑠 images semanti-
cally similar to the input image. The database comprises of ∼ 50,000
diverse images sourced from publicly available datasets [57] [60],
that are predominantly reflection-free. The set of 𝑠 images are then
passed through the proposed Reflection Aware Feature Extractor
(RAFENet) to generate a Semantic Feature Dictionary (SFD). The
SFD contains features that are mostly invariant to the presence of
reflections. The SFD, along with the input image is then passed to
the proposed SFDNet to generate the reflection-free output image.
The salient components of the proposed pipeline is detailed in the
following subsections.

3.2 Coarse Semantic Search
We propose a lightweight Coarse Semantic Search (CSS) module
that retrieves a set of 𝑠 images similar to the input image from the
database of reflection-free images in an efficient manner. We use
a pre-trained VGG network as an image descriptor to encapsulate
the semantic information of an image into a vector. Given an input
image, we first extract the VGG image descriptors. Next we use
cosine similarity metric to compare the input image descriptor
with the descriptors pre-computed from the reflection-free images.
The images with top 10 similarity scores are then passed to the
proposed pre-trained reflection-aware feature extractor to compute
a Semantic Feature Dictionary (SFD). An example of the frames
obtained from the CSS module is shown in Fig. 2. It can be seen
that the CSS module is able to find images with similar semantic or
texture content as that of the provided input image. Please refer to
the supplementary material for more examples of similar images
from CSS module.

3.3 Reflection Aware Feature Extraction
While VGG based feature extractor can encapsulate the overall
semantic content of an image, they are not designed to extract fine
features from reflection-corrupted images consisting of superim-
position of multiple image layers. The features extracted from the
reflection-corrupted input image and reflection-free image database
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Figure 3: (a) Architecture of the proposed RAFENet used to extract Reflection Aware features. The features marked 𝐹𝑒𝑎𝑡1 and
𝐹𝑒𝑎𝑡2 are used in subsequent stages. (b) Reflection Aware Loss Function consists of three components: Siamese loss, cycle loss
and transmission loss. Input and ground truth images are passed to the RAFENet and the generated feature maps are used to
compute Siamese loss. The transmission and reflection images are added together and compared with input image to compute
cycle loss. The transmission image is compared with ground truth for transmission loss.
should be reflection-aware; i.e, similar features should be extracted
from semantically similar images regardless of the presence of the
reflections. This is essential to effectively search for features related
to the transmission content from the semantic feature dictionary.
We propose a novel reflection-aware feature extractor (RAFENet)
to generate meaningful reflection aware features from the input
image as well as from reflection-free images.

3.3.1 RAFENet Architecture. The proposed RAFENet consists of
an encoder block and a Residual Convolution Block (RCB). As
shown in Fig. 3 (a), the encoder block consists of 2 conv-batchnorm-
relu blocks of stride 1 (𝐶𝐵𝑅1), followed by 3 conv-batchnorm-relu
blocks of stride 2 (𝐶𝐵𝑅2). The output from the RCB block is passed
to a transmission branch, while the output feature map from the
penultimate 𝐶𝐵𝑅2 is passed to a reflection branch. We use sep-
arate branches so that features corresponding to reflection and
transmission layers can be localized to their respective branches.
This allows us to use features from the transmission branch as
the required reflection-aware features. Both the transmission and
reflection branches consists of further RCBs followed by decoder
blocks. The decoder consists of 3 upsample-conv-batchnorm-relu
blocks, followed by another conv-batchnorm-relu block and a con-
volutional layer with linear activation function. We use upsampling
instead of deconvolution layers to avoid checkerboard artefacts.
We also provide skip connections between the encoder block and
decoder blocks. The output feature maps marked as 𝐹𝑒𝑎𝑡_1 and
𝐹𝑒𝑎𝑡_2 in Fig 3 (a) are used as the reflection-aware features. These
layers are chosen empirically so that the resultant receptive fields
of the extracted features are of the appropriate size for effective
semantic transfer between the images.

3.3.2 RAFENet Training Loss. We propose a novel loss function to
train RAFENet considering the following objectives: a) The features
extracted in the transmission branch should be reflection aware; b)
The transmission branch and reflection branches should generate
transmission and reflection components of the input image respec-
tively. An overview of the proposed reflection aware loss function
is shown in Fig. 3(b). We use 3 components in the proposed loss
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Figure 4: Semantic Feature DictionaryNetwork (SFDNet). The
input is first passed through the pre-trained RAFENet. Next,
the Feature Search (FS) module searches for the most similar
features from the SFD (𝐹𝑒𝑎𝑡1 and 𝐹𝑒𝑎𝑡2 dicts) for semantic
transfer.

function: transmission loss, cycle loss and siamese loss. Each of
these components are detailed in this section.
Transmission Loss (L𝑡𝑟𝑎𝑛𝑠 ): This loss function is applied on the
output from the transmission branch so that features specific to
transmission layer are learned. It is defined as:

L𝑡𝑟𝑎𝑛𝑠 = L𝐼2𝐼 (N𝑡 (𝐼 ), 𝐼𝑔) (2)

Here, 𝐼 denotes the input image, 𝐼𝑔 denotes the reflection-free
ground truth image, and N𝑡 (𝐼 ) denotes the outputs from the trans-
mission branch. L𝐼2𝐼 (𝐼1, 𝐼2) is an Image-to-Image loss function [34]
defined as follows:

L𝐼2𝐼 (𝐼1, 𝐼2) = 0.6∥𝐼1 − 𝐼2∥1 + 0.6∥𝐼1 − 𝐼2∥2+
0.4L𝑔𝑟𝑎𝑑 (𝐼1, 𝐼2) + 0.8L𝑐𝑙 (𝐼1, 𝐼2) (3)
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where L𝑔𝑟𝑎𝑑 denotes 𝐿1 in the gradient space and L𝑐𝑙 denotes
contextual loss, which is a feature space similarity loss introduced
by [30].
Cycle Loss(L𝑐𝑦𝑐𝑙𝑒 ): The sum of the outputs from the transmission
and reflection branches should generate the original input image.
This property can be used to implicitly constrain the output of the
reflection branch using a cycle loss as follows:

L𝑐𝑦𝑐𝑙𝑒 = L𝐼2𝐼 (N𝑡 (𝐼 ) + N𝑟 (𝐼 ), 𝐼 ) (4)

where N𝑟 represents the reflection branch.
Siamese Loss (L𝑠𝑖𝑎𝑚): The objective of this loss function is to
constrain the training of RAFENet such that 𝑓 𝑒𝑎𝑡1 and 𝑓 𝑒𝑎𝑡2 are
similar for both reflection-corrupted input image (𝐼 ) and reflection-
free ground-truth image (𝐼𝑔). To compute L𝑠𝑖𝑎𝑚 , we perform two
forward passes per iteration of the training. In the first forward
pass, we provide 𝐼 as the input to the network to generate N𝑡 (𝐼 ),
𝐹𝑒𝑎𝑡_1(𝐼 ) and 𝐹𝑒𝑎𝑡_2(𝐼 ). Here, N𝑡 (𝐼 ) represents the output from
the transmission branch and 𝐹𝑒𝑎𝑡_1(𝐼 ) and 𝐹𝑒𝑎𝑡_2(𝐼 ) represent
the feature maps extracted from 𝐼 . In the second forward pass,
we provide 𝐼𝑔 as input to the the network and generates N𝑡 (𝐼𝑔),
𝐹𝑒𝑎𝑡_1(𝐼𝑔) and 𝐹𝑒𝑎𝑡_2(𝐼𝑔). The Siamese loss is then computed as
follows:

L𝑠𝑖𝑎𝑚 = L𝐼2𝐼 (N𝑡 (𝐼 ),N𝑡 (𝐼𝑔)) + ∥ 𝑓𝐹𝑒𝑎𝑡_1 (𝐼 ) − 𝑓𝐹𝑒𝑎𝑡_1 (𝐼𝑔)∥1
+ ∥ 𝑓𝐹𝑒𝑎𝑡_2 (𝐼 ) − 𝑓𝐹𝑒𝑎𝑡_2 (𝐼𝑔)∥1 (5)

This loss function enforces the network to learn 𝑓 𝑒𝑎𝑡1 and 𝑓 𝑒𝑎𝑡2
in a manner invariant to the presence of reflections in the image.

The overall reflection invariant loss function is then defined as:

L = L𝑡𝑟𝑎𝑛𝑠 + 0.1L𝑐𝑦𝑐𝑙𝑒 + 0.15L𝑠𝑖𝑎𝑚 (6)

3.4 SFDNet
3.4.1 Network Architecture. We propose Semantic Feature Dictio-
nary Network (SFDNet), a novel network that utilizes the Semantic
Feature Dictionary generated by our proposed RAFENet to enhance
single image reflection removal. An overview of SFDNet is shown
in Fig. 4. The input image is first passed through the pre-trained
RAFENet to generate reflection aware features. These features are
then passed through a Feature Search (FS) module which returns
the most similar matching features from the semantic feature dic-
tionary. Next, we use a Semantic Transfer (ST) module [60] to fuse
the matched features from the FS module with the reflection-aware
features extracted from the input image. The resultant feature maps
are then passed through Residual Convolutional Blocks (RCB), each
consisting of two Conv-Batchnorm-Relu layers with residual con-
nections. Finally, a decoder consisting of 3 upsample blocks and
2 convolutional blocks are used to generate the final output. We
also provide skip connections between the feature extractor and
decoder blocks. More details on FS and ST modules are discussed
in this section.
Feature Search (FS): Given a reflection aware feature extracted
from the input image, the objective of FS module is to retrieve the
most similar feature from the semantic feature dictionary. Trivially

searching in the SFD is highly inefficient resulting in huge com-
putational overheads. To this end, we propose a novel module for
FS using lightweight differentiable operations. The proposed FS
module can be plugged into any network architecture for efficient
feature search. Let 𝑓 (𝐼 ) be the feature map of size (𝐻 ×𝑊 ×𝐶) ex-
tracted from the input image. We represent this feature map using
the 2D matrix F consisting of 𝐻.𝑊 rows and𝐶 columns. Each row
𝑖 in this matrix (F [𝑖]) represents a 𝐶 dimensional feature vector
extracted from the input image. We also define a matrix F𝑠 𝑓 𝑑 of
dimensions (𝑠 .𝐻 .𝑊 ×𝐶) to represent the features in the SFD. Here,
𝑠 denotes the number of similar images obtained using coarse se-
mantic search. For each feature in F , the FS module searches for
the most similar feature in F𝑠 𝑓 𝑑 using cosine similarity metric and
generates a matched feature map (F𝑚). We use matrix operations
for efficient computations. First, we construct a cosine similarity
matrix as follows:

F𝑐𝑜𝑠 =
FF𝑇

𝑠𝑓 𝑑

FF𝑇
𝑠𝑓 𝑑

(7)

where F and F𝑠 𝑓 𝑑 are norm vectors defined as follows:

F[𝑖] = ∥F [𝑖] ∥2 (8)
Here F and F𝑠 𝑓 𝑑 are of dimensions (𝐻.𝑊 × 1) and (𝑠 .𝐻 .𝑊 × 1)
respectively and F𝑐𝑜𝑠 is a matrix of dimensionality (𝐻.𝑊 × 𝑠 .𝐻 .𝑊 ).
Every element F𝑐𝑜𝑠 [𝑖] [ 𝑗] in the cosine similarity matrix represents
the cosine similarity of the 𝑖𝑡ℎ input featuremapwith the 𝑗𝑡ℎ feature
map from the SFD. Next, an index matrix representing the indices
of the most similar features in the SFD is constructed as follows:

F𝑖𝑛𝑑 [𝑖] = argmax 𝐹𝑐𝑜𝑠 [𝑖] (9)
Here, F𝑖𝑛𝑑 is a matrix of dimensions (𝐻.𝑊 × 1). Each element

F𝑖𝑛𝑑 [𝑖] denotes the index of the most similar feature from F𝑠 𝑓 𝑑 .
The matched feature is then constructed as follows:

F𝑚 [𝑖] = F𝑠 𝑓 𝑑 [F𝑖𝑛𝑑 [𝑖]] (10)
F𝑚 is a matrix of dimensions (𝐻.𝑊 ×𝐶) consisting of the most

similar reflection-aware feature for each input feature vector.
Semantic Transfer (ST):We use a Semantic Transfer block similar
to the one proposed in [60] to transfer the features from F𝑚 to the
subsequent features. A schematic of the ST module is shown in Fig.
4. Specific implementation details of this module is provided in the
supplementary material.

3.4.2 SFDNet Loss Function. We use image-to-image loss function
defined in Eq. 3 to train the proposed SFDNet.

4 Large Scale Reflection Removal Dataset
The efficacy of deep learning based image restoration is dependent
on the availability of a large dataset of paired images, consisting
of both reflection-corrupted and ground truth images. However,
existing paired datasets for reflection removal [17, 49] consists of
∼ 1000 image pairs, which is not sufficient for generalization. Wan
et.al [48] proposed a large scale Reflection Image Dataset (RID)
consisting of 3250 images. However, this dataset consists only re-
flection layer images, and proposes to construct synthetic training
dataset by combining the provided reflection layer images with
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Input BDN [56] ERRNet [51] IBCLN [21] Dong et.al [4] Ours Ground Truth

Figure 5: Comparison against state-of-the-art methods on Berkeley20 dataset (top) and ERR-DSLR50 dataset (bottom). Our
method is able to remove reflections much better (Yellow boxes)

Input ERRNet [51] IBCLN [21] Dong et.al [4] RAGNet [25] Ours Ground Truth

Figure 6: Comparison against state-of-the-art methods on our LSRR Dataset. Yellow boxes show that our method removes
reflections better
reflection-free images from public datasets. However the inaccu-
racies in the mathematical models used in synthetic data creation
often translates to lack of adaptability of these methods to real-life
scenarios.

To alleviate these issues, we propose a Large Scale Reflection
Removal (LSRR) dataset for training and testing purposes. The
proposed dataset consists of 2650 high resolution images with real
reflections and their corresponding reflection-free ground truth
images. The dataset was captured using a smartphone in various
indoor and outdoor locations and in different lighting conditions.
We use a portable glass panel to create images with and without
reflections. The smartphone was affixed to a tripod so that the
input image is aligned with the ground truth image. We also varied
the angle of the portable glass with respect to the smartphone
to simulate real-life capture conditions. Our dataset consists of
images with strong as well as weak reflection components for better
variability and generalization. To the best of our knowledge, the
proposed dataset is the largest dataset consisting of images with
real reflection and their corresponding aligned ground truths. We
use 2550 image pairs for training and 100 images for benchmarking.
Please refer to the supplementary material for some examples of
image pairs from our dataset.

5 Experiments and Results
5.1 Datasets
5.1.1 Training Dataset. We use synthetic and real image data for
training the proposed method. To create synthetic data for training,
we make use of the datasets proposed in SRNTT [60] and PASCAL-
VOC [5]. We use images from SRNTT dataset as the transmission
layer, images from PASCAL-VOC as the reflection layer, and gen-
erate synthetic input images with reflections using the method
proposed by [51]. We create a set of 11000 images pairs in this
manner, of which, 1000 image sets are used for validation and the
remaining for training. To train the proposed method using images
with real reflections, we use the training set of the proposed LSRR
Dataset consisting of 2550 image pairs.

5.1.2 Testing Datasets. We make use of the following datasets
for evaluations: a) Berkeley-20 [59]; b) Postcard, Wildscene and
Solid Object datasets from SIR2 [46]; c) Our LSRR test dataset; and
d) ERR-DSLR50 [51] dataset. We use ERR-DSLR-50 dataset only
for qualitative evaluations since this dataset consists of unaligned
ground-truth images.
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Table 1: PSNR/SSIM comparisons against state-of-the-art on public datasets. Our method achieves the best average scores.

Dataset (size) ERRNet-F [51] IBCLN-F [21] Dong et.al [4] YTMT-F [9] RAGNet [25] SRNet [3] Ours
SIR2-Postcard (199) 20.39/0.829 23.87/0.876 23.72/0.903 20.75/0.813 23.67/0.879 23.85/0.892 24.08/0.881
SIR2-Wild Scene (55) 26.28/0.915 24.9/0.891 25.73/0.902 24.98/0.897 25.52/0.880 25.63/0.894 26.62/0.923
SIR2-Solid Object (200) 25.68/0.911 25.05/0.895 24.36/0.898 24.76/0.896 26.15/0.903 26.96/0.912 28.50/0.925

Berkeley (20) 22.52/0.803 20.95/0.760 23.31/0.812 20.83/0.753 22.95/0.793 23.58/0.803 24.59/0.818
Average (474) 23.39/0.872 24.36/0.880 24.20/0.8960 22.93/0.855 24.90/0.885 25.35/0.896 26.26/0.902

5.2 Implementation Details
We train the proposed RAFENet and SFDNet using PyTorch frame-
work on a PC with NVIDIA Tesla V100 GPU and 32 GB RAM. Both
RAFENet and SFDNet are trained till convergence using ADAM
optimizer with an initial learning rate of 10−5 and a weight decay
of 0.025. Please refer to the supplementary material for more details
on training and implementation.

5.3 Comparison against state-of-the-art
We compare the proposed method against state-of-the-art methods
in reflection removal, BDN [56], ERRNet [51], IBCLN [21], Dong
et.al [4], YTMT [9], RAGNet [25] and SRNet [3]. For a fair com-
parison, we fine tune the methods with publicly available training
codes (ERRNet [51], IBCLN [21] and YTMT [9]) using our proposed
LSRR dataset. For the other methods we use the pre-trained models
and inference codes provided by the authors for generating results.

5.3.1 Qualitative Results. We provide image comparisons against
the aforementioned methods on public and our LSRR datasets in
figures 5 and 6 respectively. We have shown results on challenging
image sets consisting of strong reflections spread over a large area.
It can be seen that the state-of-the-art methods fail to remove these
reflections completely. Our method makes use of semantic informa-
tion from the automatically extracted semantic feature dictionary
to effectively remove reflections in these images. Hence, it can be
seen that our method is able to remove reflections better than the
state-of-the-art methods. Please refer to the supplementarymaterial
for more results.

5.3.2 Quantitative Results. We provide quantitative comparisons
of our method against several state-of-the-art methods in reflection
removal on multiple public datasets in Table 1 using PSNR and
SSIM metrics. We use the notation -F to denote the methods fine
tuned using our dataset. The proposed method is able to achieve
better PSNR scores compared to the state-of-the-art methods on
all the datasets. Our method also achieves the best SSIM scores on
most of the datasets. Further, our method also achieves the best
PSNR and SSIM scores averaged over all the public datasets.

We also compare against a self-semantic guided method by Liu
et.al [26]. This method proposes to extract a segmentationmap from
the input images, and then use it to guide the reflection removal.
However, unlike our method, this method does not utilize external
semantic information, resulting in an inferior performance. This
method generated output images with a PSNR of 23.75 and an SSIM
of 0.8895 averaged over Berkeley and SIR2 datasets. On the other
hand, our method outperform [26] on both these metrics obtaining
scores of 26.26 and 0.902 respectively, resulting in an improved
PSNR of ∼ 2.5 dB.

Table 2: Comparison on the proposed LSRR Dataset
(PSNR/SSIM). Original and fine tuned models are denoted
by -O and -F respectively. Our method achieves the best
PSNR/SSIM scores on public as well as our LSRR dataset.

Method Public Datasets Our Dataset (LSRR) Average

ERRNet-O [51] 23.41/0.869 20.68/0.804 22.91/0.857
ERRNet-F [51] 23.39/0.872 23.82/0.861 23.46/0.870
IBCLN-O [21] 24.23/0.870 20.57/0.807 23.57/0.858
IBCLN-F [21] 24.36/0.880 21.46/0.826 23.83/0.870

Ours 26.26/0.902 25.18/0.870 26.06/0.896

We also provide quantitative comparisons on the testing dataset
of our proposed LSRR dataset in Table. 2. We compare our method
against original (-O) and fine-tuned (-F) models of ERRNet and
IBCLN methods. It can be seen that our method outperforms the
existing methods on both PSNR and SSIM metrics on both public as
well as our LSRR datasets. It can also be observed that the methods
fine tuned using our training dataset (-F) significantly outperforms
the original models (-O) on LSRR testing dataset. Moreover the
fine tuned models are able to obtain comparable or better scores
compared to original models on public datasets. This show the
efficacy of the proposed LSRR dataset, in advancing further research
in reflection removal.

5.4 Ablation Studies
In this section, we provide ablation studies to justify the impor-
tance of the novel components introduced in our methodology.
All the experiments are evaluated on SIR2-Wildscene dataset. We
also provide more experimental studies in supplementary material,
including details on network complexity, impact of SFD size, ex-
tension towards an interactive approach and a detailed analysis of
reflection-awareness.
Impact of Image Database: First, we analyze the impact of using
image database of reflection-free images on the final output image.
For this experiment, we evaluate the network without providing
the SFD extracted from an external database of images. The result
of this experiment is provided in row 1 of Table 3. It can be seen
that this experiment results in a PSNR drop of ∼1.3 dB compared to
our proposed method which used image database (row 4 of Table 3).
We also provide qualitative image comparisons for this experiment
in Fig. 7 (top). It can be seen that the proposed method is able to
remove reflections much better with the help of semantic content
from external image database. This is evident especially in images
with strong reflection components.
Impact of Semantic Transfer: Next, we evaluate the impact of
Semantic Transfer module (ST) by training a network without ST
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Table 3: Ablation studies evaluated on Wildscene dataset. Image Database, Semantic Transfer module and RAFENet features
improve the performance of the method.

Sl No. Image Database Semantic Transfer Feature Extractor PSNR SSIM
1 × × RAFENet 25.29 0.8897
2

√ × RAFENet 25.83 0.8949
3

√ √
VGG 25.95 0.8927

Ours
√ √

RAFENet 26.62 0.9232

Table 4: Impact of various components of the proposed re-
flection aware loss function, evaluated on Wildscene dataset.
Our proposed loss function achieves the best PSNR/SSIM
scores.

Loss Function PSNR (dB) SSIM
only L𝑡𝑟𝑎𝑛𝑠 26.2 0..9013

L𝑡𝑟𝑎𝑛𝑠 + L𝑐𝑦𝑐𝑙𝑒 26.25 0.9034
L𝑡𝑟𝑎𝑛𝑠 + L𝑐𝑦𝑐𝑙𝑒 + L𝑠𝑖𝑎𝑚 (Ours) 26.62 0.9232

module. In this experiment, the matched features from the FS mod-
ule are directly appended to the features extracted from the input
image, without passing them thought the ST module. These results
are summarized in row 2 of Table 3. It can be seen that the model
without ST module resulted in a PSNR drop of ∼ 0.8 dB.
Impact of Reflection Aware Features: We also provide an abla-
tion study to analyze the impact of the proposed Reflection Aware
Feature Extractor (RAFE) on the output image quality. For this
experiment, we used a pre-trained VGG as a feature extractor to
extract features from the input image. We used the layers conv2_2,
conv3_4 and conv4_2 of the VGG network for feature extraction.
The extracted features were then passed through Feature Search
and Semantic Transfer modules and the remaining layers of the
SFDNet. We trained this network using the same training settings
as that used for the original SFDNet. These results are summarized
in row 3 of Table 3. It can be seen that replacing the proposed RAFE
feature extractor with VGG results in a PSNR degradation of ∼ 0.55
dB. We also provide qualitative results on SRNTT validation set in
Fig. 7 (bottom). It can be seen that the results obtained from SFDNet
using VGG feature extractor is unable to remove the reflections
completely, resulting in an output image with lower visual quality.
On the other hand, SFDNet trained using the proposed Reflection
Invariant feature extractor is able to remove reflections much better.
This experiment shows the importance of Reflection Aware Feature
Extraction for effective transfer of related semantic content from
the reflection-free database of images.
Loss Component Analysis for RAFENet: In this section, we
analyze the impact of the various components used in the proposed
Reflection Aware loss function. For this experiment, we train the
RAFENet using two different configurations: a) Only transmission
loss (L𝑡𝑟𝑎𝑛𝑠 ); and b) transmission loss and cycle loss (L𝑐𝑦𝑐𝑙𝑒 ). The
resultant feature extractor is then loaded into the SFDNet and
trained for reflection removal. The final PSNR and SSIM scores of
the outputs generated by these configurations are compared with
that generated by the proposed method using all the three losses
(L𝑡𝑟𝑎𝑛𝑠 + L𝑐𝑦𝑐𝑙𝑒 + L𝑠𝑖𝑎𝑚) . These results are summarized in Table.
4. It can be seen that removing L𝑠𝑖𝑎𝑚 results in a PSNR degradation

Input w/o Im. Database with Im. Database (Ours) Ground Truth

Input VGG + SFDNet RAFE + SFDNet (Ours) Ground Truth

Figure 7: Ablation Studies. Top row: Impact of image database.
Our method (Col 3) using image database is able to remove
reflections much better; Bottom row: Impact of RAFENet.
VGG based feature extractor (Col 2) results in inferior per-
formance compared to our method using RAFENet (Col3).

of ∼0.4 dB ( row 2 of Table. 4). Removal ofL𝑐𝑦𝑐𝑙𝑒 results in a further
PSNR reduction of 0.05 dB. From this experiment, it can be inferred
that L𝑠𝑖𝑎𝑚 contributes strongly to the model accuracy. This is
expected, since removal of L𝑠𝑖𝑎𝑚 impact the ability of RAFENet to
generate reflection aware features.

6 Conclusion
We present a novel methodology, termed 𝑅2𝑆𝐹𝐷 , to improve re-
flection removal using semantic information extracted from eas-
ily available reflection free images. Our methodology consists of
two novel network architectures, termed RAFENet and SFDNet.
RAFENet is designed to extract reflection aware features that are
mostly invariant to the presence of reflections. The SFDNet is de-
signed to utilize the reflection-aware features extracted from the
image database to improve removal of reflections from the input im-
age. We also introduce a new dataset for reflection removal, termed
Large Scale Reflection Removal dataset, consisting of 2650 images
with real reflections and their corresponding ground truth images.
To the best of our knowledge, the proposed dataset is the largest
available dataset for reflection removal consisting of real image
pairs. The proposed method achieves superior results both qualita-
tively and quantitatively against state-of-the-art methods on public
real datasets as well as our LSRR dataset. We also conduct extensive
ablation studies to show the impact of the external image database,
Semantic Transfer module and RAFENet on the final output image.
We further analyze the impact of various components of the pro-
posed loss Reflection Aware loss function. These experiments show
that proposed novel components and the new dataset enable us to
achieve state-of-the-art results in reflection removal
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